READEX Tool Suite — User Guide

Contents

1 Introduction 3
2 Application instrumentation 4
2.1 Build application with Score-P oo oo 4
2.2 Filtering oL 4
2.3 Phase region instrumentationo oL 5
2.4 Application tuning parameter instrumentation)

3 Design-time Analysis (DTA) 6
3.1 Tuning Potential Analysis 6
3.2 Configure DTA o e 7
3.3 Tuning application configuration parameters. 10
3.4 Tuning Model Creation 12
3.5 Imter-Phase Tuning 13
3.6 Visualization of the Tuning Model 14

4 Runtime Application Tuning (RAT) 16
4.1 Production Run with Tuning Model 16
4.2 Visualise Configuration Switching L. 17

A Filtering and Manual Instrumentation 21
A1 Runtime Filtering 21
A.2 Compile-time Filtering 21
A.3 Filtering OpenMP and MPI regions 22
A4 Energy Measurements e 22
A.5 Manual Instrumentation 22

B Application Tuning Parameter (ATP) Library 23
B.1 Instrumentation for ATP library 23
B.2 Using the ATP Library 24

C Retrieving CPU Frequencies 26
D Examples 27
D.1 Modules on Taurus Cluster at TU Dresden 27
D.1.1 Continuous integration 27

D.1.2 Betarelease 27

D.2 Runtime Filtering 27
D.3 MiniMD Phase Region Annotation 28
D.4 Manual Instrumentation Lo L 30
D.5 Application Tuning Parameter (ATP) Instrumentation 30
D.6 Tuning Potential Analysis L 31
D.7 Tuning Model Creation 33
D.8 Production Run with Tuning Model 34

1 Introduction

The READEX tool suite has been developed to optimise the execution of HPC applications
on Exascale systems for energy efficiency. This is achieved by analysing and modelling the
dynamic behaviour of an HPC application in a step known as design-time analysis. This step
results in identifying the optimal values for different hardware, system software and application
parameters that are available for tuning. Currently, READEX is capable of tuning two hard-
ware parameters (CPU core and uncore frequencies), a system software parameter (number of
OpenMP threads) and application parameters that have been exposed by the user of the tool
suite or the application owner. Following this, the optimal values that have been identified for
different regions of an application are set during the production run of the application in a step
known as runtime application tuning.

This document describes how to use the READEX tool suite according a simple workflow:

1. Instrument the application with Score-P. (Section 2)
2. Perform design-time analysis of application to create tuning model. (Section 3)

3. Use the tuning model during the production run of the application for runtime tuning.
(Section 4)

For a better understanding of the READEX approach we recommend to have a look at
Deliverable D2.3. The tools in the READEX tool suite are accessible by installing the tool
suite as explained in the READEX website.

http://www.readex.eu/wp-content/uploads/2018/05/D2_3.pdf
https://www.readex.eu/index.php/readex-software/pre-release-version/

2 Application instrumentation

2.1 Build application with Score-P

The READEX tool suite is based on instrumenting an application with Score-P. Instrumentation
inserts measurement probes into the source code of the application. This can be done by the
compiler, by other software tools, or manually. Detailed documentation on Score-P and the
instrumentation features can be found at www.score-p.org.

1. Modify the application’s makefile for instrumentation with Score-P. Prepend the compilation
with the scorep command. For example,

Replace MPICXX = mpic++ -fopenmp
by MPICXX = scorep --mpp=mpi mpic++ -fopenmp

The scorep command switches on compiler instrumentation of program functions as well as
instrumentation of MPI routines and OpenMP regions.

Use —-mpp=mpi for MPI applications and --mpp=none for non-MPI applications.

2. Build the application. Note that Score-P and the application have to be built with the same
compiler.

3. Run the application like the uninstrumented version.

Outcome: Compiler instrumentation of the application is performed; upon application
execution, Score-P creates a profile (profile.cubex) file in the scorep-<xyz> directory at the
execution location.

2.2 Filtering

The probes inserted in the application through instrumentation add overhead to the application
execution and thus can make any measurements and tuning efforts wasted time. Therefore, it
is essential to make sure that the instrumentation overhead is below a certain limit. This
section focuses on giving you advice on the support in Score-P for reducing the measurement
overheads. To measure the overhead, first measure the execution without instrumentation and
then measure it with instrumentation.

To reduce the overhead from instrumentation to an acceptable level,

1. First try to reduce the overhead with runtime and compile time filtering as described in
Sections A.1 and A.2, respectively.

2. You may also remove MPI and OpenMP region instrumentation overhead as described in
Section A.3.

3. Then switch on the energy measurements which (sometimes) may cause significant per-
formance overhead. Verify the overhead again.
For instance, RAPL can be used for energy measurement, which has less overhead than
HDEEM. Note that the energy measurements from RAPL may not be precise enough.
For instance, an execution time less than 40 ms (that is 40 ms function execution time and
1 ms sampling rate) may result in approximately 2.5% error.

http://www.score-p.org

4. If the overhead is still too high, consider manual instrumentation of those regions that are
relevant for the READEX tool suite as described in Section A.5.

Do not proceed to energy tuning if the overhead is too high, e.g. more than 5%.

2.3 Phase region instrumentation

Specify the phase region: Manually annotate the phase region of the application as shown
below:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

// loop starts

SCOREP_USER_OA_PHASE_BEGIN(REGION_HANDLE, "PHASE_REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)
// loop body (phase region)

SCOREP_USER_OA_PHASE_END(REGION_HANDLE)

// loop ends

A phase region is a repetitive, single-entry and exit region, typically the body of the main
progress loop of the application. If the phase region is not known beforehand, it may be useful
to look at the profile.cubex file generated after running the scorep-autofilter tool with a
performance analysis tool like CUBE.

Example The for-loop body in Integrate::run() is annotated as a phase region as shown
in the example in Section D.3.

2.4 Application tuning parameter instrumentation

As mentioned earlier, the READEX tool suite also allows tuning application parameters. This
is optional and the application parameters to be tuned should be identified and exposed by
the tool suite user and/or by the application owner. This requires some additional manual
code annotation and instrumentation to pinpoint the parts of the code that can be exploited as
application tuning parameters and annotate them with certain API functions.

This is enabled in READEX using the ATP (Application Tuning Parameter) library and
the procedure for this is described in Section B.1.

3 Design-time Analysis (DTA)

3.1 Tuning Potential Analysis

The first step in the DTA is to detect and analyze the dynamism of the application using
readex-dyn-detect. The tool automatically identifies the significant regions that are subject
to the READEX tuning methodology and generates a report on the potentially exploitable
dynamism in these regions.

The readex-dyn-detect tool requires a single phase region, which is to be instrumented as
described earlier in Section 2.3.

Perform the following steps to use readex-dyn-detect:

1. Build the application with instrumentation by scorep. Add --online-access --user for
the manually annotated phase region.

2. Run the application with the following environment variables set:

export SCOREP_PROFILING_FORMAT=cube_tuple
export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_L3_TCM
export SCOREP_FILTERING_FILE=<filter_file_name_with_extension>

This will create a tupled profile.cubex file in the scorep-<xyz> directory at the execution
location.

3. Apply the readex-dyn-detect tool on the profile.cubex file as follows:

readex-dyn-detect -p <phase_region_name>
[-t <region granularity threshold in sec>]
[-c <compute intensity variation threshold>]
[-v <execution time variation threshold in percent>]
[-w <region execution time weight wrt phase execution time in percent>]
[-r <Configuration file name without extension>]
<path_to_cubex_file>/profile.cubex

If the readex configuration file already exists, only the list of significant regions will be
updated according to the outcome of readex-dyn-detect. It the file is missing, the template
file will be copied from the installation directory and updated with the significant regions.

The command line options have the following meaning:

-t This threshold specifies the minimal mean execution time of regions that are to be
considered as significant regions. Use a value larger than 0.1 (100 ms). (default 0.1)

-p Name of the phase region as given in the instrumentation.

-¢ This is the required minimal standard deviation of the compute intensities of significant
regions with a weight above the given threshold, such that intra-phase dynamism due
to compute intensity variation is reported. (default 10%)

-v This is the required minimal standard deviation of the execution time of instances of
significant regions in percent of the mean region’s execution time, such that intra-phase
dynamism is reported. It is also used to decide whether inter-phase dynamism exists.
Only if the standard variation of the phase time in percent of the mean phase time is
greater, inter-phase dynamism is reported. (default 10%)

-w This threshold specifies the minimal weight of a region such that any dynamism due to
time variation or compute intensity variation is reported. (default 10%)

-r This is the desired name (without the file name extension) for the READEX configu-
ration file to be created by readex-dyn-detect.

4. The results of readex-dyn-detect are summarized in readex_config.xml in the execution
directory, which is used as an input to PTF. An example of readex_config.xml is available
in <PTF_installation path>/templates/readex_config.xml.default.

