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Executive Summary

This deliverable presents the final implementation of the READEX Design Time Analysis,
which precomputes the tuning model that is used during production runs to tune the energy
efficiency of the application. It is based on the Periscope Tuning Framework, an automatic
tuning environment, that explores different tuning parameter configurations via tuning plu-
gins. For READEX, two new tuning plugins were developed, one for intra-phase and one
for inter-phase dynamism. The tuning model determines best configurations for scenarios of
runtime situations. Scenarios are sets of identifiable instances of program regions that have
the same characteristics and, based on that, the same best tuning parameters configurations.
Therefore, the tuning model abstracts from individual region instances which leads to a com-
pressed representation of the Design Time Analysis results. Tuning models from application
runs with different input configurations are merged according to their input identifiers into
a general application tuning model.
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1 Introduction

The READEX tuning methodology consists of two steps: Design Time Analysis (DTA) and
Runtime Application Tuning (RAT). DTA creates a tuning model that is used during pro-
duction runs by the READEX Runtime Library (RRL) to perform RAT. READEX exploits
application dynamism to reduce the application’s energy consumption beyond static tuning.
While in static tuning an optimized system configuration is enforced at program start and is
not changed during execution of the application, dynamic tuning switches the configuration
dynamically and can therefore exploit dynamic variation of application characteristics.

As outlined in Deliverable D4.1, READEX is able to exploit intra-phase and inter-phase
application dynamism. Intra-phase dynamism identifies different characteristics of instances
of program regions. These instances are called runtime situations (rts) (see Deliverable D4.1
for details).

Inter-phase dynamism identifies dynamism due to changing application characteristics over
iterations of the main progress loop of the application. Each iteration of the progress loop
typically simulates one time step and is called a phase. The loop body, the phase region, has to
be specified by the application expert prior to DTA via the Domain-Knowledge Specification
Interface (DKSI) (Deliverable D4.5). For example, variation in the characteristics of the
application’s phases results from the progress of the tool applied to the metal plate in the
metal forming process simulated in INDEED [I] .

DTA is implemented by two new tuning plugins of the Periscope Tuning Framework (PTF).
A tuning plugin [6] captures expert knowledge about the tuning approach for a certain tuning
aspect. It searches the multi-dimensional space of system configurations, where each of the
dimensions is a tuning parameter. The approach for exploring the search space is determined
by the plugin developer based on expert knowledge. Each tuning plugin consists of one or
more tuning steps. In each tuning step, a search algorithm is used to determine a set of
system configurations that are evaluated in experiments. PTF offers a number of search
algorithms to the plugin developer. Each experiment is the execution of a phase with the
tuning parameters set appropriately. At the end of the search, the Application Tuning Model
(ATM) is generated. DTA is executed for a certain application input. This input can be
described by input identifiers, i.e., key-value pairs. The input identifiers are then attached to
the ATM. An external tuning model merger (Section [4]) can be used to merge tuning models
of different inputs together into one general ATM.

readex-dyn-detect analyzes the application for available intra-phase and inter-phase dy-
namism. The user can then select the readex_intraphase tuning plugin to exploit intra-
phase dynamism, or the readex_interphase tuning plugin to exploit inter-phase and intra-
phase dynamism. Since the two tuning plugins use different approaches, it is recommended
to apply the readex_intraphase tuning plugin if there is no inter-phase dynamism.

The approach taken in PTF for DTA is focusing on the fast generation of high quality tuning
models. DTA requires typically only one or two program runs to generate the model. In case
of intra-phase dynamism, a single - frequently only partial - run of the application is sufficient
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to determine and evaluate the tuning model. For inter-phase dynamism three application runs
are required for the analysis, the default configuration, and one to evaluate the tuning model
quality.

The short tuning times result from three properties of the tuning plugins:

1. The experiments are executed for a single phase.
2. Advanced search algorithms require less experiments than exhaustive search.

3. Rts’s are tuned independently.

These properties allow to perform DTA much faster than, for example, with the manual
tuning approach based on MERIC [2]. The resulting tuning models result nevertheless in
comparable tuning results.

