
GA no. 671657

D2.2

Visualization of Dynamism

Document type: Report

Dissemination level: Public
Work package: WP2
Editors: Umbreen Sabir Mian (TUD)

Anamika Chowdhury (TUM)
Contributing partners: TUD, TUM
Reviewers: Lubomir Riha, Jan Zapletal, Martin Beseda (IT4I)

Zakaria Bendifallah, Othman Bouizi (Intel)
Version: 3.0

Ref. Ares(2017)4265551 - 31/08/2017

READEX D2.2-Deliverable

Document history

Version Date Author/Editor Description

0.1 13/06/17 Anamika Chowdhury (TUM) 1st TOC draft

0.2 01/07/17 Umbreen Sabir Mian (TUD) Added reviewers and writing responsibilities

0.3 04/07/17 Umbreen Sabir Mian (TUD) Initial version of switching visualization

0.4 04/08/17 Umbreen Sabir Mian (TUD) Initial version of introduction,

dynamism visualization and summary

0.5 05/08/17 Anamika Chowdhury (TUM) Initial version of Section 2

1.0 07/08/17 Umbreen Sabir Mian (TUD) First version ready for review

1.1 17/08/17 Umbreen Sabir Mian (TUD) Section Dynamism Visualization revised

Comments from first review addressed

1.2 18/08/17 Anamika Chowdhury (TUM) 1st review comments on Section 3 addressed

1.3 19/08/17 Umbreen Sabir Mian (TUD) Vampir trace figure added in Section 2

2.0 20/08/17 Umbreen Sabir Mian (TUD) Draft ready for Second review

2.1 28/08/17 Umbreen Sabir Mian (TUD) Zapletal’s comments from second

review addressed

2.2 28/08/17 Anamika Chowdhury (TUM) Second review comments on

Section 3 addressed

2.3 29/08/17 Umbreen Sabir Mian (TUD) Bendifallah’s comments from

second review addressed

3.0 29/08/17 Umbreen Sabir Mian (TUD) Final Version ready for submission

H2020-FETHPC-2014 2

Contents

1 Introduction 4

2 Dynamism Visualization 6

2.1 Application Dynamism . 6

2.2 Dynamism Analysis . 7

2.3 Dynamism Visualization in Vampir . 9

3 Visualization of Application Tuning Model (ATM) 11

4 Configuration Switching Visualization 13

5 Summary 15

3

READEX D2.2-Deliverable

1 Introduction

In READEX, we are focused on exploiting dynamic behaviour within the application for
energy efficiency tuning. One of the tasks in WP2 is to implement a way for visualization of
application dynamism.

Prior to applying the READEX tuning methodology on a given application, the tuning
potential i.e., the exploitable dynamism in this application is checked as a preliminary step.
The Task 2.4 specifically focuses on visualization of the dynamism information which is found
in the application before applying the READEX tuning.

To estimate the tuning potential of an application, a tool called readex-dyn-detect has been
implemented. The readex-dyn-detect tool presents the user with the application dynamism
information in a text format. This dynamism information is also presented to the user in
Vampir Trace visualization tool.

Figure 1 shows all components of the READEX architecture. In this deliverable, we will
focus mainly on:

• The working of readex-dyn-detect and its output visualization in Vampir

• The visualization of configuration switching using visualization metric plugin from
READEX Runtime Library (RRL)

• The visualization of the scenarios identified by Periscope Tuning Framework (PTF) and
the tuning model generated by PTF

This deliverable outlines all the features which are designed in the READEX tool suite
for visualizing the results of the READEX methodology. These include visualization of
application dynamism, visualization of configuration switching and visualization of scenarios
and the tuning model.

The structure of the deliverable is as follows: Section 2 will present the approach and output
of the readex-dyn-detect tool. It will also show how the dynamism information is visualized
in Vampir. Section 3 will outline the visualization of scenarios and the tuning model. The
visualization of configuration switching will be depicted in Section 4.