Alternatively, the readex_config.xml file may be manually created from this template and
used as input for PTF without applying readex-dyn-detect if the significant regions are
already known.

Note: readex-dyn-detect currently ignores MPI and shared memory regions in the signif-
icant regions analysis.

READEX distinguishes between two types of dynamism in an application:

e Inter-phase dynamism: This occurs when each phase (execution instance) of a phase region
in the application exhibits different characteristics. This results in different values for the
measured objective values and thus may require different configurations to be applied for
the tuning parameters.

e Intra-phase dynamism: This occurs when each runtime situation (execution instance) of
the significant regions in a phase region exhibits different characteristics and thus may
need different configurations to be applied for the tuning parameters.

Outcome: The readex_config.xml file containing the tuning potential summary, the list
of significant regions, and the intra-phase and inter-phase dynamism due to variation in the
execution time and compute intensity.

Section D.6 presents an example.

3.2 Configure DTA

The next step of the DTA is to update the READEX configuration file (readex_config.xml)
that the readex-dyn-detect tool has generated with additional criteria for the design-time
analysis experiments performed by the Periscope Tuning Framework (PTF). The steps to update
the readex_config.xml file are as follows:

1. Specify the tuning parameters: READEX currently supports tuning two hardware param-
eters (processor core frequency and uncore frequency) and a system software parameter
(number of OpenMP threads). A minimum of one of these tuning parameters must be spec-
ified. Specify the ranges (minimum, maximum, step size, and default) for the processor core
frequency and the uncore frequency in MHz. The default frequencies are given by the system
and are defined during the installation. Appendix C describes how to retrieve the available
CPU core and uncore frequencies in a system.

For OpenMP threads, specify the lower bound and the step size to increment to the next
value. The upper bound is given by the psc_frontend command.

Example

<tuningParameter>
<frequency>
<min_freq>1200</min_freq>
<max_freq>2400</max_freq>
<freq_step>200</freq_step>

<default> 2500</default>

</frequency>

<uncore>
<min_freq>1000</min_freq>
<max_freq>3000</max_freq>
<freq_step>200</freq_step>
<default> 3000</default>

</uncore>

<openMPThreads>
<lower_value>1</lower_value>
<step>2</step>

</openMPThreads>

</tuningParameter>

Note that application parameters may be optionally tuned as introduced in Section 2.4 and
explained in Section B.1.

Specify the objectives: Specify at least one objective from Energy, Execution Time, CPU
Energy, Energy Delay Product, Energy Delay Product Squared, CPUEnergy, Total Cost of
Ownership (TCO). The normalized version of each of the objectives can also be specified. It
expresses the energy consumption per instruction and can be used for applications where the
amount of computation in a phase varies without changing the phase characteristics (“more
of the same”). The plugin measures the objective values for all the specified objectives, but
tunes the application only for the objective that is specified first.

Example

<objectives>
<objective>Energy</objective>
<objective>NormalizedEnergy</objective>
<objective>Time</objective>
<objective>NormalizedTime</objective>
<objective>EDP</objective>
<objective>NormalizedEDP</objective>
<objective>ED2P</objective>
<objective>NormalizedED2P</objective>
<objective>CPUEnergy</objective>
<objective>NormalizedCPUEnergy</objective>
<objective>TCO</objective>
<objective>NormalizedTCO</objective>

</objectives>

To compute TCO, the CostPerJoule and CostPerCoreHour also needs to be specified.

<objectives>
<CostPerJoule>0.00000008</CostPerJoule>
<CostPerCoreHour>1.0</CostPerCoreHour>
</objectives>

Specify the energy metrics: Specify the energy plugin name and associated metric names. For
hdeem_sync_plugin, it is possible to measure the energy for the whole node or/and two CPUs
respectively. The energy metrics should be specified under <periscope> </periscope>.

Example

<periscope>
<metricPlugin>
<name>hdeem_sync_plugin</name>
</metricPlugin>

<metrics>
<node_energy>hdeem/BLADE/E</node_energy>
<cpuO_energy>hdeem/CPUO/E</cpul_energy>
<cpul_energy>hdeem/CPU1/E</cpul_energy>
</metrics>
</periscope>

To specify the RAPL counter energy plugin x86_energy_sync_plugin, use the configuration
as follows:

Example

<periscope>
<metricPlugin>
<name>x86_energy_sync_plugin</name>
</metricPlugin>
<metrics>
<node_energy>x86_energy/BLADE/E</node_energy>
</metrics>
</periscope>

To specify the EXAMON energy plugin examon_sync_plugin, use the configuration as fol-
lows:

Example

<periscope>
<metricPlugin>
<name>examon_sync_plugin</name>
</metricPlugin>
<metrics>
<node_energy>EXAMON/BLADE/E</node_energy>
</metrics>
</periscope>

4. Specify a search algorithm: Specify a search algorithm from exhaustive, random or individual.
For the random search strategy, specify the number of samples (scenarios) that the plugin
should limit to. For the individual search, specify the number of tuning parameter values
to keep in the search space. The search algorithm should be specified under <periscope>
</periscope>.

Example

<periscope>
<searchAlgorithm>
<name>exhaustive</name>
<name>random</name>
<samples>2</samples>
<name>individual</name>
<keep>2</keep>
</searchAlgorithm>
</periscope>

The search algorithm together with the tuning parameter specification determines the tuning
time. Exhaustive search leads to the biggest number of configurations that are tested in sub-
sequent program phases. The individual strategy reduces the number significantly since not
the cross product of all tuning parameters is investigated, but the parameters are optimized
independently. With the random strategy, the number of experiments can be specified.

D Ut W N

5. Specify the tuning model file name: The generated tuning model file name can also be
specified under <periscope> </periscope>.

Example

<periscope>
<tuningModel>
<file_path>./tuning_model. json</file_path>
</tuningModel>
</periscope>

Optionally, if the Application Tuning Parameter (ATP) library is used, then the details for the
ATP library should be included in the READEX configuration file as outlined in Section B.2.

3.3 Tuning application configuration parameters

The READEX tool suite provides an additional optional step before generating the tuning
model. Applications frequently have Application Configuration Parameters (ACP) that might
affect the performance and energy consumptions. These parameters can be tuned for the given
objective with PTF. It provides a tuning plugin which takes a specification of the ACPs with
their possible values and searches for the best settings by restarting the application for each
experiment.

The tuning plugin is readex_configuration. It relies on a configuration file specifying the
input files, the configuration parameters and their possible values. The plugin first reads the
configuration files and then generates the possible configurations based on the defined search
algorithm. For each configuration, the template file of an input file is copied, the configuration
variables are replaced by the selected values, and the application is restarted.

Note that names of configurations variables may be composed of the letters ’a’-’z’, "A’-"Z’,
09, e R Q) e ())0,/ and =

Be aware that only a single phase is executed for each experiment which significantly reduces
the tuning time. In case you want to omit some phases before starting the measurements or
you want it to be based on multiple subsequent phases, please use the optional PTF arguments
--delay and --iterations. At the end of the search, the optimal configuration is written into
the input files and output into the configured results file.

The tuning plugin and its configuration file are selected via command line arguments as
shown in the example below. Both configuration files are to be given, i.e., readex_config.xml
and appConfigParams.cfg.

psc_frontend --apprun=....
--config-file=readex_config.xml
--tune=readex_configuration --readex-app-config=appConfigParams.cfg

The plugin takes from readex_config.xml the configuration for the energy measurements,
all other configurations are taken from the plugin specific configuration file. The syntax of the
specification in the plugin specific configuration file is given below:

Specification: CONFIGURATION ConfigList APPLICATIONPARAMETERS FileList
| APPLICATIONPARAMETERS FileList
//

//Specification of application configuration parameters (ACP)

10

© 0w g o w

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

//First specify the input file with its template file
//PTF copies the template file to the input file and
//replaces the ACP name with the current value

//
FileList: FileSpec FileList | FileSpec
FileSpec: FileSpecification TemplateFileSpecification ParameterList

FileSpecification: FILENAME STRING ’;’
TemplateFileSpecification: TEMPLATEFILENAME STRING ’;’

//
//In each input file a number of ACP can be provided
//For each ACP specify the name and the values.
//The first value is taken as default.