The document explains the final design of the readex_intraphase plugin implementing tun-
ing for intra-phase dynamism in Section [2] and the readex_interphase plugin tuning for
inter-phase dynamism in Section [3} Section [4] describes advanced methods for tuning model
generation as well as tuning model merging. The contents is summarized in Section

H2020-FETHPC-2014 6
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p| System Parameters —p Verification
Tuning

Default Execution > ATP Tuning

Figure 1: The readex_intraphase plugin executes four tuning steps: Default Execution,
ATP Tuning, System Parameter Tuning, and Verification.

2 Intra-phase Tuning

PTF provides the readex_intraphase plugin dedicated to tuning based on intra-phase dy-
namism. In contrast to applications with inter-phase dynamism, the characteristics of the
computation do not change over time, i.e., the sequence of phases.

It supports tuning for different objective functions, i.e., absolute energy consumption, energy
delay product limiting the performance reduction due to energy tuning, and total cost of
ownership are offered. The total cost of ownership objective function determines the overall
costs of a job as being the sum of the energy costs plus the execution time dependent fraction
of the HPC system costs, i.e., hardware and software investment as well as maintenance costs
and personnel.

For all these objectives also a normalized version is provided where the objective value is
normalized by a metric that linearly correlates to the amount of work, such as the number
of AVX instructions. These normalized objectives allow to apply the readex_intraphase
plugin also to codes that have a varying phase execution time but no varying characteristics,
such as the computational intensity. Thus, the plugin tunes phases with different amount of
work but of the same kind, such as more iterations of an iterative solver. The normalized
objective would allow to compare the objective values of phases with different execution time.

The supported tuning parameters are application tuning parameters, core and uncore fre-
quency, and number of threads. Application Tuning Parameters (ATP) are described in
detail is Deliverable D4.5.

The readex_intraphase plugin is configured via the READEX configuration file. It is gen-
erated by readex-dyn-detect and specifies the objective function, the search algorithms to
use, as well as the configuration for the system-level tuning parameters. For the tuning pa-
rameters, the possible values can be specified. Other configurations are related to technical
details and are not important here.

Figure [1| illustrates the steps of the readex_intraphase plugin:

1. Default Execution: This step determines the objective value for the default execution,
i.e., the execution with the default parameter settings provided by the batch system for
the system parameters and the ATP specification in the code for ATPs. The objective
value is used for determining the tuning result in the last step of the plugin.

H2020-FETHPC-2014 7
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2. ATP Tuning: The readex_intraphase plugin tunes ATPs first, since these select typi-
cally algorithmic alternatives and the selection is independent of the more fine-grained
tuning provided by system parameters.

3. System Parameters Tuning: Once the algorithmic decisions were taken, the algo-
rithms are tuned with the system parameters.

4. Verification: The verification step analyzes the results and determines the best system
configuration for the phase region as well as the specific best settings for the significant
regions. It then assesses the tuning result for this READEX configuration.

After the execution of the plugin, the tuning model is generated and, if necessary, merged
with other already computed tuning models for different inputs by the external Tuning Model
Merger described in Section

2.1 Default Execution

The execution with the default tuning parameter settings is run as part of the initial gathering
of the program’s static information by the very first step of PTF after starting the application.
PTF uses a specific analysis strategy to gather program regions and runtime situations. This
strategy was extended to also gather the measurements required for the evaluation of the
objective value, i.e., time and energy.

The default settings of the tuning parameters are given for the system parameters by the
initialization of the batch job and by the default-value specification for the ATPs.

The analysis is run in PTF for the first phase of the application. The results are stored for
comparison in the last plugin step.

2.2 ATP Tuning

This step investigates optimal settings for the given ATPs. ATPs allow the user to provide
application specific tuning knobs based on expert application knowledge. The specification
constructs are introduced in detail in Deliverable D4.5.

ATPs are implemented via the ATP library. It provides functions to specify their set of
potential values and a default value. The set of values can be given by an interval or by
enumeration. Furthermore, ATPs in the same ATP domain - a concept introduced in DKSI
for structuring ATPs into sets of independent tuning parameters - can be connected by
constraints that determine valid multi-dimensional points. The constraints are also specified
by API calls.

In the first application phase, the ATP library generates an ATP configuration file that
specifies the ATPs with their domain and possibly given constraints (Deliverable D4.5). PTF
uses two new search strategies, exhaustive_atp and individual_atp, to determine optimal
settings for the given ATPs based on this file.

