READEX Tool Suite Installation Guide

Contents

1.

2.

About different compilers

Score-P

2.1. Requirements
2.2, Download
2.3. Preparing the Score-P directory oL
2.4. Configuring and installing Score-P00

PTF

3.1. Requirements Lo

3.2. Download

3.3. Preparing the PTF directory

3.4. Configuring and installing PTF
3.4.1. Managing starter plugins L.

RRL

4.1. Requirements Lo
4.2. Download
4.3. Preparing the RRL directory, .
4.4. Configuring and installing the RRL

PCPs

5.1. Requirements L e
5.2. Download
5.3. Configuring and installing the PCP’s

ATP

6.1. Requirements L L
6.2. Download
6.3. Preparing the ATP library directory
6.4. Configuring and installing the ATP library

Cluster Prediction

7.1. Requirements L
7.2. Download e e
7.3. Preparing the Cluster Prediction library directory
7.4. Configuring and installing the Cluster Prediction library

Score-P Metric Plugins

8.1. Processor Energy Event Plugin
8.1.1. Imstallation o
8.1.2. Usagein READEX

8.2. HDEEM Energy Measurement Plugin
8.2.1. Imstallation

822. Usagein READEX
8.3. EXAMON Energy Event Plugin
8.3.1. Imstallation
8.3.2. Usagein READEX

. READEX tool suite installation on Taurus cluster (TU Dresden)
A.1. The module environment L.
A2, Allocating anode Lo
A3. Score-P . . .
A31. Modules o o
A3.2. Download
A.3.3. Preparing the Score-P directory
A.3.4. Configuring and installing Score-P
A.3.5. Creating the related Score-P module file
A4, Using Score-P
AL PTE . o
A5.1. Modules oo
A5.2. Download L
A.5.3. Preparing the PTF directory
A.5.4. Configuring and installing PTF
A.5.5. Creating the related PTF module file
A5.6. Using PTEF e
AG6. RRL . . . o
A6.1. Modules
A6.2. Download
A.6.3. Preparing the RRL directory
A.6.4. Configuring and installing the RRL
A.6.5. Creating the related RRL module file
A6.6. Using RRL
A.6.7. Buildingdoc L
AT PCP’'s © . o
A71. Modules oL
A72. Download
A.7.3. Configuring and installing the PCP’s
A.7.4. Creating the related PCP’s module file.
A5 Using PCP’s 00000
AR ATP . . o
AR1. Modules
A8.2. Download
A.8.3. Preparing the ATP directory
A.8.4. Configuring and installing the ATP
A.8.5. Creating the related ATP module file
AR.6. Using ATP
A.9. Cluster Prediction
A9.1. Modules oo

A9.2. Downloado 33

A.9.3. Preparing the Cluster Prediction directory 33

A.9.4. Configuring and installing the Cluster Prediction library 34

A.9.5. Creating the related Cluster Prediction module file 34

A.9.6. Using Cluster Prediction 35

B. READEX Docker Image 36
C. READEX Integrated Installation Script 37
C.1. Requirements L 37
C.2. Usage . . . o v o e 37

1. About different compilers

During the development of the READEX tool suite it turned out that it is not ob-
vious to use the same compiler for everything. Please be aware that there are some
incompatibilities between different compilers. Specially for C++ this is a problem, as
different compilers may have different ABI versions, which will lead to linking errors.
Moreover, a Score-P version compiled for GCC will not work with the Intel compiler
and vice versa.

Therefore, it is really important that you are using the same compiler for the entire
READEX tool suite as well as for the applications on which you are going to use the
tool suite. Again, please use the same compiler for Score-P, PTF, the RRL, the PCPs,
the ATP library and your application.

2. Score-P

This section outlines how to build Score-P for READEX.

2.1. Requirements

The build procedure for the READEX version of Score-P requires the following tools
to be already installed:

e Intel compiler version > 2017.2.174/2018.1.163 or GCC (G++ and GFortran)
version > 6.3.0/7.1.0. Other Intel or GCC compiler versions can also be used,
but have not been explicitly tested by the READEX developers.

e PAPI version > 5.5.1 (http://icl.utk.edu/papi/software/).

e Bison version > 3.0.4 (https://www.gnu.org/software/bison/).