//
ParameterList: ParameterSpecification ParameterList | ParameterSpecification
ParameterSpecification: PARAMETER STRING VALUESSTR TpRange ’;°’
TpRange: IntRange | StringRange
IntRange: >[> INT °,” INT °]° | °[’> INT ’,’ INT ’,’ INT °]°
StringRange: >[’ Stringlist ’]°
Stringlist: STRING ’,’ StringList | STRING
//STRING: [)_) Ja)_)zi }A’_)ZJ)O)_Jg})_)
// 1Yy Ixd 0Q? ;’7 J() :)) LI 7/:) =)]+
//
//Specification of general configuration parameters
//
ConfiglList: ConfigStmt ConfigList | ConfigStmt
ConfigStmt: SearchAlgSpecification ’;°

| IndividualKeepSpecification ’;’

| SampleCountSpecification ’;’

| ResultsFileSpecification ’;’

| ObjectiveSpecification ’;’
SearchAlgSpecification: SEARCHALG STRING
IndividualKeepSpecification: INDIVIDUALKEEP INT
SampleCountSpecification: SAMPLECOUNT ’=’ INT
ResultsFileSpecification: RESULTSFILE STRING
ObjectiveSpecification: OBJECTIVE ObjectiveName
ObjectiveName: ENERGY| NORMALIZEDENERGY

CPUENERGY | NORMALIZEDCPUENERGY
EDP | NORMALIZEDEDP

ED2P | NORMALIZEDED2P

TIME | NORMALIZEDTIME

TCO | NORMALIZEDTCO

The syntax specification follows the Backus-Naur-Form as it is used in bison. Terminal
symbols are capitalized. The special sign ’ |’ indicates an alternative. Thus, for example,
a list of configurations is simply a concatenation of individual configuration statements. All
statements end with a semicolon.

11

Here is an example:

configuration
results_file "optimal_configuration.txt";
search_algorithm "individual";
individual_keep 1;
objective Energy;

application_parameters
input_file "info.txt";
template_file "info.template";
parameter "P1" values ["1i", "2"];
parameter "P2" values ["z7-@3", "x8(23).txt"];
input_file "infol.txt";
template_file "infol.template";
parameter "P11" values ["3", "4"];

Outcome: The results file containing the optimal configuration for the ACPs and the input
files where the ACPs were replaced by the optimal setting.

W 1 3 Ok W N

= o= e e
W N = O ©

3.4 Tuning Model Creation

After updating the readex_config.xml file for use by PTF, use the following steps to perform
design-time analysis using PTF as explained using a slurm job script for the miniMD application
as an example.

1. Build the application with instrumentation as discussed in Section 2.3 (scorep --user
--online-access) for the instrumented phase region. Additionally, you may optionally
use the Score-P options that are required to specify compile-time filtering, MPP and thread
instrumentation options. Refer to the Score-P documentation for this.

2. Set the number of nodes requested to at least 2, and allocate enough memory to fit the
application. In general, if N > 1 nodes are allocated for this job, then PTF will use one node
for the tool’s agents and the remaining N-1 nodes for the application processes.

3. Use the substrate plugin and parameter control plugins compatible with Score-P and PTF.

4. Load the Score-P plugin to be used for energy measurements and set the correspond-
ing Score-P environment variables. The SCOREP_SUBSTRATE PLUGINS variable is used to
specify the substrate plugins to be used, which for READEX should include rrl. The
SCOREP_RRL_PLUGINS are a comma-separated list of parameter tuning plugin names to be used
by RRL (cpu_freq_plugin, uncore_freq_plugin, OpenMPTP, etc.). The SCOREP_METRIC_PLUGINS
is used to set the metric plugin used to perform energy measurements.

5. The SCOREP_RRL_CHECK_IF RESET variable sets the behaviour of the settings stack of the
configuration manager. Possible values are reset (default, every change will be saved on
the settings stack), and no_reset (only the default and current values of parameters will be
saved; new parameter values overwrites the current values).

6. Apply PTF on the application with the psc_frontend command. Specify the instrumented
phase region name for the option —-phase and the readex configuration file for -~—config-file.
Specify the readex_intraphase plugin for --tune.

The options --info and --selective-info are only used for debug messages, and are
not mandatory. For more debug output, set the ——info=<max_info_level> between 2 and
7, and --selective-info=<comma_separated list_of _information_ levels>. For more
information about other options, see psc_frontend --help.

12

https://silc.zih.tu-dresden.de/scorep-current.pdf

© 00 N O U e W N =

NN N R R R e e R R e
B W NP OO ®NDU A ®N RO

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

This will produce a tuning model in the execution directory under the name specified in the
readex_config.xml file, or tuning model. json if unspecified.

If readex-dyn-detect reports inter-phase dynamism for the application, the user is advised
to proceed with inter-phase tuning, as described in Section 3.5. Note that the ATPs are
disabled for inter-phase tuning.

Batch system (SLURM, PBS, ...) directives

number of nodes requested (at least 2); 1 for PTF and remaining for application run
...

memory requested for application run

...

###

##H#
Load READEX tool suite modules, or set paths to executables and libraries
#i#H#

echo "run PTF begin."

export SCOREP_SUBSTRATE_PLUGINS=rrl

export SCOREP_RRL_PLUGINS=<list of RRL tuning plugins>
export SCOREP_RRL_VERBOSE="WARN"

export SCOREP_RRL_CHECK_IF_RESET=<reset|no_reset>

Energy plugin name: for eg. hdeem_sync_plugin, x86_energy_sync_plugin, examon_sync_plugin>
export SCOREP_METRIC_PLUGINS=<Energy Plugin Name>

export SCOREP_METRIC_PLUGINS_SEP=";"

Hit#
set Score-P metric energy plugin environment variables; for eg. SCOREP_METRIC_HDEEM_SYNC_PLUGIN_x
#it#

export SCOREP_MPI_ENABLE_GROUPS=ENV

psc_frontend --apprun="<application executable and command-line arguments>"
--mpinumprocs=<number of MPI processes>
—--ompnumthreads=<maximum number of OpenMP threads>
--phase=<phase region name>
--tune=<readex_intraphase | readex_interphase>
--config-file=<READEX configuration file name; for eg. readex_config.xml>
--info=<2 .. 7>
--selective-info=AutotuneAll,AutotunePlugins

echo "run PTF done."

Outcome:

- A printed summary of the created scenarios, the properties found in each scenario, the
optimum and the worst scenarios for the phase, the measured objective values for the
phase in each scenario, the best configuration for each rts, the static and dynamic energy
savings for the rts’s, and the static energy savings for the whole phase.

- A tuning model. json file containing the list of rts’s that were tuned by the plugin, the
scenarios into which they are classified, and the best configuration for each scenario.

3.5 Inter-Phase Tuning

To exploit the inter-phase dynamism, only the following must be changed in addition to the
steps described in Sections 3.2 and 3.4.

13

Configure DTA For inter-phase tuning, the search algorithm specified by the user is ignored,
and the plugin sets the random search strategy by default. Specify the number of experiments
or points to analyze during clustering under the samples tag. Higher values enable a better
analysis of the dynamism between the phases and result in a more refined tuning model.

Tuning Model Creation Specify the readex_interphase plugin for —-tune.

Outcome The readex_interphase tuning plugin clusters similar phases using the DBSCAN
algorithm, and determines the best configuration for each cluster, which will be applied to all
the phases belonging to that cluster. It also determines the best configuration for individual
rts’s in the cluster.

- A printed summary of the created scenarios, the properties found in each scenario, the
measured objective values for the phase in each scenario, per-cluster results showing the
optimum scenario for all the phases of the cluster as well as the best configuration for
each rts of the cluster, the static and dynamic energy savings for the rts’s, and the static
energy savings for the whole phase.

- A tuning model. json file containing the list of clusters generated by the clustering al-
gorithm, the set of phases belonging to each cluster, the ranges of the features that were
used for clustering, the list of rts’s that were tuned by the plugin, the scenarios into which
they are classified, and the best configuration for each scenario.

3.6 Visualization of the Tuning Model

The visualization tool of the tuning model is constructed based on the JavaScript library D3.js.
The tool can be built as an app for macOS, Linux, and Windows, using Electron Packager.
The latest source of the visualization tool of the tuning model can be cloned by git clone
https://periscope.in.tum.de/git/visualization0fTM.git. This source already contains
the source for FElectron Packager and is configured to be build as a standalone application.

Electron Packager is a command-line tool and a Node.js library. It bundles Electron-based
application source code (with a renamed Electron executable and supporting files) into folders
ready for distribution.

Mandatory Library: The tool requires the Node. js library to be installed. The library can
be downloaded from https://nodejs.org.

Usage: The tool requires two mandatory files which are generated at the end of DTA. The
files are: tuning model. json and rts.xml. The first one is the tuning model file and the latter
contains the execution time information of the rts’s. The tool can be started with the following
command in the source directory:

npm start

First, select the tuning model file tuning model. json and the file with the rts’s rts.xml.
You have to select both files in the dialog. The tool checks the extension and assumes that a
file with . json is the tuning model and the extension .xml identifies the rts file.