H2020-FETHPC-2014 8
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The exhaustive strategy for ATPs explores all valid points in the given search space. The
search space can consist of a single or multiple ATP domains. The search strategy first
determines the valid points for each of the given ATP domains. It contacts the ATP server
that is started during the initialization of the tuning plugin. The ATP server reads the ATP
configuration file and answers queries of PTF about ATP domains, tuning parameters in the
domains, and valid points of these ATPs. It employs the Omega Calculator [9] to solve the
system of constraints that might have been specified for a given ATP domain.

Once the exhaustive strategy received the valid points for the domain, the set of system
configurations is build as the crossproduct of those points.

The individual strategy for ATPs does not explore the crossproduct of the valid points of the
domains but tunes the domains individually. It starts with the first domain and evaluates
all valid points for this domain. It then fixes the best point for this domain by restricting
the set of values to this single point and explores the next ATP domain until all domains
were handled. The individual strategy uses the exhaustive ATP strategy as a substrategy to
explore the valid points of a domain.

The applied search strategy can be selected in the configuration file. The result of the first
tuning step is an optimal configuration for the application tuning parameters.

2.3 System Parameters Tuning

The third tuning step explores the system-level tuning parameters. In this step, the optimal
configuration for the ATPs obtained in the previous tuning step is fixed and applied in this
tuning step.

The search strategy in this step is given in the configuration file and can be any of the search
strategies of PTF. It is recommended to use the individual strategy for tuning the different
parameters independently, which reduces the search time considerably.

The ranges of the tuning parameters are given in the configuration file as well. The search
strategy generates the system configurations to be assessed via experiments. In an experiment
for a system configuration, PTF measures the required objectives for the phase and for the
rts’s.

At the end of this tuning step, the tuning result for all tested system configurations are eval-
uated. By evaluating the objective for the phase region, the static best system configuration
is determined. Afterwards, the tuning results for each rts are evaluated to compute the best
system configuration for each rts. The combination of the best static system configuration
and the rts-specific best configurations represents the READEX tuning model.

2.4 Verification
In the last step, the tuning plugin runs three experiments with the combined READEX

configuration. To do so, PTF configures the RRL at the start of the phase with the phase
system configuration and the rts-specific system configurations. During the next phase, the

H2020-FETHPC-2014 9
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RRL enforces the static configuration and dynamically switches system configurations for the
rts’s. The experiment is repeated three times to check for any variation in the results due to
hardware variations or phase differences.

Finally, the plugin determines three values characterizing the tuning result. These are given
below with the following notation:

;ﬁ;’;‘;glt : objective value of the phase under the default configuration
oﬁ?jﬁ‘é : objective value of the phase under the static best configuration
defoult . shiective value of the rts under the default configuration
ostatic . objective value of the rts under the static best configuration
0" . objective value of the rts under the rts-specific optimal configuration
Please note that OZI;LZ e = OIc.

Static savings for the rts’s: This is the accumulated savings for the static best configu-
ration of the rts’s compared to the default.

static __ default static E de fault
SRTS - E (Orts — Opgs ) / Orts * 100
rts€ RT'S rts€RTS

Dynamic savings for the rts’s: This is the accumulated savings for the rts’s with their
specific best configuration compared to the value of the static best configuration.

dynamic __ static opt static
SRTS - E : (Orts - Orts) / Z Opts % 100
rts€RT'S rts€eRTS

Static savings for the whole phase: This is the comparison of the objective value for the
best static configuration without rts specific configurations and the value for the default
configuration.

static __ ¢ default opt de fault
SRTS - ( phase Ophase) / phase ¥ 100
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Default

Execution > Verification

Analysis —

Figure 2: The readex_interphase plugin executes three tuning steps: Analysis, default
execution and verification.

3 Inter-phase Tuning

The readex_interphase plugin is dedicated to tuning based on inter-phase dynamism for
applications whose characteristics change across the sequence of phases.

The readex_interphase tuning plugin first groups phases that have similar characteristics
or behavior into clusters and determines the best configuration for each cluster. It then
determines the best configuration for the rts’s of each created cluster.