2.2. Download

Please download the version of Score-P for READEX from the following location and
unpack it:

http://www.readex.eu/index.php/dissemination/software/ScoreP .tar.gz
tar —xzvf ScoreP.tar.gz

2.3. Preparing the Score-P directory

Please prepare the Score-P build directory as follows:

cd ScoreP
mkdir build
cd build

2.4. Configuring and installing Score-P

You may use the following naming scheme for the “--prefix” argument:

<Desired path for Score—P installation >/scorep/scorep-readex.<mpi version>_<compiler
version >

<mpi version >: for example, intelmpi2017.2.174
<compiler version >: for example, intel2017.2.174

To run configure please do:

../ configure ' prefix=<Desired .path_for _Score—P_installation >/scorep/scorep.-readex_<
mpi_version>_.<compiler_version >/’ \
’——enable—backend—test —runs’ \
’——with—nocross—compiler —suite=<gcc|intel >’ \
’——with—mpi=<bullxmpi|intel3 |... > \
'——with—papi—header=<path_to_PAPI_include>" \
'——with—papi—lib=<path_to_PAPI_lib>" \
'——with—libbfd=no’ \
’——disable—silent —rules ’ \
‘——without—gui’® \
‘——enable—static’ \
‘——enable—shared’ \
' _enable—debug’\
'CFLAGS=_—g_—03_—fno—omit—frame—pointer ’ \

http://icl.utk.edu/papi/software/
https://www.gnu.org/software/bison/

'CXXFLAGS=_—g.—03_.—fno—omit—frame—pointer '\
make —j
make install

For more details on installing Score-P, refer to Section 2.1 in the Score-P User Man-
ual that can be downloaded from https://github.com/readex-eu/readex-scorep/
blob/master/doc/pdf/scorep.pdf.

https://github.com/readex-eu/readex-scorep/blob/master/doc/pdf/scorep.pdf
https://github.com/readex-eu/readex-scorep/blob/master/doc/pdf/scorep.pdf

3. PTF

This section outlines how to build the Periscope Tuning Framework (PTF) for READEX.

3.1. Requirements

The build procedure for the READEX version of PTF requires the following tools to
be already installed:

e Score-P extension for READEX as described in Section 2.

e Intel compiler version > 2017.2.174/2018.1.163 or GCC (G++ and GFortran)
version > 6.3.0/7.1.0. Other Intel or GCC compiler versions can also be used,
but have not been explicitly tested by the READEX developers.

e PAPI version > 5.5.1 (http://icl.utk.edu/papi/software/).

e Boost version > 1.62.0 (https://www.boost.org/users/download/).

e Cereal version > 1.2.1 (https://github.com/USCilab/cereal).

e Bison version > 3.0.4 (https://www.gnu.org/software/bison/).

e Python version > 3.6 (https://www.python.org/downloads/).

e Ace version 6.3.3 (http://www.dre.vanderbilt.edu/~schmidt/ACE.html).
e Flex version > 2.5.39 (https://github.com/westes/flex).

e Score-P developer tools containing patched Libtool version > 2.4.6, Autoconf
version > 2.69, Automake version > 1.13.4, Doxygen version > 1.8.10 and M4
version > 1.4.16.

Please make sure that the Score-P version is also compiled with the same compiler
as the one used for PTF.

NOTE: Please note that it may be necessary to load the compiler’s environment (load-
ing modules or adding directories/locations to environment variables) before loading
the environment for the Boost library when installing PTF.

3.2. Download

Please download the READEX branch of PTF and Score-P development tools from
the following locations, and unpack them:

http://www.readex.eu/index .php/dissemination/software /PTF. tar.gz
tar —xzvf PTF.tar.gz

http://www.readex.cu/index .php/dissemination/software/scorep—dev —06.tar .gz
tar —xzvf scorep—dev—06.tar.gz

http://icl.utk.edu/papi/software/
https://www.boost.org/users/download/
https://github.com/USCiLab/cereal
https://www.gnu.org/software/bison/
https://www.python.org/downloads/
http://www.dre.vanderbilt.edu/~schmidt/ACE.html
https://github.com/westes/flex

3.3. Preparing the PTF directory
Please bootstrap PTF as follows:

cd PTF

./ bootstrap
mkdir build
cd build

3.4. Configuring and installing PTF

Add the paths to the libraries and executables of the Score-P developer tools to the
PATH and LD_LIBRARY PATH environment variables:

export PATH=<path to Score—P developer tools>/bin:$PATH
export LD_LIBRARY_PATH=<path to Score—P developer tools>/lib:$LD_.LIBRARY_PATH

You may use the following naming scheme for “--prefix”:

<Desired path for PTF installation >/ptf/ptf_-readex.<mpi version>_<compiler version>
_with_scorep/

<compiler version> for example: intel2017.2.174
<mpi version> for example: intelmpi2017.2.174

To configure and install PTF please now do:

../ configure '——prefix=<Desired .path_for _PTF_installation >/ptf/ptf_.readex_-<mpi-
version>_<compiler_version>_with_scorep/’ \

——enable—developer —mode \
——with—starter=<slurm |superMUC|interactive > \
——with—ace—include=<path to ACE include> \
——with—ace—lib=<path to ACE 1lib >\
——with—boost—include=<path to Boost include >\
——with—boost—lib=<path to Boost lib >\
——with—cube—include=<path to Cube include> \
——with—cube—lib=<path to Cube lib> \
——with—scorep—include=<path to Score—P include> \
——with—scorep—lib=<path to Score—P lib> \
——with—cereal —include=<path to Cereal include>

make —j 24
make install

If you want to use the Intel compiler to compile PTF, please add the following to
“../configure” :

——with—compiler —suite=intel ‘

Please be aware that no special Cube module is needed if you are using the same
compiler for Score-P and PTF. Therefore the options for ——with-cube-include and
--with-cube-1ib are the same as for -—with-scorep-include and --with-scorep-1lib,
respectively.

Known issue: It is observed that when building PTF with an ACE library with some
versions > 6.3.3, a build error may occur due to ambiguating new declaration of
‘int operator<<(ACE_OutputCDR&, const string&)’. To avoid this, it is advisable
to use ACE library version 6.3.3.

3.4.1. Managing starter plugins

Since PTF is an automatic distributed tool, the frontend starts the parallel application.
To do so, it has to use the right command and parameters which are clearly depending
on your batch system and your local installation. PTF comes with several starters,
e.g., a generic starter named “interactive”, another one for the SuperMUC cluster at
LRZ and a generic one for Slurm batch system.

PTF uses plugins for defining the start command for the application and the analysis
agents. You select the plugin to be used on your machine in the configuration step.

A starter plugin defines the command to start the application. For example, on Su-
perMUC you use mpiexec, while on a Slurm-based system you use srun. Furthermore,
you give the necessary parameters. For example, the Slurm plugin uses a separate node
for running the PTF processes while on SuperMUC the processes are assigned to the
first node where your batch script is started. As said, decisions taken here are clearly
dependent on your machine setup.

Please have a look at the available plugins. It might be necessary to create your
own plugin using one of the available plugins as a template.

In order to create a new starter plugin on a new machine, follow these steps inside
the PTF source:

1. Go to the root directory of the PTF repository.
2. Now go to the starterplugin folder.
3. Create a new folder with your machine specific folder name.

4. Copy your chosen ptf-plugin.cc template file from the “interactive” folder and
paste it into your created folder.

5. Now make the specific changes to start the application and the analysis agents.

Next change the configure command’s ——with-starter option with the newly cre-
ated starter name (for example: --with-starter=slurm) during the configuration
step.

In case you need help in developing your own starter, please contact the PTF support
at periscope@lists.lrz.de.

For more details on installing PTF, refer to Section 2.3 in the PTF Installation
Guide which is available for download at http://periscope.in.tum.de/releases/
latest/pdf/PTF_Installation_Guide.pdf.

10

mailto:periscope@lists.lrz.de
http://periscope.in.tum.de/releases/latest/pdf/PTF_Installation_Guide.pdf
http://periscope.in.tum.de/releases/latest/pdf/PTF_Installation_Guide.pdf

4. RRL

This section outlines how to build the READEX Runtime Library (RRL).

4.1. Requirements
The build procedure for RRL requires the following tools to be already installed:
e Score-P extension for READEX as described in Section 2.

e Intel compiler version > 2017.2.174/2018.1.163 or GCC (G++ and GFortran)
version > 6.3.0/7.1.0. Other Intel or GCC compiler versions can also be used,
but have not been explicitly tested by the READEX developers.

e CMake version > 3.11 (https://cmake.org/download/).

Please make sure that the Score-P version is also compiled with the same compiler
as the one used for RRL.