The tool will then generate the forced layout view of the tuning model. This will look as in
Figure 1. For each scenario a circle is generated. The size of the circle represents the weight,
i.e., the aggregated execution times of all rts’s of the scenario as percent of the phase time. The

14

https://periscope.in.tum.de/git/visualizationOfTM.git
https://nodejs.org

Tuning Model Visualization

Figure 1: Forced layout graph of the tuning model

thickness of the lines represents the similarity of two connected scenarios. Hovering over a circle
triggers a tool tip that gives detailed information about the scenario. Clicking on a scenario
opens individual circles for each rts in this scenario.

More details about the tool can be found in deliverable D2.2.

15

4 Runtime Application Tuning (RAT)

4.1 Production Run with Tuning Model

The following steps describe how to use RRL to tune the application during its production run.

1.

If Application Tuning Parameters are exploited in the application then the ATP related
instrumentation functions should remain in the code.

. For the application run tuned with RRL, use the application built for analysis with PTF as

described in Section 3. If the readex_interphase tuning plugin was used for DTA, perform
the following steps before proceeding with RAT:

To perform runtime tuning after the inter-phase analysis, the cluster prediction library
must be invoked. The SCOREP_USER _PARAMETER macro must be added to the source
code, with a call to the predict_cluster function of the cluster prediction library.

For C/C++ applications:

#include <cluster_prediction.h>

// loop starts

SCOREP_USER_OA_PHASE_BEGIN(REGION_HANDLE, "PHASE_REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_PARAMETER_INT64("Cluster", predict_cluster())

// loop body (phase region)

SCOREP_USER_OA_PHASE_END(REGION_HANDLE)

// loop ends

For Fortran applications:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

SCOREP_USER_PARAMETER_DEFINE(cluster)

// loop starts

SCOREP_USER_OA_PHASE_BEGIN(REGION_HANDLE, "PHASE_REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_PARAMETER_INT64("Cluster", predict_cluster())

// loop body (phase region)

SCOREP_USER_0A_PHASE_END(REGION_HANDLE)

// loop ends

Add the linker flags in the Makefile and rebuild the application.

Set the number of nodes to run the application, and allocate enough memory to fit the
application. Here, the number of nodes required is the same as the number of nodes on
which to run the application.

(a)
(b)

. For the RRL-tuned run of the application perform the following steps:

Disable Score-P profiling and tracing, set the Score-P substrate plugins to rrl, RRL
plugins to the tuning plugins to use and the tuning model to the file generated by PTF.

The SCOREP_RRL_CHECK_IF_RESET variable sets the behaviour of the settings stack of the
configuration manager. Possible values are reset (default, every change will be saved
on the settings stack), and no_reset (only the default and current values of parameters
will be saved; new parameter values overwrites the current values).

Depending on whether the calibration mechanism is enabled or disabled for RRL, set
the environment variable SCOREP_FORCE_CFG_FILES to true or false, respectively, to
enable or disable generation of Score-P configuration file for use by RRL.

Run the RRL-tuned version of the application using the application executable built
for PTF.

16

© 00 N O U W N =

e e
=W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28

Batch system (SLURM, PBS, ...) directives
number of nodes requested for application run

#H# L.

memory requested for application run

#H#H# ...

#H#H#

#iH#

Load READEX tool suite modules, or set paths to executables and libraries

#H#

start RRL-tuned run

export
export
export
export
export
export
export

If

SCOREP_ENABLE_PROFILING="false"
SCOREP_ENABLE_TRACING="false"
SCOREP_SUBSTRATE_PLUGINS="rrl"
SCOREP_RRL_PLUGINS=<1list of RRL tuning plugins>
SCOREP_RRL_TMM_PATH=<tuning model file name>
SCOREP_RRL_CHECK_IF_RESET=<reset|no_reset>
SCOREP_MPI_ENABLE_GROUPS=ENV

RRL calibration mechanism is enabled, then set SCORE_FORCE_CFG_FILES to true.

This will create Score-P configuration files in a Score-P directory for the application run.

If
export

RRL calibration mechanish is disabled, then set SCORE_FORCE_CFG_FILES to false.
SCOREP_FORCE_CFG_FILES=false

run RRL-tuned application

code

to start application run with command-line arguments

end RRL-tuned run

4.2 Visualise Configuration Switching

There are two ways for visualising the configuration switching:

Using the Score-P metric plugin for viewing the configuration set by RRL When
tracing is enabled, Score-P generates OTF2 traces which can be viewed in Vampir. Hence, to

1. The first is a Score-P metric plugin which is implemented as part of RRL and it shows
RRL perspective to the switching, i.e. the configurations applied by RRL. It can be

the

used during DTA and RAT.

The other way is to use the Score-P APAPI metric plugin to trace metrics such as
APAPT _TOT_CYC to view the processor core frequency and metric plugins such as upe_plugin
to view the uncore frequency. These metrics show what actually happens in the processor.

They can just be applied during RAT.

By comparing the output of both visualization ways mentioned above, it can be easily
verified if the settings applied by RRL correspond to what actually happened in the processor.

get the metrics in trace, the first step is to enable tracing as follows.

export SCOREP_ENABLE_TRACING=true

1. Set the environment variable SCOREP_METRIC_PLUGINS to specify the metric plugin for visu-

2. Set the environment variable SCOREP_METRIC_SCOREP_SUBSTRATE RRL to specify the tuning
parameters which need to be added to trace. For the hardware and software tuning parame-
ters, names of the parameter control plugins (PCPs) are used. The list of tuning parameters

alization of tuning parameters settings in Vampir.

export

SCOREP_METRIC_PLUGINS="scorep_substrate_rrl"

17

Tuning Parameter Parameter Control Plugin
CPU Frequency cpu_freq_plugin
Uncore Frequency uncore_freq_plugin
Number of Threads
Scheduling Type OpenMPTP
Schedule chunk size
Energy Performance Bias (EPB) epb_plugin
MPIR_-CVAR_REDUCE_SHORT_MSG_SIZE mpit_plugin

Table 1: Tuning Parameters and their correspoding PCPs

with their corresponding PCPs are listed in Table 1. If the user wants to load all the hardware
and software tuning parameters, it can be done by simply setting the environment variable
to *.

Application Tuning Parameters (ATPs) need to be explicitly specified. To load ATPs, the
value should be set equal to "ATP/<atp_name>’ where atp_name is the name of the ATP.
The prefix ’ATP/’ is required to recognize the ATPs.

export SCOREP_METRIC_SCOREP_SUBSTRATE_RRL="ATP/<atp_name>, <pcp_name>"

For example, the environment variables to specify the metric plugin and request the processor
core frequency and uncore frequency to be traced can be set as follows:

export SCOREP_METRIC_PLUGINS="scorep_substrate_rrl"
export SCOREP_METRIC_SCOREP_SUBSTRATE_RRL="cpu_freq_plugin,uncore_freq_plugin"

An example trace showing the different configurations of core and uncore frequency applied
during RAT is given in Figure 2. The Score-P tracing functionality is enabled and the metric
plugin is employed during the RAT phase for Blasbench benchmark. The tuning parameters in
Figure 2 are named as CPU_FREQUENCY and UNCORE_FREQUENCY. Figure 2 shows the
configurations which have been applied at runtime. To confirm that these configurations are
actually set in the processor, Score-P APAPI and uncore metric plugins, which are explained
next, can be used.

Using the Score-P APAPI and uncore metric plugins To use the APAPI and uncore
metric plugins, and to trace the processor core and uncore frequencies, please add the following
lines to your script:

module load scorep-uncore
module load scorep-apapi

export SCOREP_ENABLE_TRACING=true

export SCOREP_ENABLE_PROFILING=false

export SCOREP_METRIC_PLUGINS="apapi_plugin,upe_plugin"

export SCOREP_METRIC_APAPI_PLUGIN="PAPI_TOT_CYC"

export SCOREP_METRIC_APAPI_INTERVAL_US=10000

export SCOREP_METRIC_UPE_PLUGIN="hswep_unc_cboO: :UNC_C_CLOCKTICKS"
export UPE_INTERVAL_US=10000

export SCOREP_EXPERIMENT_DIRECTORY=<location_for_trace_file>

The generated trace file will be placed in the folder specified by the environment variable
SCOREP_EXPERIMENT DIRECTORY. This can be viewed using Vampir.

18

Master thread:0

MPI Rank 0, Values of Metric "CPU_FREQUENCY" over Time
3.0G

[EIFSEFRN.

Hz
Bl
)

006G

MPI Rank 0, Values of Metric "UNCORE_FREQUENCY" over Time

ZvSG‘

Hz

Eunction Summary. =
All Processes, Accumulated Exclusive Time per Function

856.7 s

500 s

s
1$omp parallel @main.cpp:326

95.178 s [int DGEMM_wrapper(do...uble*, double®, int)
27.704 s E int DGEMV_wrapper(int,...le, double*, int, int)

3.382s
3.053s
1153s
0.169's
8.352 ms
8.147 ms
411241 ps

void DGEMM_readex(int)

void DGEMV_readex(int)

MPI_Init

Main

long long int TAN_wrapper(int, doubles)
int main(int, char**)

void TAN_readex(int)

Figure 2: Vampir trace showing the different configurations of CPU_FREQUENCY and UN-
CORE_FREQUENCY applied at runtime for the Blasbench benchmark

Figure 3 shows the trace for the APAPI.TOT_CYC and UNC_C_CLOCKTICKS traced
using the APAPI and uncore metric plugins respectively along with the tuning parameters
CPU_FREQUENCY and UNCORE_FREQUENCY shown in Figure 2.