During initialization, the plugin first reads and initializes the ranges of the tuning parameters
from the READEX configuration file. It then initializes the random search strategy. This is
done in order to reduce the search space of the tuning parameters. The plugin then reads
the objective to tune the application for. If no objective is specified, the default objective is
energy consumption.

Figure [2] illustrates the steps of the readex_interphase plugin:

1. Analysis: The analysis step uses the random search strategy [0] to create a number
of experiments to request measurements for randomly selected configurations. It then
clusters the phases based on the DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) [4] algorithm using normalized features (clustering aspects). Then,
cluster-best configurations are determined for the phase as well as the rts’s of the sig-
nificant regions.

2. Default Execution: This step creates the same number of experiments as in the anal-
ysis step. Each experiment determines the objective value for the default execution,
i.e., the execution with the default parameter settings provided by the batch system for
the system tuning parameters. The objective values obtained for each phase as well as
the rts’s are then used for computing the savings at the end of the tuning plugin.

3. Verification: The verification step creates the same number of experiments as in the
analysis step. This step determines if the theoretical savings computed in the analysis
step match the actual savings incurred after switching the configurations.

Finally, the tuning model is generated after the end of the plugin.

H2020-FETHPC-2014 11
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3.1 Analysis

Before the start of the first step, PTF restarts the application, in order to start the analysis
from the first phase. In the first step, the random search strategy is applied to collect the
effect of different system configurations on the different phases. For each phase, a random
system configuration is selected based on uniform distribution [6]. The number of experi-
ments is determined by the samples specification in the READEX configuration file. In each
experiment the objective value is gathered for the phase and the individual rts’s of the signif-
icant regions. In addition, PAPI hardware metrics, such as the number of AVX instructions,
L3 cache misses, and the number of conditional branch instructions are collected, which are
later used to derive phase features.

Phase features, such as arithmetic intensity, capture characteristics of phases. Phases that
have similar characteristics can be grouped together into a cluster. The mapping of phases
into clusters based on the features enables PTF to select different best configurations for
different phase clusters and also for the rts’s of significant regions in different phase clusters.

The features should be chosen carefully as they have a high impact in selecting the best
configuration for the phases in a cluster. Since the dynamism in many applications arises
from the variation in the compute intensity and the control flow of the execution, compute
intensity and the number of conditional branch instructions were chosen as the features for

clustering. Compute intensity is determined by i‘i‘g)é ;gfe”%zg:j.

After executing the experiments, the analysis step normalizes the phase features and the
objective values for all the phases and the rts’s by, for example, the number of AVX
instructions. This process is done for the same reason as described in Section 2} Then, the
phase features (compute intensity and conditional branch instructions) are normalized using
the min-max method. The min-max normalization method transforms the numeric range of
a feature to a scale between between 0 and 1, as shown in the following formula:

’ z—min(x)
r = max(z)—min(z)

3.1.1 Clustering

After the phase features are normalized, clustering is performed by the DBSCAN algorithm.
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [4] is a density based
clustering algorithm, which groups points that are closely packed together and have many
nearby neighbors, resulting in high density regions. It marks points that do not have nearby
neighbors and lie in low-density regions as noise. The algorithm requires two parameters to
cluster the data points:

1. minPts: minPts determines the minimum number of points that must lie in the neigh-
borhood to define a cluster. The minPts parameter was chosen to be 4 [10], which
means that a neighborhood should have a minimum of 4 data points to be defined as a
cluster.

H2020-FETHPC-2014 12
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Figure 3: The eps parameter for DBSCAN is determined for the point that has the greatest
distance from the line formed by the first and last point of the curve.

2. eps: Epsilon (eps) is the maximum distance between any two data points for them to be
considered to be in the same neighborhood. eps is automatically determined using the
elbow method [5]. First, this plugin computes the average 3-NN (3-Nearest Neighbor)
Euclidean distances for all the data points. The distances are then arranged in the
ascending order and a curve is drawn, as shown in Figure The elbow is a sharp
change in the average 3-NN distance plot. It is computed as the average 3-NN distance
of the point that has the maximum distance to the line formed by the points with the
minimum and the maximum 3-NN distance (the first and the last point on the curve).

The phases are then clustered based on the minPts and eps parameters.