H2020-FETHPC-2014 4

READEX D2.2-Deliverable

Periscope Tuning Framework

Analysis

Plugin Control

Performance
Database

Search
Algorithms Experiments

Engine

READEX
Tuning Plugin

DTA Management

DTA Process
Management

RTS
Management

R
TS

D
at

ab
as

e

Scenario
Identification

Application
Tuning Model

Score-P

Online
Access

Interface

Substrate
Plugin

Interface

Instrumen-
tation

Metric
Plugin

Interface

Energy
Measurements

(HDEEM)

READEX Runtime Library

Parameter
Controller

Selector

Calibration
RTS

Handler

Control
Center

Classifier

OA Event
Receiver

Parameter
Control Plugin

scorep-autofilter readex-dyn-detect

readex_config.xml

Visualisation
Metric Plugin

Figure 1: Overview about all components of the READEX tool suite

H2020-FETHPC-2014 5

READEX D2.2-Deliverable

2 Dynamism Visualization

The idea behind READEX is to exploit the dynamism available inside the application and
use it to reduce its energy consumption. Before applying READEX methodology, application
is thus analyzed for its dynamic behaviour. If the application shows some dynamism in its
behaviour, only then the READEX tuning is applied.

In this section, we start with explaining what is considered dynamism and how this dynamism
is estimated for a given application using the readex-dyn-detect tool. Next, we present how
the dynamism detected in the appliaction is visualized in Vampir.

2.1 Application Dynamism

The READEX tool suite tunes hardware, system software and application tuning parameters
as described in D1.1 and D1.2 [3, 5]. In order to apply the best configurations for the
tuning parameters during runtime application tuning (RAT) that are computed during design
time analysis (DTA), the dynamism present in an application has to be first analyzed and
quantified using dynamism metrics during DTA.

The dynamism metrics that are measured and used in the READEX methodology are:

1. Execution time.

2. Energy consumed.

3. Computational intensity.

Among these three metrics, the semantics of execution time and energy consumed are straight-
forward. Variation in the execution time and energy consumed by a region in an application
during its execution is an indication of different resource requirements. The computational
intensity is a metric that is used to model the behaviour of an application based on the
workload imposed by it on the CPU and the memory. Presently, computational intensity is
calculated using the following formula:

ComputationalIntensity =
Total number of instructions executed

Total number of L3 cache misses
(1)

Computational intensity can directly dictate the tuning of two hardware parameters: CPU
core frequency and CPU uncore frequency. A low computational intensity indicates an ap-
plication that is more memory intensive, which is the result of increased L3 cache misses.
Since this would cause increased traffic between the L3 cache and the main memory, it will be
desirable to increase the uncore frequency. On the other hand, a high computational intensity
indicates an application that is more computation intensive. In this case, it will be desirable
to increase the frequency of the CPU cores.

In the context of the READEX project we distinguish between two types of dynamism:

H2020-FETHPC-2014 6

READEX D2.2-Deliverable

• Inter-phase dynamism: Each phase of a phase region in the application exhibits different
characteristics. This results in different values for the measured objective values and
thus may require different configurations to be applied for the tuning parameters.

• Intra-phase dynamism: Each runtime situation (rts) of the significant regions in a phase
region exhibits different characteristics and thus may need different configurations to
be applied for the tuning parameters.

Due to the different localities of dynamism in an application, the dynamism metrics are
measured and analysed from the following perspectives:

• For all phases of the phase region in the application – this allows analysis of inter-phase
dynamism that may be present in the application.

• For all runtime situtations of the significant regions in the application – this allows
analysis of intra-phase dynamism that may be present in the application.

A detailed report on application dynamism has been presented in deliverable D5.1 [6].

2.2 Dynamism Analysis

Detecting the dynamism of an application is the initial step of the READEX approach. The
tuning potential of an application is determined by measuring its intra-phase and inter-phase
dynamism by readex-dyn-detect. The tool currently focuses on the execution time and
compute intensity as the main characteristics. Variation in the execution time of significant
regions across rts’s indicates intra-phase dynamism. Variation in the execution time across
rts’s of the phase region indicates inter-phase dynamism. Furthermore, different compute
intensity, such as compute vs. memory bound, of different significant regions also indicates
intra-phase dynamism. An elaborate description of the architecture and working of the
readex-dyn-detect tool can be found in deliverable D2.1 [4].