Both the traces presented in Figure 2 and Figure 3 are obtained in the same run of Blasbench
benchmark. It can be easily visualized in Figure 3 that the APAPI. TOT_CYC trace confirms
the trace of CPU_FREQUENCY. The UNC_C_CLOCKTICKS trace in Figure 3 also confirms
that the value of UNCORE_FREQUENCY is set as instructed by RRL.

Details about the plugins can be found at: https://github.com/score-p/scorep_plugin_
apapi and https://github.com/score-p/scorep_plugin_uncore.

https://github.com/score-p/scorep_plugin_apapi
https://github.com/score-p/scorep_plugin_apapi
https://github.com/score-p/scorep_plugin_uncore

0s 10s 20s 30s 40s T s0s 60s 70s 80s 0s 100 | Al Processes, Accumulated Exclusive Time per Function
Master thread:0 3 00 0¢
$omp parallel @main.cpp:326
T s 95,178 s [int DGEMM irapper(do. uble*, double®,in)
2 27.704 s [| int DGEMV_wrapper(int,...le, double*, int, int)
3 3.382 s | void DGEMM_readex(int)
o T E— W E—— I — I 1 o e esdex(nt
1.153 s | MPI_Init
5 [_—— [[01695 Main
8.352 ms | long long int TAN_wrapper(int, double&)
Master thread:0, Values of Metric "APAPI_TOT_CYC" over Time 8.147 ms | int main(int, char;“i
306G 411.241 ps | void TAN_readex(int)
256G
“ 206G
3 156G -
106G
056G
0.0G
MPI Rank 0, Values of Metric "CPU_FREQUENCY" over Time
3.0G
256G
206G
E< 156G -
106G
056G
006G
node taurusi5215, Values of Metric "Package: 0 Event: hswep_unc_cbo0::UNC_C_CLOCKTICKS" over Time
256G
Joen e — A - \ e
156 L] V] | — | F—
1.0G
056G
006G

MPI Rank 0, Values of Metric "UNCORE_FREQUENCY" over Time

256

206G g L A — A ! I — ek =
» 156] (- L | S

106

056

006

Figure 3: Vampir trace showing the APAPI.TOT_CYC and UNC_C_CLOCKTICKS recorded
using the Score-P APAPI and uncore plugin respectively

20

A Filtering and Manual Instrumentation

A.1 Runtime Filtering

The first way to reduce the instrumentation overhead is to suppress the measurements done by
Score-P for instrumented regions. This is called runtime filtering of regions. READEX provides
the scorep-autofilter tool that inspects a generated profile and creates a filter file for guiding
runtime filtering. This file includes the names of too fine-granular regions that are dominated
by the measurement overhead.

1. Apply the scorep-autofilter tool on the profile.cubex file as follows:

scorep-autofilter -t <region_granularity_threshold_in_sec>
-f <filter_file_name_without_extension>
<path_to_cubex_file>/profile.cubex

Choose a value to use as a threshold, for example 100 ms (-t 0.1), for regions to be in-
strumented. This will create a filter file with .filt extension. The user of the tool-suite
can decide the value of the threshold depending on the amount of instrumentation overhead
that they wish to retain for the analysis of regions in the application. The higher the thresh-
old value, the lower will be the instrumentation overhead, but also the number of regions
accessible to the READEX tool suite.

2. It is advisable but not required to rerun the application and scorep-autofilter to detect
additional fine granular regions that were missed in the previous step because their execution
time was increased by the measurement overhead of nested regions. This requires that the
environment variable SCOREP_FILTERING_FILE is to be set to the filter file name (including
the .filt extension) before rerunning the application.

Apply scorep-autofilter to the new profile. Be careful not to overwrite the current filter
file. Copy the newly found region names into the original filter file.

Repeat this step until no more regions were found.

Outcome: A filter file with .filt extension containing the application regions that Score-P
will not measure.
Section D.2 presents an example.

A.2 Compile-time Filtering

Runtime filtering only suppresses the measurements while the overhead for the probes is still
there. You can apply the filter file also during instrumentation of the application to suppress
the insertion of probes for the given regions. Please check the Score-P user manual for details on
how to perform compile-time filtering. It is advisable that the users do this whenever possible
since each existing instrumentation interrupts the program flow during its execution.

In order to apply compile time filtering using the Intel compiler, an additional option needs
to specified for scorep-autofilter:

scorep—autofilter -t <region_granularity_threshold_in_sec>
[-f <filter_file_name_without_extension>]
[-i <intel_filter_file_name_without_extension>]
<path_to_cubex_file>/profile.cubex

This will create a filter file that can be used by the Intel compiler to suppress instrumen-
tation of regions. This filter file can then be passed to the Intel compiler using the option
-tcollect-filter=<intel filter file name>.

21

A.3 Filtering OpenMP and MPI regions

You can remove instrumentation of MPI routines and OpenMP regions as follows:

e Filtering OpenMP regions: To skip the instrumentation of OpenMP regions, the
option ——thread=none should be used. In this case, no instrumented regions should occur
inside of parallel regions. Otherwise, a runtime error will occur. Instead of switching off
instrumentation of all OpenMP regions, you can also disable regions selectively via

--opari="--disable=omp:single,master,atomic,critical,barrier"

This will instrument parallel regions and nested instrumented regions would be handled
as expected by Score-P.

e Filtering MPI regions: To disable measurements for MPI routines, you can add the
following line to your batch script:

export SCOREP_MPI_ENABLE_GROUPS=ENV

It suppresses measurements for all MPI routines except MPI_Init, MPI Finalize and
other environment routines. These are required for Score-P to work correctly.

A.4 Energy Measurements

Due to potential overhead of energy measurements for application profiling with Score-P, it
is necessary to check the overhead when the energy measurements are switched on. Energy
measurement on clusters can be done using tools such as HDEEM, RAPL or AMD APM.

If the energy measurement overhead for the application regions is observed to be more

than a few percent, you need to reduce measurement and instrumentation even further. A
recommended way for this is by using manual instrumentation as explained in Section A.5.

A.5 Manual Instrumentation

If none of the other filtering methods is successful in reducing the overhead to an acceptable
level, then manually annotate regions where most of the computation time is spent. You can
find these regions with a standard profiler. It is also recommended to instrument the parents
of all the significant regions up until the main caller in the hierarchy. This is an optional step
which will allow the annotated regions to be used as identifiers for runtime situations.

1.

Build the application with additional options to disable compiler instrumentation (--nocompiler)
and to enable user region instrumentation (--user).

. Manually annotate coarse granular application regions or any other regions that are of interest

for tuning using SCOREP_USER_REGION_DEFINE inside the function definition as shown below:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)
SCOREP_USER_REGION_BEGIN(REGION_HANDLE, "REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)
// application region

SCOREP_USER_REGION_END(REGION_HANDLE)

Note: You also have to instrument the main routine.
Section D.4 presents an example.

22

B Application Tuning Parameter (ATP) Library

As explained earlier, it is also possible to optionally exploit application level tuning using the
READEX tool suite. This requires some additional manual code annotation and instrumenta-
tion to pinpoint the parts of the code that can be exploited as application tuning parameters
and annotate them with certain API functions. Note that the ATP library can only be used to
exploit intra-phase dynamism.

B.1 Instrumentation for ATP library

1. Include the atplib.h header file in the source code.

2. Declare the parameter in the source code using ATP_PARAM DECLARE function. Each pa-
rameter must contain a unique name, type, default value, and domain name (uses default
domain if domain name is NULL):

ATP_PARAM_DECLARE ("PARAM_NAME", ATP_PARAM_TYPE_RANGE, DEFAULT_VALUE, "DOMAIN_NAME");

Available ATP parameter types are:

e ATP PARAM TYPE RANGE - defines a range with min, max and step values
e ATP_PARAM TYPE ENUM - defines an array of all possible values

3. Add values to the parameter using ATP_ADD VALUES. The second parameter is an array of
values added to the parameter, the third parameter is the number of values added.

ATP_ADD_VALUES ("PARAM_NAME", {1,5,1}, 3, "DOMAIN_NAME");

e [f parameter type is range, the number of values should be 3 and the values array
should contain {min_value, max_value, step}.

o [f the parameter type is enum, then the values array should contain all the possible
values that the parameter can have, and the number of values parameter indicates
how many values are in this array.