3.1.2 Computation of cluster-best configurations

After clustering the phases, the plugin selects the best configuration for each cluster based
on the normalized objective value. This cluster-best configuration is then applied for all the
phases of a particular cluster during the next application run. This step also determines the
cluster-best configurations for the rts’s of the significant regions. This information is then
stored at the end of the Analysis tuning step.

3.2 Default Execution
In this tuning step, the application is restarted and the same number of experiments are

executed with the default configuration. This step is performed to gather the measurements
for the phase and the rts’s of the significant regions in order to compute the savings.
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Cluster=1 Cluster=2

(a) Before cloning. (b) After cloning.

Figure 4: Calling Context Graph (CCGQG) for a test application consisting of three regions foo,
bar and zoo called in the phase region.

3.3 Verification Step

In the verification step, the readex_interphase plugin creates the same number of experi-
ments as the previous tuning steps. Each experiment sets the configuration of the phase to its
corresponding cluster-best configuration and the configuration of the rts’s to their rts-specific
best configuration in the phases’ cluster.

If the phase was determined to be a noise point in the analysis step, it is executed using the
default configuration of the batch system.

This step determines if the theoretical savings computed in the analysis step match the actual
savings obtained after switching the configurations.

3.3.1 Cloning the Calling Context Graph (CCG)

Once all the experiments are completed, the plugin clones the children of the phase region of
the Calling Context Graph (CCG)[[]

Figure [4a] shows the initial CCG of the rts’s of an example application containing regions
foo, bar and zoo. Figure depicts the case when all the call-tree nodes under the phase
region are cloned, and new nodes are created for the n found phase clusters. Each of these
cluster nodes contains information, including the phases of that cluster, and the ranges for
the compute intensity and the conditional branch instructions. Each newly created cluster
node represents the specific value of the new region identifier Cluster.

As for other region identifiers, the callpath of an rts starts with the phase region and includes
the sequence of the region names and region identifiers that occur on the way to this region.

LA context sensitive version of a call graph.
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In Figure the callpath for foo would be /PhaseRegion/foo, while the valid rts’s for foo
after cloning would be /PhaseRegion/Cluster=1/foo and /PhaseRegion/Cluster=_2/foo.

3.3.2 Computing the savings

The tuning results, including the objective values and the ranges of the phase features for
each cluster as well as the objective values for the rts’s of the significant regions per cluster
are then inserted into the tree. Finally, the plugin determines the following three values to
characterize the savings:

Static savings for the rts’: This is the accumulated saving for the static best configura-
tion of the rts’s compared to the default over all the clusters.

n

statzc _ default static de fault

RTS - Z Z rts,cluster - Orts,cluster) / Z Z Orts,cluster * 100
cluster=1rtsc RT'S cluster=1rtse RT'S

Dynamic savings for the rts’: This is the accumulated saving for the rts’s with their spe-
cific best configuration compared to the value of the static best configuration over all
the clusters.

dynamzc _ static __opt / statzc %100
RTS Tts,cluster Orts,cluster Tts cluster *

cluster=1rtse RT'S cluster=1rtse RT'S

Static savings for the whole phase: This is the accumulated saving for the the best
static configuration of the phase without rts specific configurations compared to the
default configuration over all the clusters.

n

n
static __ de fault ___opt default
SRTS - z : (Ophase,cluster Ophase,cluster) / Z Ophase,cluster 100

cluster=1 cluster=1

where,
z;’;‘;gzu ser = oObjective value of the phase under the default configuration for a particular
cluster
of)%éi cluster objective value of the phase under the static best configuration for a par-

ticular cluster

de fault

. cluster = objective value of the rts under the default configuration for a particular

cluster
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static

Orts,cluster

= objective value of the rts under the static best configuration for a partic-
ular cluster

opt

rts. cluster = objective value of the rts under the rts-specific optimal configuration for

a particular cluster

opt __ static
Please note that Ophase,cluster — “phase,cluster”

3.4 Cluster Prediction at Runtime

For runtime tuning, the cluster number is added to the application as a region
identifier. ~ This is done by defining a Score-P user parameter (Deliverable D4.5)
via SCOREP_USER PARAMETER(handle, "Cluster", predict_cluster()) for Fortran or
SCOREP_USER_PARAMETER ("Cluster", predict_cluster()) for C/C++ applications imme-
diately after the OA phase region annotation, SCOREP_0A_PHASE BEGIN(), as shown in List-
ing [I] The user parameter definition sets the name to Cluster, and calls the predict_cluster
function from an external cluster prediction library.