The tool analyzes for each significant region the variation in the time characteristics. It
computes the standard deviation relative to the mean execution time of the region in percent
(deviationr) and relative to the mean execution time of the phase (deviationp) as described
in Equations (2) and (3) below, respectively. The values characterize how significant the
variation in the execution time is for the region and phase execution respectively. All the
information required to calculate these dynamism metrics is obtained from the “profile.cubex”
file generated by Score-P after running the application with Score-P.

deviationreg
r =

dev tregincl

mean tregincl

∗ 100 (2)

deviationreg
p =

dev tregincl

mean tphaseincl

∗ 100 (3)

H2020-FETHPC-2014 7

READEX D2.2-Deliverable

The variation is considered significant if it is beyond a threshold vt. To decide whether this
leads to significant dynamism, the tool computes the computational weight of the region, i.e.,
its percentage on the phase execution time, according to Equation (4)

weight =
tregincl

tphaseincl

∗ 100. (4)

If the region’s time variation is significant and its weight is larger than a threshold vw then
the tool will report intra-phase dynamism due to that significant region.

Another source of intra-phase dynamism is the variation based on the compute intensity of
different significant regions. It is calculated by using Equation (1) presented above. The
total number of instructions and the number of L3 cache misses are obtained using the PAPI
counters “PAPI TOT INS” and “PAPI L3 TCM”.

Figure 2 shows the dynamism output produced by the readex-dyn-detect tool when applied
to the Kripke application. It is only the partial output produced by the tool as the tool also
produces output regarding the granularity of different regions in the application and phase
information. As can be seen in Figure 2, there is no inter-phase dynamism reported. Intra-
phase dynamism is reported due to the variation in compute intensity of three listed regions.

Figure 2: Dynamism information produced by readex-dyn-detect after Kripke tuning po-
tential analysis

H2020-FETHPC-2014 8

READEX D2.2-Deliverable

2.3 Dynamism Visualization in Vampir

Score-P generates Open Trace Format 2 (OTF2) [2] traces which can be visualized in Vampir.
Similar to the readex-dyn-detect tool, it is required that the trace shall contain both the
PAPI metrics “PAPI TOT INS” and “PAPI L3 TCM” to calculate the compute intensity
metric. Both of the PAPI metrics can be added to the trace by specifying through the
environment variables “SCOREP METRIC PAPI” provided in Score-P. In order to visualize
the dynamism information in Vampir, the trace generated after the application run, has to
be read and rewritten with the dynamism metrics calculated.

A Python module has been implemented, which takes as input the existing OTF2 trace file
and produces a new OTF2 trace file containing the dynamism metrics. The OTF2 library
provides a Python interface to read and write the OTF2 files which has been employed for
this task.

The Python module takes following as input:

• Path for the trace file to read.

• Path to save the new trace file generated by the python module.

• Name of the phase region.

• Region execution time granularity threshold.

Two dynamism metrics, “Execution Time Dynamism” and “Compute Intensity Dynamism”,
are added by the Python module to the trace file. The dynamism metrics are reported for
each thread/process. It is important to mention here that each thread/process should contain
only one invocation of the phase region, as the “Compute Intensity Dynamism” metric is
calculated with respect to the phase region. Both the dynamism metrics are reported only
for the regions which are inside the phase region and have their mean execution time greater
than the granularity threshold.

Figure 3 shows the Vampir view of the dynamism metrics added to the trace for graphical
dynamism visualization.

In Figure 3, the “Compute Intensity Dynamism” is shown as an overlay over the process
timeline in top window. In this way, the user can visualize the presence of dynamism in the
application in the form of a heat map. “Execution Time Dynamism” can be visualized in
the same manner.

Furthermore, both the dynamism metrics are customizable as the other metrics using different
Vampir features.

H2020-FETHPC-2014 9

READEX D2.2-Deliverable

Figure 3: Vampir trace showing “Compute Intensity Dynamism’ and “Execu-
tion Time Dynamism” metrics. The phase region is named “Loop” and granularity
threshold is 500ms.