4. Add the call for parameter value assignment. This assigns the parameter value to control_variable.
The value is assigned by RRL. In case no value is available to RRL, the default parameter
value defined in ATP is used:

’ ATP_PARAM_GET ("PARAM_NAME", &control_variable, "DOMAIN_NAME"); ‘

5. Add constraint to the parameters of domain "DOMAIN_NAME" (optional):

’ ATP_CONSTRAINT_DECLARE ("CONSTRAINT_NAME", "expr", "DOMAIN_NAME"); ‘

e The constraint is expressed in the form of a character string "expr" which contains
a logical expression of how parameters in this domain are constrained (see example
in Section D.5).

e Any ATP parameters declared in the application can be used in the constraint as
long as they belong to the same domain as the constraint.

e Multiple constraints can be defined for the same domain.

23

e If the domain name is not specified (NULL) the constraint will apply to parameters
in the default domain.

Section D.5 presents an example.

B.2 Using the ATP Library
1. Build the application by linking with the ATP library (-latp) .

2. Specify a search algorithm for the ATP library from among exhaustive_atp and individual atp
strategies. This is done by adding sections in the READEX configuration file (readex_config.xml)
used as input for PTF during DTA as shown below:

<atp>

</atp>

<periscope>

<searchAlgorithm>
<name>exhaustive_atp</name>
<name>individual_atp</name>

</searchAlgorithm>

</periscope>

For the individial strategy, the keep factor is always 1. Updating/extending the READEX
configuration file was explained in detail in Section 3.2.

3. Running the application: there are two phases for running the application with ATP:

e parameter collection phase - parameters, constraints and explorations defined in ap-
plication are collected and saved for the tuning system to explore.

e parameter exploration phase - declaration functions are turned off and the tuning sys-
tem can explore the parameter combinations by providing parameter values through
the ATP_PARAM_GET function.

There are two ATP modes available that allow to enable which phase will be used in the
application, although the parameter collection phase needs to be run at least once for the
application to allow parameter collection and ATP configuration file creation.

e DTA mode:

Includes both ATP phases.
ATP_EXECUTION_MODE environment variable should be set to DTA.
The name and location of the ATP description file can be set by the ATP_DESCRIPTION_FILE

environment variable. If this variable is not set then the ATP description file will
be created in the current working directory as ATP_description_file. json.
Starts with parameter collection phase: parameter, constraint and exploration
declaration functions are executed only once.

The second time the same parameter declaration is executed, it triggers the end
of the parameter collection phase, generates the ATP description file and begins
the exploration phase.

ATP_PARAM GET assigns parameter values decided by RRL. In the first phase, the
default value is used.

e RAT mode:

Only the parameter exploration phase is running.

24

— The ATP_EXECUTION_MODE environment variable should be unset or set to RAT.
— Declaration functions are shut down, only ATP_PARAM GET function is working.
— Details of parameters are loaded from the ATP description file.

25

C Retrieving CPU Frequencies
In Linux-based systems,

e the available CPU core frequencies can be retrieved as follows:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

For Intel processors, make sure that intel pstate is not loaded.

e the minimum and maximum values for the CPU uncore frequency can be retrieved as
follows:

sudo modprobe msr

Minimum frequency
echo "‘sudo rdmsr 0x620 --bitfield 14:8 --decimal ‘00"

Maximum frequency
echo "‘sudo rdmsr 0x620 --bitfield 6:0 --decimal‘00"

Alternatively, Likwid can be used to retrieve the CPU core and uncore frequencies as follows:

e the available CPU core frequencies (in GHz) can be retrieved as follows:

llikwid—setFrequencies -1 ‘

e the available CPU uncore frequency (including the minimum and maximum values) can
be retrieved as follows:

likwid-setFrequencies -p ‘

Alternatively, x86_adapt can be used to retrieve the CPU uncore frequencies as follows:

Minimum frequency (in 100 MHz)
x86a_read -n -i Intel_UNCORE_MIN_RATIO

Maximum frequency (in 100 Mhz)
x86a_read -n -i Intel UNCORE_MAX_RATIO

If likwid or x86_adapt are installed on the user system, then retrieving the CPU frequencies
will not require sudo access.

26

https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://github.com/RRZE-HPC/likwid
https://github.com/tud-zih-energy/x86_adapt

D Examples

D.1 Modules on Taurus Cluster at TU Dresden

The tools in the READEX tool suite are accessible through modules created either by the
continuous integration process or the beta release of the tool suite. Users in the p_readex group
may use either, while those in p_readextest can only use the beta release.

Depending on the choice of compilers used for the application (GCC or Intel), load one of
these modules to use the READEX tools that are required to analyse and tune an application
at the different steps in the workflow.

D.1.1 Continuous integration

Load the continuous integration modules on Taurus as follows:

e For gcc/6.3.0 and bullxmpi/1.2.8.4:

module use /projects/p_readex/modules
module load readex/ci_readex_bullxmpil.2.8.4_gcc6.3.0

e For intel/2017.2.174 and intelmpi/2017.2.174:

module use /projects/p_readex/modules
module load readex/ci_readex_intelmpi2017.2.174_intel2017.2.174

D.1.2 Beta release
Load the beta release modules on Taurus as follows:

e For gcc/6.3.0 and bullxmpi/1.2.8.4:

module load readex/beta_gccS.3.0_bu11xmpil.2.8.4 ‘

e For intel/2017.2.174 and intelmpi/2017.2.174:

module load readex/beta_intel2017.2.174_intelmpi2017.2.174 ‘

D.2 Runtime Filtering

Apply scorep-autofilter as follows:

scorep-autofilter -t 0.1 -f scorep scorep-*/profile.cubex

The file scorep.filt contains the region names to be filtered enclosed between
SCOREP_REGION _NAMES BEGIN and SCOREP_REGION_NAMES _END, as shown below:

SCOREP_REGION_NAMES_BEGIN
EXCLUDE

Atom: :Atom()

Atom: :~“Atom()

SCOREP_REGION_NAMES_END

On the Taurus cluster at TU Dresden, a script to repeat the identification of too fine-granular
regions for the miniMD application is available in

27

’/projects/p_readextest/miniMD/run_saf.sh

and is executed as:

sh run_saf.sh ‘

For different applications, run_saf.sh can be reused by updating the line to execute the
application. This script requires do_scorep_autofilter_single.sh that is present in the same
directory.

D.3 MiniMD Phase Region Annotation

void Integrate::run(Atom &atom, Force* force, Neighbor &neighbor,
Comm &comm, Thermo &thermo, Timer &timer)
{
int i, n;
comm.timer = &timer;
timer.array [TIME_TEST] 0.0;
int check_safeexchange = comm.check_safeexchange;

mass = atom.mass;
dtforce = dtforce / mass;
#pragma omp parallel private(i,n)

SCOREP_USER_REGION_DEFINE(R1)
for(n = 0; n < ntimes; n++)
{
SCOREP_USER_OA_PHASE_BEGIN(R1, "INTEGRATE_RUN_LOOP", 2)

#pragma omp barrier

x = &atom.x[0] [0];

v = &atom.v[0][0];

f = &atom.f[0] [0];

xold = &atom.xo0ld[0] [0];
nlocal = atom.nlocal;

initialIntegrate();

#pragma omp barrier
#pragma omp master
timer.stamp();

if((n + 1) % neighbor.every)
{
#pragma omp barrier
comm.communicate (atom) ;
#pragma omp master
timer.stamp (TIME_COMM) ;
#pragma omp barrier
}
else
{
{
if (check_safeexchange)
{

#pragma omp master

double d_max = O;

for(i = 0; i < atom.nlocal; i++)

{
double dx = (x[3 * i + 0] - xo0ld[3 * i + 0]);
if(dx > atom.box.xprd) dx -= atom.box.xprd;
if(dx < -atom.box.xprd) dx += atom.box.xprd;

28

double dy = (x[3 * i + 1] - xo0ld[3 * i + 11);
if(dy > atom.box.yprd) dy -= atom.box.yprd;
if(dy < -atom.box.yprd) dy += atom.box.yprd;
double dz = (x[3 * i + 2] - x0ld[3 * i + 2]);
if(dz > atom.box.zprd) dz -= atom.box.zprd;
if(dz < -atom.box.zprd) dz += atom.box.zprd;
double d = dx * dx + dy * dy + dz * dz;
if(d > d_max) d_max = d;

}

d_max = sqrt(d_max) ;

if ((d_max > atom.box.xhi - atom.box.xlo)

(d_max > atom.box.yhi - atom.box.ylo)
(d_max > atom.box.zhi - atom.box.zlo))
printf("Warning: Atoms move further than your subdomain size, \
which will eventually cause lost atoms.\n" \