Listing 1: Score-P user parameter definition for cluster prediction during runtime.

SCOREP_OA_PHASE_BEGIN()
SCOREP_USER_PARAMETER_INT64("Cluster", predict_cluster())

oW N =

5 SCOREP_OA_PHASE_END ()

First, the predictor method requests from the Tuning Model Manager (TMM) the ranges of
the phase features, and also the set of all phases belonging to the clusters determined in the
analysis step of the readex_interphase plugin. The TMM returns the information for the
first n phases that were already run during DTA.

The predict_cluster method initializes the PAPI library once at the beginning of the first
phase. It then collects hardware metrics for the conditional branch instructions and the
compute intensity, which is computed from the L3 cache misses and the AVX instructions. It
performs the cluster prediction for the current phase similar to a one-bit branch prediction
scheme. The branch prediction scheme predicts that the current branch will be taken if it
was taken previously. Similarly, the cluster prediction function assigns the upcoming phase
to the current cluster until the cluster is mispredicted, as shown in Figure

The predictor method then assigns the value of the predicted cluster number, and commu-
nicates this to the RRL which looks up the configuration for the cluster number and sets it
for the remainder of the phase. The configuration switching for the rts’s called inside the
current phase is then handled as usual by the RRL.

At the end of the current phase, a check is made to determine if there was a misprediction of
the cluster. The collected PAPI metrics for the compute intensity and the conditional branch
instructions are checked against the ranges of the phase features for the predicted cluster. If
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not taken

Predict
not taken

Predict
taken

taken

Figure 5: Runtime cluster prediction works similar to a one-bit branch prediction scheme with
a 1-bit saturating counter, where a branch is predicted to be taken until it is mispredicted.

the values fall within the ranges for the predicted cluster, no action is taken. If the values
fall within the ranges of another cluster, a correction is performed. If the values of the phase
features do not fall in the ranges of any known cluster, the phase is assigned as a noise point,
and the default configuration is set.
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4 Tuning Model Generation

At the end of DTA, the tuning model is generated based on the best system configuration
computed via the tuning plugins. The tuning model size is reduced by clustering rts’s into
scenarios. A best configuration is then given for a scenario and applied to all its rts’s.

This section describes the advanced clustering of runtime situations into scenarios and the
merging of tuning models created by PTF for different input identifiers.

4.1 Advanced Clustering of Runtime Situations

The task of the scenario identification module is to cluster rts’s into scenarios. So far, the
module could only cluster rts’s with identical system configurations, but with the advanced
scenario identification it is possible to cluster rts’s with similar system configurations.

The advanced clustering is implemented using hierarchical clustering [7] and proceeds in
three phases: dendrogram generation, cluster generation, and scenario creation. The first
phase generates a dendrogram, i.e., a tree illustrating the (dis-)similarity of rts’s based on
their system configurations, while the second phase uses this dendrogram to find a clustering
for the rts’s. The third phase uses these clusters to create the scenarios and their system
configurations.

4.1.1 Dendrogram Generation

The dendrogram generation phase arranges all rts’s into a dendrogram based on the similarity
of their system configurations in the tuning parameter space. A dendrogram is a tree that
expresses the (dis-)similarity of objects based on a distance metric. The tree’s leaves represent
the rts’s, whereas all intermediate nodes represent the clusters of these rts’s. The distance
between merged clusters is expressed as the height of each intermediate node from its leaves.
It is proportional to the intergroup (dis-)similarity of an intermediate node’s children.

An example is shown in Figure [6] and [7] Figure [6] tabulates the system configurations for six
different rts’s, while Figure [7] shows these configurations graphically. The resulting dendro-
gram is shown in Figure The leaves of the dendrogram show the individual rts’s and the
intermediate nodes the potential clusters.