H2020-FETHPC-2014 10

READEX D2.2-Deliverable

Figure 4: A forced layout graph to visualize the application tuning model of LULESH

3 Visualization of Application Tuning Model (ATM)

The READEX tool suite enables dynamic tuning through a two-staged methodology: DTA
and RAT. During DTA a tuning model is precomputed with PTF that contains the best
found configurations of tuning parameters for rts’s of significant regions. The READEX
methodology already supports two types of tuning parameters: hardware and system soft-
ware parameters in the application tuning model. This tuning model can be improved by
exploiting dynamism in application specific tuning parameters. To identify such parameters,
the user should have in-depth knowledge about the applicaton structure and the influencing
parameters inside of the application such as: the algorithm, data structure, blocking factor
and so on. The effect of the best configuration of these tuning parameters can be inspected by
comparing different scenarios. The comparison assists the user to insight on the relationship
between scenarios in the tuning model and explains how similar scenarios appear in closer
proximity, while dissimilar scenarios are apart.

To visualize the tuning model result of the READEX methodology, we used the Forced
layout graph. The graph is constructed based on the JavaScript library D3.js [1]. It compares
scenarios in the application tuning model with respect to their similarity and weight. In
this context, similarity represents the distance of scenarios in a multi-dimensional tuning
space, and weight is the aggregated execution time of rts’s of a scenario relative to the
phase execution time. While similarity is represented by the thickness of the edges between
scenarios, the weight is visualized as the size of the circle representing a scenario. Eventually,
the distance between scenarios is the result of all forces. The network adapts according to
the forces dynamically.

Figure 4 shows the tuning model of the LULESH proxy application from the CORAL bench-
mark suite. The nodes in the figure represent scenarios found in tuning model. Each node
is a cluster of rts’s belonging to it. There are six scenarios in LULESH’s tuning model
where Scenario 1 covers most of the execution time. On the other hand, Scenario 2 and
Scenario 4 are the least significant nodes due to their lowest weights. As the figure shows,

H2020-FETHPC-2014 11

READEX D2.2-Deliverable

Figure 5: The expanded forced layout of tuning model upon clicking on a scenario node

Scenario 1 and Scenario 2 are the most similar scenarios and high thickness of the edge
and lowest distance between them affirms that. On the opposite side, Scenario 3 and
Scenario 6 are the most distant dissimilar scenarios.

To investigate each scenario, the user can click on a scenario node of the graph. Upon
clicking on a node, the node expands with all the rts nodes of that scenario. Figure 5 shows
the extended graph of the LULESH tuning model. A pop over box appears upon hovering
on the node which shows the scenario information including rts’s with their weight and
configurations of the tuning parameters. In this figure, Scenario 1 contains two rts’s: rts

1 and rts 2 each representing 18.35% and 17.31% weight of the phase respectively. The
application tuning parameter is yet to be implemented into ATM.

H2020-FETHPC-2014 12

READEX D2.2-Deliverable

4 Configuration Switching Visualization

The configuration switching happens during both phases of the READEX methodology. Dur-
ing DTA, PTF runs experiments with different configurations to find the optimal configu-
ration for each rts in the application, these are then stored in the tuning model. During
RAT, for each rts, the optimal configuration from the tuning model is applied which requires
configuration switching.

To enable the user to visualize the configuration switching for each region during DTA and
during a production run, a visualization metric plugin has been implemented within RRL. The
metric plugin adds each of the tuning parameters as a metric in the Vampir trace generated
by Score-P. The user can select these metrics in Vampir and visualize the switching pattern
for each metric.

Figure 6 shows the architecture of the READEX tool suite with the visualization metric
plugin integrated. It uses the metric plugin interface provided in Score-P to add the tuning
parameters as metrics in Vampir traces and to get the tuning parameter values from RRL.

Score-P

Substrate
Plugin

Interface

Instrumen-
tation

Metric
Plugin

Interface

READEX Runtime Library

Parameter
Controller

Selector

Calibration
RTS

Handler

Control
Center

Classifier

OA Event
Receiver

Visualisation
Metric Plugin

Figure 6: Overview of the READEX tool suite. The graph shows the information flow between
the Score-P and the RRL. The “Visualization Metric Plugin” handles the visualization of
configuration switching in Vampir traces.