4.2. Download

Please download RRL from the following location and unpack it:

http://www.readex.eu/index .php/dissemination/software /RRL. tar .gz
tar —xzvf RRL.tar.gz

4.3. Preparing the RRL directory
Please switch to the RRL directory of the downloaded repository:

cd RRL
mkdir build
cd build

4.4. Configuring and installing the RRL
You may use the following naming scheme for ~——DCMAKE_INSTALL_PREFIX:

<Desired path for RRL installation >/readex—rrl/rrl_readex._.<mpi version>_<compiler version>

<compiler version> for example: intel2017.2.174
<mpi version> for example: intelmpi2017.2.174

Now, to build the RRL please do:

cmake ../ —DCMAKE_INSTALL_PREFIX=<Desired path for RRL installation >/readex—rrl/rrl_readex_
<mpi version>_<compiler version> —DDISABLE_.CALIBRATION=ON

make —j 24

make install

NOTE: To build RRL with calibration enabled, omit the option -DDISABLE_CALIBRARION=0N
in the build step and install the dependencies x86_adapt and PAPI version > 5.5.1.
You may install x86_adapt from https://github.com/tud-zih-energy/x86_adapt,
and include the path to 1ibx86_adapt.so in your LD_LIBRARY_PATH as shown below:

export LD_.LIBRARY_PATH=$LD_LIBRARY_PATH:<path to libx86_adapt.so> ‘

11

https://cmake.org/download/
https://github.com/tud-zih-energy/x86_adapt

5. PCPs

This section outlines how to build the different Parameter Control Plugins (PCPs) for

READEX.

5.1. Requirements

The build procedure for the PCPs requires the following tools to be already installed:
e READEX Runtime Library (RRL) as described in Section 4.

e Intel compiler version > 2017.2.174/2018.1.163 or GCC (G++ and GFortran)
version > 6.3.0/7.1.0. Other Intel or GCC compiler versions can also be used,
but have not been explicitly tested by the READEX developers.

Please make sure that the RRL version is also compiled with the same compiler as
the one used for the PCPs.

5.2. Download

Please download the PCP from the following location and unpack it:

http://www.readex .eu/index .php/dissemination/software/PCPs. tar.gz
tar —xzvf PCPs.tar.gz

5.3. Configuring and installing the PCP’s

You may use the following naming scheme for the argument of the build script:

<Desired path for PCPs installation >/parameter_control_plugins/pcp-readex_<mpi version>_<
compiler version>

<compiler version> for example: intel2017.2.174
<mpi version> for example: intelmpi2017.2.174

To build the PCPs please now do:

export RRL.INC=<Path to RRL include directory>

cd PCPs

./ build .sh <Desired path for PCPs installation >/parameter_control_plugins/pcp-readex_-<mpi
version>_<compiler version>

12

6. ATP

This section outlines how to build the Application Tuning Parameter library (ATP
library) for READEX.

6.1. Requirements

The build procedure for the ATP library requires the following tools to be already
installed:

e READEX Runtime Library (RRL) as described in Section 4.

e Intel compiler version > 2017.2.174/2018.1.163 or GCC (G++ and GFortran)
version > 6.3.0/7.1.0. Other Intel or GCC compiler versions can also be used,
but have not been explicitly tested by the READEX developers.

e CMake version > 3.11 (https://cmake.org/download/).

e LUA interpreter and libraries version > 5.1 (https://www.lua.org/download.
html). Prerequisites for LUA are:

— readline library (https://tiswww.case.edu/php/chet/readline/rltop.
html).

— ncurses library (https://www.gnu.org/software/ncurses/).

Please make sure that the RRL version is also compiled with the same compiler as
the one used for the ATP library.

If LUA is installed in a custom location set LUA_DIR environment variable for
CMake to be able to find the correct installation.

6.2. Download

Please download the ATP library from the following location and unpack it:

http://www.readex.eu/index .php/dissemination/software /ATP. tar .gz
tar —xzvf ATP.tar.gz

6.3. Preparing the ATP library directory

Please do:

cd ATP
mkdir build
cd build

13

https://cmake.org/download/
https://www.lua.org/download.html
https://www.lua.org/download.html
https://tiswww.case.edu/php/chet/readline/rltop.html
https://tiswww.case.edu/php/chet/readline/rltop.html
https://www.gnu.org/software/ncurses/

6.4. Configuring and installing the ATP library
You may use the following naming scheme for -DCMAKE_INSTALL _PREFIX:

<Desired path for ATP library installation >/readex—atp/atp-readex_<mpi version>_.<compiler
version>

<compiler version> for example: intel2017.2.174
<mpi version> for example: intelmpi2017.2.174

To build the ATP please now do:

cmake ../ —DCMAKE.INSTALL.PREFIX=<Desired path for ATP library installation >/readex—atp/
atp-readex-<mpi version>_<compiler version>

make —j 24

make install

14

7. Cluster Prediction
This section outlines how to build the Cluster Prediction library for READEX.

7.1. Requirements

The build procedure for the Cluster Prediction library requires the following tools to
be already installed:

READEX Runtime Library (RRL) as described in Section 4.