The algorithm treats every rts in the tuning parameter space as a cluster with only a single
element, i.e., the rts itself. It uses an inter-cluster distance metric to always merge the
closest clusters, recomputes the distance for the newly created cluster to all other clusters,
and proceeds to merge the next closest clusters. The algorithm continues until all clusters
are merged into a single cluster. In the example in Figure the algorithm first merges rtsb
and rts6 into a cluster, then rtsl and rts2, and then this cluster with rts3, and so forth.

We use Lance-Williams algorithm [8] to recursively compute the inter-cluster distance at
every step of the algorithm in order to find the next pair of clusters. Suppose that clusters C;
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Figure 6: System Configurations for six rts’. , ,
Figure 7: Graphical representation of rts sys-

tem configurations.

Distance o o I3 ¥
single-linkage 0.5 0.5 0.0 -0.5
complete-linkage 0.5 0.5 0.0 0.5
group-average n:i-ilnj mijnk 0.0 0.0
weighted group-average 0.5 0.5 0.0 0.0
. i n; —nin;
centroid 7%17 Py cr +nj])2 0.0
; it n;j+n —
Ward’s method nzinﬁfnk nitn; Jr’“nk o +n?’;nk 0.0

Table 1: Supported distance metrics.

and C; are merged next, i.e., C; U C}, then we can compute the distance to another cluster
C. as follows:

diijie = cidi, + ajdji + Bdij + y|dik — dji|

where d;j, di, and dji are the pairwise distances between cluster C;, Cj, and Cy, and d ;)
the distance between the new cluster C; U C; and Cj. The parameters o;, oj, 3, and vy
are parameters that may depend on cluster size n, and can be used to express different
inter-cluster distances. For example, instantiating a; and «; with 0.5, 8 with 0.0, and ~
with -0.5 results in single-linkage clustering. Thus, Lance-Williams clustering algorithms are
parametric in the inter-cluster distance. Table [1| gives an overview of the supported distance
metrics.

4.1.2 Cluster Generation

The dendrogram produced by the previous phase enables us to create a clustering of the rts’s
by performing a tree cut. The cut of a tree is the partitioning of the tree’s nodes into disjoint
subsets. An example is shown in Figure 8Dl The cut intersects with the dendrogram’s edges
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Figure 8: Dendrograms.

at three points and therefore partitions the tree into three disjoint subsets. These are the
clusters C1 = {rtsl,rts2,rts3}, Co = {rtsd}, and C5 = {rts5,rts6}.

Thus, the point where we cut a dendrogram determines the number of resulting clusters. This
point should be chosen such that it minimizes the dispersion of data within clusters (SS,,),
while maximizing the dispersion between the clusters (SSp). The overall dispersion of data
within clusters for a given number of clusters k£ can be computed as follows:

k
SSw=>_>"llz—m? (1)
i zeC}

where x is a data point, m; the centroid of cluster i, and ||z — my|| is the distance (e.g.
Euclidean distance) between the data point and the centroid. SSy, decreases as the number
of clusters increases as each cluster becomes smaller and tighter packed with a bigger k.

The dispersion between clusters for a given number of clusters k can be computed as follows:

k
SSp =Y nil|lm; — M| (2)

where n; is the number of elements in C;, M the centroid of all clusters, and ||m; — M]|| the
distance between the centroid of cluster C; and the centroid of all clusters. S.Sp measures
the variance of all cluster centroids from the global centroid and a higher SSp value means
that clusters are more spread out.

We can combine both metrics for a given number of clusters k to compute the Calinski-
Harabasz Index [3] as follows:

SSg N —k
SSw k-1 (3)

CHI =
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where N is the total number of data points (i.e. rts’s). As SSy keeps on decreasing with

increasing k, the ratio ggvff/ is going to the biggest for the optimal number of clusters. Thus,

we can compute the optimal number of clusters kp.s; as follows:

kpest = k € 2,.., N where k maximizes CHI (4)

where N is the total number of data points (i.e. rts’s). The optimal number of clusters kpest
enables us to compute the point where we cut the dendrogram and create the clusters.

4.1.3 Scenario Creation

The clusters can now be grouped into scenarios and an overall system configuration for
the scenario can be computed. This system configuration is then used for all rts’s in the
cluster at runtime. Currently, two methods are supported to create a system configuration
for a scenario. The first one simply picks a random configuration from among all the rts’s,
whereas the second one computes the average for each tuning parameter from all the system
configurations of the rts’s.