H2020-FETHPC-2014 13

READEX D2.2-Deliverable

The metric plugin has to be loaded using the Score-P environment variable
SCOREP METRIC PLUGINS and the user can specify if all of the tuning parameters
or only selected ones need to be added to the Vampir trace. The tuning parameters
which the user wants to visualize can be specified using the Score-P environment variable
“SCOREP METRIC SCOREP SUBSTRATE RRL”. Any of the hardware, software and ap-
plication tuning parameters can be chosen for visualization.

Figure 7 illustrates the switching of the CPU frequency and uncore frequency performed by
RRL while tuning CPU frequency “CPU FREQ” and uncore frequency “UNCORE FREQ”
for the Kripke benchmark. As can be seen in the Figure 7, the Vampir plots show the value of
the tuning parameters for each region. The user can visulaize, for example, the configuration
for the phase region by cliking on the phase region instances (found by the phase region
name).

Figure 7: CPU FREQ and UNCORE FREQ switchings by RRL during Kripke run-time
tuning

H2020-FETHPC-2014 14

READEX D2.2-Deliverable

5 Summary

In this deliverable, different ways of visualizing the results produced during applying the
READEX methodology have been presented. Every significant tool of the READEX tool suite
has its own visualization feature. Before applying the READEX methodology, the application
is analyzed for inter-phase and intra-phase dynamism using the readex-dyn-detect tool. If
the tool reports the presence of inter- or intra-phase dynamism in the application, only then
the READEX tuning methodology is applied.

A Python module has also been implemented, which provides the user a possibility to visualize
the dynamism information detected by readex-dyn-detect in Vampir. The dynamism met-
rics Execution Time Dynamism and Compute Intensity Dynamism are added to the Vampir
trace for visualization.

Visulaization of the results produced after DTA, the tuning model and the scenarios is made
possible through the graphical tool based on the JavaScript library D3.js which generates a
Forced layout graph. The graph shows the different scenarios and the tuning model as nodes.
User can expand the nodes by clicking on them and can view the details of all scenarios and
the generated tuning model.

Finally, a metric plugin has been implemented within RRL to allow the user to visualize the
switching of tuning parameters configuration both during DTA and RAT.

H2020-FETHPC-2014 15

READEX D2.2-Deliverable

References

[1] M. Bostock, V. Ogievetsky, and J. Heer. D3; data-driven documents. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2301–2309, Dec 2011.

[2] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knpfer, Wolfgang E.
Nagel, and Felix Gerd Eugen Wolf. Open Trace Format 2 - The Next Generation of
Scalable Trace Formats and Support Libraries. In Applications, Tools and Techniques
on the Road to Exascale Computing : proceedings of the 14th biennial ParCo conference
; ParCo2011 ; held in Ghent, Belgium / Ed. by Koen De Bosschere ..., volume 22 of
Advances in Parallel Computing, pages 481–490, Amsterdam [u.a.], 2012. IOS Press. ’...
contains the proceedings of ParCo2011, the 14th biennial ParCo Conference, held from
31 August to 3 September 2011, in Ghent, Belgium’.

[3] Andreas Gocht, Zakaria Bendifallah, Umbreen Sabir Mian, and Othman Bouizi. D1.1:
Hardware and system-software tuning plugins. Technical report, TUD, Intel, 2016.

[4] Per Gunnar Kjeldsberg, Michael Gerndt, Mohammed Sourouri, and Anamika Chowdhury.
D2.1 analysis of tuning potential and scenario identification. Technical report, NTNU,
TUM, 2016.

[5] Umbreen Sabir Mian and Zakaria Bendifalah. D1.2 final tuning plugins. Technical report,
TUD, Intel, 2017.

[6] Lubomir Riha, Jan Zapletal, Martin Beseda, Ondřej Vysocký, and Vojtěch Nikl. D5.1
hardware and system-software tuning plugins. Technical report, IT4I-VSB, 2017.

H2020-FETHPC-2014 16

	Introduction
	Dynamism Visualization
	Application Dynamism
	Dynamism Analysis
	Dynamism Visualization in Vampir

	Visualization of Application Tuning Model (ATM)
	Configuration Switching Visualization
	Summary