"Increase reneighboring frequency or choose a different processor grid\n" \
"Maximum move distance: %1f; Subdomain dimensions: %1f %1f %1f\n", \
d_max, atom.box.xhi - atom.box.xlo, \
atom.box.yhi - atom.box.ylo, \
atom.box.zhi - atom.box.zlo);

I\
I\

}
}

#pragma omp master
timer.stamp_extra_start();
comm. exchange (atom) ;
comm.borders (atom) ;
#pragma omp master

timer.stamp_extra_stop(TIME_TEST) ;
timer.stamp (TIME_COMM) ;
}
if (check_safeexchange)
for(int i = 0; i < 3 * atom.nlocal; i++) atom.xold[i] = atom.x[i];
}
#pragma omp barrier
neighbor.build(atom) ;

#pragma omp barrier

#pragma omp master

timer.stamp (TIME_NEIGH) ;
}
force->evflag = (n + 1) ’ thermo.nstat == 0;
force->compute(atom, neighbor, comm, comm.me);

#pragma omp master
timer.stamp (TIME_FORCE) ;

if (neighbor.halfneigh && neighbor.ghost_newton)
{

comm.reverse_communicate(atom) ;

#pragma omp master
timer.stamp (TIME_COMM) ;

}
v = &atom.v[0][0];
f = &atom.f[0] [0];

nlocal = atom.nlocal;

#pragma omp barrier
finalIntegrate();

#pragma omp barrier
if (thermo.nstat) thermo.compute(n + 1, atom, neighbor, force, timer, comm);

SCOREP_USER_0A_PHASE_END(R1)
}
} //end OpenMP parallel
}

29

This example is also available on the Taurus cluster at TU Dresden in:

/projects/p_readextest/miniMD/integrate.cpp

D.4 Manual Instrumentation

main()

{
integrate.run(...);
}

void Integrate::run(...)
{
SCOREP_USER_REGION_DEFINE(REGION_HANDLE)
SCOREP_USER_REGION_BEGIN(REGION_HANDLE, "REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)
// application region
SCOREP_USER_REGION_END(REGION_HANDLE)

Example For the miniMD application, manually annotate ForceLJ: : compute_halfneigh()
and its parents Integrate: :run() and main() as significant regions as shown in the following
files respectively, which are available on the Taurus cluster at TU Dresden:

/projects/p_readextest/miniMD/force_1j.cpp
/projects/p_readextest/miniMD/integrate.cpp
/projects/p_readextest/miniMD/1js.cpp

D.5 Application Tuning Parameter (ATP) Instrumentation

void foo(){
int atp_cv;

ATP_PARAM_DECLARE("solver", ATP_PARAM_TYPE_RANGE, 1, "DOM1");
int solver_values[3] = {1,5,1};
//{1,5,1} means a range with a minimum value of 1, a maximum one of 5 and an increment of 1
ATP_ADD_VALUES("solver", solver_values, 3, "DOM1");
ATP_PARAM_GET("solver", &atp_cv, "DOM1");

switch (atp_cv){
case 1:
// choose algorithm 1
break;
case 2:
// choose algorithm 2
break;

int atp_ms;
ATP_PARAM_DECLARE("mesh", ATP_PARAM_TYPE_RANGE, 40, "DOM1");
int mesh_values[3] = {0,120,10};
ATP_ADD_VALUES("mesh", mesh_values, 3, "DOM1");
ATP_PARAM_GET("mesh", &atp_ms, "DOM1");
ATP_CONSTRAINT_DECLARE("constl", "(solver 1 &% O <= mesh 40) ||
(solver = 2 && 50 <= mesh <= 80) ||
(solver > 2 && mesh = 120)", "DOM1")
if ((atp_ms > 1) && (atp_ms <= 40)) {
// algorithm for mesh size 1
}
if ((atp_ms > 40) && (atp_ms <= 80)) {
// algorithm for mesh size 2

30

© 0 N O U W N

R e e
=W N = O

15

-
[}

}

if (atp_ms == 120) {
// algorithm for mesh size 3
}

D.6 Tuning Potential Analysis

1. The miniMD application with manually annotated phase region is built for readex-dyn-detect
as follows:

make openmpi PREP="scorep --online-access --user --thread=none"

2. When miniMD is run with in2.data as its input file and readex-dyn-detect is applied on
the resulting tupled profile. cubex as follows, the function ForceLJ: : compute_halfneigh()
is identified as the significant region.

readex-dyn-detect -t 0.001 -p INTEGRATE_RUN_LOOP -c 10 -v 10 -w 10 scorep-<xyz>/profile.cubex

Here, readex-dyn-detect takes the granularity for the region as 1 ms with -t 0.001. The
option —-p INTEGRATE RUN_LOOP is given to the tool to identify the phase region from the
profile.cubex call tree. The three options -c 10 -v 10 -w 10 define thresholds for the
compute intensity variation (absolute value), time deviation in % of the mean region time
and weight of the region (%) which is execution time w.r.t. phase time.

On the Taurus cluster at TU Dresden, a script to perform steps 1 and 2 for the miniMD
application is available in

’/projects/p_readextest/miniMD/run_rdd.sh

and is executed as

sh run_rdd.sh ‘

For different applications, run_rdd.sh can be reused by updating the line to execute the
application. This is to be run from the location with the application’s executable and the filter
file name considered to be scorep.filt.

The following lines are printed as part of the output by readex-dyn-detect for miniMD:

Significant regions are:

void Comm: :borders (Atom&)

void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = O; int GHOST_NEWTON = 1]
void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 1; int GHOST_NEWTON = 1]
void Neighbor::build(Atom&)

Significant region information

Region name Min(t) Max (t) Time Dev. (%Reg) Ops/L3miss Weight (%Phase)
void Comm::borders (Atom&) 0.001 0.001 2.6 109 0

void ForceLJ::compute_hal 0.013 0.014 2.9 97 68

void ForceLJ::compute_hal 0.016 0.016 0.0 91 1

31

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

void Neighbor: :build(Atom 0.047 0.048 0.7 332 23

Phase information

Min Max Mean Dev. (% Phase) Dyn. (% Phase)
0.0138626 0.0664566 0.020337 72.731 258.612
SUMMARY :

Inter-phase dynamism due to variation of the execution time of phases
No intra-phase dynamism due to time variation

Intra-phase dynamism due to variation in the compute intensity of the following important significant
regions

void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = O; int GHOST_NEWTON = 1]

void Neighbor: :build (Atom&)

The printed output above for the miniMD application can be divided into three parts:

First, lines 2—7 list the names of the significant regions computed from the detection algo-
rithm. For details of the algorithm, please see deliverable D2.1.

Secondly, lines 10-26 show the profile statistic output for the detected significant regions
and phase region. This section consists of two parts. The significant region information presents
the minimum and the maximum of the execution time for each significant region as well as the
aggregated execution time for the region. It also prints the time deviation in % with respect to
its mean value. The Ops/L3miss column prints the absolute compute intensity value. In the
last column, Weight (%Phase), is the execution time with respect to phase time.

After that, the tool summarises the statistics information for the phase region. It shows the
minimum, maximum, and mean values of the execution time spent on the phase region as well
as the aggregated execution time for the phase. The Dev. (%, Phase) column prints the time
deviation w.r.t. the phase mean execution time. The last column, Dyn. (% Phase), prints the
variation between minimum and maximum execution time w.r.t. the mean execution time of
the phase.

Finally, the tool prints the summary results of the dynamism analysis (lines 28-40). First, if
the standard deviation of the phase is larger than the variation threshold, then the tool indicates
having inter-phase dynamism due to variation of the execution time of phases. Otherwise, the
application does not have inter-phase dynamism. For miniMD, the variation is larger than the
threshold. So the tool detects inter-phase dynamism for miniMD.

The tool compares Weight (%Phase) with the given threshold given by the user. If a sig-
nificant region has enough weight and its time deviation w.r.t. region is more than the time
deviation threshold given via -v, the tool detects intra-phase dynamism for these significant
region(s) due to time variation. For miniMD, there are two significant regions having weights
larger than the given threshold (> 10%):

void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = O; int GHOST_NEWTON = 1]
void Neighbor: :build (Atom&)

But neither of them has a time deviation greater than 10%. So the tool does not detect
intra-phase dynamism due to time deviation for miniMD.

32

© 00 N O U RE W N =

R R W W W W W W W W W W NN NN NN NN NN =R e e e e e e e
N = O © 09 O U kB WN=O®©OWw-Oo U & WNhHO W OWwW-NoO U &2 W = O

The tool computes the variation of the compute intensity for the set of detected significant
regions having a minimum weight of 10%. For miniMD the variation value is larger than
the provided threshold of compute intensity specified with —c. So the tool detects intra-phase
dynamism due to the variation in the compute intensity characteristic and lists the region names
that exhibit intra-phase dynamism.