4.2 Merging of Tuning Models

The DTA is always executed for a certain application input. This input can be described by
input identifiers, which are a list of key-value pairs. These input identifiers are attached to
the ATM and therefore permit PTF to produce tuning models for specific inputs. Each of
these tuning models contains the system configurations for the found rts’s for a specific set
of input identifiers. In order for all of the tuning information from the different ATMs to be
usable by the RRL, these tuning models must be merged into a single tuning model. This is
the task of the tuning model merger.

The tuning model merger is a standalone program that takes all the ATMs as input on its
command line and outputs a new tuning model incorporating all the rts’s from the input
tuning models. The program does this by first deserializing all ATMs. It extracts all tuning
information from the ATMs, such as rts’s and their system configurations as well as the
corresponding input identifiers. The scenarios from the individual ATMs are discarded. Next
the tuning model merger filters all rts’s in order to avoid duplicated rts’s in the final tuning
model. The next step is to produce a new set of scenarios by clustering all rts’s as described in
Section [4.1] Finally, the tuning model merger serializes the merged tuning model information
and outputs the new ATM in the JSON format.

The merged ATM is read by the Tuning Model Manager (TMM) during Runtime Application
Tuning (RAT). This is detailed in Deliverable D3.2. During RAT, the TMM handles the input
identifiers the same way as any other identifier.
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5 Summary

READEX provides Design Time Analysis for the computation of optimal system configura-
tions. The final version of DTA supports intra-phase and inter-phase dynamism with two
specialized PTF tuning plugins. The intra-phase tuning plugin supports ATPs as well as
system-level tuning parameters. The inter-phase tuning plugin implements a tuning strategy
that handles dynamism across phases via (1) experiments for randomly chosen system con-
figuration and (2) clustering phases with similar characteristics. RAT will predict the cluster
of the next phase based on the characteristics of previous phase and the optimal system
configurations for the predicted cluster will be applied.

Tuning models obtained from DTA for different application input data sets are combined
into a general tuning model. RAT will select system configurations from the tuning model
according to input parameters given for a production run.

The phase-based implementation of DTA in PTF reduces the analysis time significantly.
Instead of a full application run for each possible system configuration, the number of po-
tentially partial application runs during DTA is independent of the size of the number of
possible system configurations.

H2020-FETHPC-2014 22



READEX D2.3-Deliverable

References
[1] INDEED — Highly Accurate Finite Element Simulation for Sheet Metal Forming. http:
//gns-mbh.com/products/indeed. Last accessed October 14, 2015.
[2] MERIC Tool for Energy Measurement - GIT Repository.

https://code.itdi.cz/xvysoc01/meric.git.

T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications
in Statistics, 3(1):1-27, 1974.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algo-
rithm for discovering clusters a density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, pages 226-231. AAAI Press, 1996.

Manisha Naik Gaonkar and Kedar Sawant. Autoepsdbscan: Dbscan with eps automatic
for large dataset. International Journal on Advanced Computer Theory and Engineering,
2(2):11-16, 2013.

Michael Gerndt, Eduardo César, and Siegfried Benkner, editors. Automatic Tuning of
HPC Applications - The Periscope Tuning Framework. Shaker Verlag, Aachen, 2015.

Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241-254,
1967.

G. N. Lance and W. T. Williams. A general theory of classificatory sorting strategies.
Computer Journal, 9(4):373-380, 1967.

Evan Rosser, Wayne Kelly, Bill Pugh, Dave Wonnacott, and Tatiana Shpeisman. The
omega project.

Jorg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-based cluster-
ing in spatial databases: The algorithm gdbscan and its applications. Data Min. Knowl.
Discov., 2(2):169-194, June 1998.

H2020-FETHPC-2014 23


http://gns-mbh.com/products/indeed
http://gns-mbh.com/products/indeed

	Introduction
	Intra-phase Tuning
	Default Execution
	ATP Tuning
	System Parameters Tuning
	Verification

	Inter-phase Tuning
	Analysis
	Default Execution
	Verification Step
	Cluster Prediction at Runtime

	Tuning Model Generation
	Advanced Clustering of Runtime Situations
	Merging of Tuning Models

	Summary