Intel compiler version > 2017.2.174/2018.1.163 or GCC (G++ and GFortran)
version > 6.3.0/7.1.0. Other Intel or GCC compiler versions can also be used,
but have not been explicitly tested by the READEX developers.

CMake version > 3.11 (https://cmake.org/download/).
e PAPI version > 5.5.1 (http://icl.utk.edu/papi/software/).

Please make sure that the RRL version is also compiled with the same compiler as
the one used for the Cluster Prediction library.

7.2. Download

Please download Cluster Prediction library from the following location and unpack it:

http://www.readex.eu/index .php/dissemination/software/Cluster-Prediction.tar.gz
tar —xzvf Cluster-Prediction.tar.gz

7.3. Preparing the Cluster Prediction library directory

Please do:

cd Cluster_-Prediction
mkdir build
cd build

7.4. Configuring and installing the Cluster Prediction library

You may use the following naming scheme for ~-DCMAKE_INSTALL _PREFIX:

<Desired path for Cluster Prediction library installation >/cluster_prediction/
cluster_-prediction-readex-<mpi version>_<compiler version>

<compiler version> for example: intel2017.2.174
<mpi version> for example: intelmpi2017.2.174

To build the Cluster Prediction library please now do:

cmake ../ —DCMAKE.INSTALL_PREFIX=<Desired path for Cluster Prediction library installation
>/cluster_prediction/cluster_prediction.-readex_<mpi version>_<compiler version> —
DCMAKE_PREFIX_PATH=<papi installation root folder>

make

make install

15

https://cmake.org/download/
http://icl.utk.edu/papi/software/

8. Score-P Metric Plugins

The Score-P metric plugin interface makes it possible for programmers to increase the
event stream with metric data from additional data sources that are otherwise not
accessible for Score-P.

READEX currently supports various backends for energy measurement. This in-
cludes: Intel RAPl, AMD RAPL, and AMD APM (via the Processor Energy Event
Plugin), Bull/ATOS HDEEM and ANTAREX EXAMON. In this section, we describe
how they can be installed with brief usage details.

8.1. Processor Energy Event Plugin
Version 2 of this metric plugin available at https://github.com/readex-eu/scorep_
plugin_x86_energy/tree/x86_energy_v_2 provides energy measurement for most
contemporary x86-based processors and platforms.
8.1.1. Installation
To compile this plugin, you need:

e A C++ 14 compiler

o CMake

e Score-P

e A processor of the following architectures:
— Intel with Sandy Bridge architecture or newer
— AMD Family15h (Bulldozer) or AMD Zen

Each of the following kernel modules will grant you energy measurement access:

— intel powerclamp kernel module (Intel architectures, recommended, part
of recent Linux kernels. There’s a backport for older kernels available at
http://content.allinea.com/downloads/allinea-powercap-backport-20150601.
tar.bz2)

— intel rapl perf kernel module (Intel architectures, part of recent Linux
kernels)

— msr and msr-safe kernel module (Intel architectures, https://github.
com/LLNL/msr-safe)

— x86_adapt kernel module (Intel architectures, AMD Zen, https://github.
com/tud-zih-energy/x86_adapt)

— likwid plus msr/msr-safe kernel module (Intel architectures, https://
github.com/RRZE-HPC/1likwid)

— fam15h _power kernel module (AMD Bulldozer, part of recent Linux kernels)

16

https://github.com/readex-eu/scorep_plugin_x86_energy/tree/x86_energy_v_2
https://github.com/readex-eu/scorep_plugin_x86_energy/tree/x86_energy_v_2
http://content.allinea.com/downloads/allinea-powercap-backport-20150601.tar.bz2
http://content.allinea.com/downloads/allinea-powercap-backport-20150601.tar.bz2
https://github.com/LLNL/msr-safe
https://github.com/LLNL/msr-safe
https://github.com/tud-zih-energy/x86_adapt
https://github.com/tud-zih-energy/x86_adapt
https://github.com/RRZE-HPC/likwid
https://github.com/RRZE-HPC/likwid

To build the plugin as follows:

1. Create a build directory

mkdir build
cd build

2. Invoke Cmake

cmake ..