D.7 Tuning Model Creation

On the Taurus cluster at TU Dresden, a batch job script to apply PTF for design-time analysis
and create a tuning model for the miniMD application is available in

’/projects/p_readextest/miniMD/run_ptf.sh

and is submitted as

sbatch run_ptf.sh ‘

For different applications, run_ptf.sh can be reused by updating the command to run the
application in --apprun. This script is to be run from the location with the application’s
executable.

#!/bin/sh

#SBATCH --time=5:00:00 # walltime

#SBATCH --nodes=2 # number of nodes requested; 1 for PTF and remaining for application run
#SBATCH --tasks-per-node=8 # number of processes per node for application run

#SBATCH --cpus-per-task=1

#SBATCH --exclusive

#SBATCH --partition=haswell

#SBATCH --mem-per-cpu=2500M # memory per CPU core

#SBATCH -J "miniMD_PTF" # job name

#SBATCH -A p_readex

echo "run PTF begin."
NP=8 # check against --ntasks and tasks-per-node

module purge

module use /projects/p_readex/modules

#module load readex/beta_gcc6.3

module load readex/ci_readex_bullxmpil.2.8.4_gcc6.3.0

INPUT_FILE=in3.data #in.1lj.miniMD
PHASE=INTEGRATE_RUN_LOOP

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

export SCOREP_SUBSTRATE_PLUGINS=rrl
export SCOREP_RRL_PLUGINS=cpu_freq_plugin,uncore_freq_plugin
export SCOREP_RRL_VERBOSE="WARN"

module load scorep-hdeem/sync-xmpi-gcc6.3

export SCOREP_METRIC_PLUGINS=hdeem_sync_plugin

export SCOREP_METRIC_PLUGINS_SEP=";"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_CONNECTION="INBAND"
export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_VERBOSE="WARN"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

Optionally, specify interval for HDEEM measurements

All measurement triggerd by an event that happen in this interval will get the same energy reported
This can help reduce the HDEEM overhead for measurements with a lot of region durations below 100ms
However, it may lead to wrong results with PTF if the application consists of many short regions
export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_GET_NEW_STATS=10

33

43
44
45
46
47
48
49
50
51
52
53
54
55

56

N O U R W N =

0 N O U e W N =

I I T e
= O © N oUW R O ©

export SCOREP_MPI_ENABLE_GROUPS=ENV

psc_frontend --apprun="./miniMD_openmpi_ptf -i $INPUT_FILE"
—--mpinumprocs=$NP
--ompnumthreads=1
—--phase=$PHASE
--tune=readex_intraphase
--config-file=readex_config.xml
--force-localhost
--info=7
--selective-info=AutotuneAll,AutotunePlugins

echo "run PTF done."

To use the RAPL counter energy plugin replace the lines in the above script (that load the
HDEEM module and set the Score-P metric plugins environment variables) with the following:

module load scorep_plugin_x86_energy

export SCOREP_METRIC_PLUGINS=x86_energy_sync_plugin

export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN=+/E

export SCOREP_METRIC_PLUGINS_SEP=";"

export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_CONNECTION="INBAND"
export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_VERBOSE="WARN"

export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

D.8 Production Run with Tuning Model

On the Taurus cluster at TU Dresden, a batch job script is available in

’/projects/p_readextest/miniMD/run_rrl.sh

and is submitted as:

sbatch run_rrl.sh ‘

For different applications, run_rrl.sh can be reused by updating the command to run the
application. This script is to be run from the location with the application’s executable. The
following script can be used to tune the application during its production run with RRL and
compare the execution time and energy consumption with an untuned run of the application.

#!/bin/sh

#SBATCH --time=2:00:00
#SBATCH --nodes=1

#SBATCH --ntasks=8

#SBATCH --tasks-per-node=8
#SBATCH --cpus-per-task=1
#SBATCH --exclusive

#SBATCH --partition=haswell
#SBATCH --mem-per-cpu=2500M
#SBATCH -J "miniMD_rrl"
#SBATCH -A p_readex

module use /projects/p_readex/modules
module load readex/ci_readex_bullxmpil.2.8.4_gcc6.3.0

energy_label="Energy"
rm -rf host_names.out
srun -N 1 -n 1 --ntasks-per-node=1 -c 1 hostname >> host_names.out

#HH#H

34

22 # application-specific setup here
23 INPUT_FILE=in3.data #in.1lj.miniMD
24 ##H##H

25

26 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

28 #EHHHHEEEEE start plain run #EHEEREEHEEEEES
29 export SCOREP_ENABLE_PROFILING="false"

30 export SCOREP_ENABLE_TRACING="false"

31 export SCOREP_SUBSTRATE_PLUGINS=""

32 export SCOREP_RRL_PLUGINS=""

33 export SCOREP_RRL_TMM_PATH=""

34 export SCOREP_MPI_ENABLE_GROUPS=ENV

35

36 # start measurements

37 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 clearHdeem
38 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 startHdeem
39 start_time=$(($(date +%s%N)/1000000))

40 # run untuned application

41 srun ./miniMD_openmpi_plain -i $INPUT_FILE

42 # stop measurements

43 stop_time=$(($(date +%s%N)/1000000))

44 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 stopHdeem
45 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 sleep 5

46 exec < host_names.out

47 while read host_name; do

48 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 --nodelist=$host_name checkHdeem >> hdeem.out
49 done

50

51 # aggregate energy measurements from HDEEM

52 energy_total=0
53 if [-e hdeem.out]; then

54 exec < hdeem.out

55 while read max max_unit min min_unit average average_unit energy energy_unit; do
56 if ["$energy" == "$energy_label" 1; then

57 read blade max_val min_val average_val energy_val

58 energy_total=$(echo "${energy_total} + ${energy_vall}" | bc)

59 fi

60 done

61 time_total=$(echo "${stop_time} - ${start_time}" | bc)

62 echo ""

63 echo "Untuned run: Total time = $time_total ms, Total energy = $energy_total J"
64 rm -rf hdeem.out

65 fi

66 ###HHHE end plain run ##HEHHEEEEEES

67

68 ###HHHH start RRL-tuned run ######HH#####

69 export SCOREP_ENABLE_PROFILING="false"

70 export SCOREP_ENABLE_TRACING="false"

71 export SCOREP_SUBSTRATE_PLUGINS="rrl"

72 export SCOREP_RRL_PLUGINS="cpu_freq_plugin,uncore_freq_plugin"
73 export SCOREP_RRL_TMM_PATH="tuning_model. json"

74 export SCOREP_MPI_ENABLE_GROUPS=ENV

75

76 # start measurements

7 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 clearHdeem
78 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 startHdeem

79 | start_time=$(($(date +%s%N)/1000000))
80 # run RRL-tuned application
81 srun ./miniMD_openmpi_ptf -i $INPUT_FILE

82 # stop measurmenents

83 stop_time=$(($(date +%s%N)/1000000))

84 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 stopHdeem

85 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 sleep 5

86 exec < host_names.out

87 while read host_name; do

88 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 --nodelist=$host_name checkHdeem >> hdeem.out
89 done

90

91 # aggregate energy measurements from HDEEM

35

92
93
94
95
96
97
98
99
100
101
102

104
105
106

energy_total=0
if [-e hdeem.out]; then
exec < hdeem.out
while read max max_unit min min_unit average average_unit energy energy_unit; do
if ["$energy" == "$energy_label"]; then
read blade max_val min_val average_val energy_val
energy_total=$(echo "${energy_total} + ${energy_vall}" | bc)
fi
done
time_total=$(echo "${stop_time} - ${start_time}" | bc)
echo nn
echo "RRL-tuned run: Total time = $time_total ms, Total energy = $energy_total J"
rm -rf hdeem.out
fi
#HEHE end RRL-tuned run #####HEHERHEH

36

	Introduction
	Application instrumentation
	Build application with Score-P
	Filtering
	Phase region instrumentation
	Application tuning parameter instrumentation

	Design-time Analysis (DTA)
	Tuning Potential Analysis
	Configure DTA
	Tuning application configuration parameters
	Tuning Model Creation
	Inter-Phase Tuning
	Visualization of the Tuning Model

	Runtime Application Tuning (RAT)
	Production Run with Tuning Model
	Visualise Configuration Switching

	Filtering and Manual Instrumentation
	Runtime Filtering
	Compile-time Filtering
	Filtering OpenMP and MPI regions
	Energy Measurements
	Manual Instrumentation

	Application Tuning Parameter (ATP) Library
	Instrumentation for ATP library
	Using the ATP Library

	Retrieving CPU Frequencies
	Examples
	Modules on Taurus Cluster at TU Dresden
	Continuous integration
	Beta release

	Runtime Filtering
	MiniMD Phase Region Annotation
	Manual Instrumentation
	Application Tuning Parameter (ATP) Instrumentation
	Tuning Potential Analysis
	Tuning Model Creation
	Production Run with Tuning Model