The following settings can be customized:
e SCOREP_CONFIG: Path to the scorep-config tool including the file name.
If you have scorep-config in your PATH, it should be found by CMake.

e CMAKE INSTALL PREFIX: Directory where the resulting plugin will be in-
stalled (1ib/ suffix will be added)

e ENABLE MPI (only applicable to the examon_sync_plugin): Enables MPI
communication for the sync plugin, and allows to run more than one MPI
process per node. This is mandatory for READEX!

3. Invoke make

‘ make

4. Install the files

‘ make install

8.1.2. Usage in READEX

For READEX purposes, we use the x86_energy_sync_plugin, which enables us to
attribute energy to specific regions. To use the plugin, it must be enabled during runs
with PTF. To do so, use the following environment variables:

export SCOREP-METRIC.PLUGINS=x86_.energy-sync-plugin

export SCOREP-METRIC.PLUGINS_SEP=" ;”

export SCOREP_.METRIC_X86_ENERGY_SYNC_PLUGIN="BLADE/E”

export SCOREP_METRIC_X86_ENERGY_PLUGIN.INTERVALL_US=0

export SCOREP-METRIC_X86.ENERGY_.SYNC_PLUGIN_.OFFSET=70 # This is the offset that is set to
the sum of package and DRAM consumptions to compute BLADE power and highly system
dependent

Furthermore, the metric source definition of your readex_config.xml should look
like this:

<metricPlugin>
<name>x86_energy-sync-plugin </name>
</metricPlugin>
<metrics>
<node_energy >x86_energy /BLADE/E</node_energy >
</metrics>

17

8.2. HDEEM Energy Measurement Plugin

High Definition Energy Efficiency Monitoring (HDEEM) is the power measurement
infrastructure provided by contemporary blades from the HPC vendor Bull(Atos).
It provides a high resolution with inband and out-of band interfaces for accessing
energy and power data. More details can be found at https://tu-dresden.de/zih/
forschung/projekte/hdeem.
8.2.1. Installation
To compile this plugin, you need:

e A C++ 14 compiler

e Score-P Version 2+ (SCOREP_METRIC_PLUGIN_VERSION > 1)

e The hdeem library and header files by BULL/ATOS

To build the plugin as follows:

1. Create a build directory

mkdir build
cd build

2. Invoke Cmake

cmake ..

The following settings can be customized:

e SCOREP_CONFIG: Path to the scorep-config tool including the file name.
If you have scorep-config in your PATH, it should be found by CMake.

e CMAKE_INSTALL_PREFIX: Directory where the resulting plugin will be in-
stalled (1ib/ suffix will be added)

e ENABLE MPI (only applicable to the examon_sync_plugin): Enables MPI
communication for the sync plugin, and allows to run more than one MPI
process per node. This is mandatory for READEX!

e HDEEM BMC_USER HDEEM BMC_PASS: Required for out of band access

e HDEEM_INCLUDE_DIRS: Directory where hdeem.h is located

e HDEEM_LIBRARIES: The full path of 1ibhdeem.so, including the file name,
e.g. /usr/local/hdeem/libhdeem.so.1

3. Invoke make

[make

4. Install the files

make install

18

https://tu-dresden.de/zih/forschung/projekte/hdeem
https://tu-dresden.de/zih/forschung/projekte/hdeem

8.2.2. Usage in READEX

For READEX purposes, we use the hdeem_sync_plugin, which enables us to attribute
energy to specific regions. To use the plugin, it must be enabled during runs with
PTEF. To do so, use the following environment variables:

export SCOREP_-METRIC_PLUGINS=hdeem_sync-plugin

export SCOREP-METRIC.PLUGINS_SEP=" ;”

export SCOREP-METRIC.HDEEM_SYNC_PLUGIN_.CONNECTION="INBAND”
export SCOREP.METRIC_.HDEEM_.SYNC_PLUGIN_.VERBOSE="WARN”

export SCOREP.METRIC_.HDEEM_SYNC_PLUGIN_STATS_. TIMEOUT_MS=1000

Furthermore, the metric source definition of your readex_config.xml should look
like this:

<metricPlugin>
<name>hdeem_sync_plugin </name>
</metricPlugin>
<metrics>
<node_energy >hdeem /BLADE/E</node_energy >
<cpuO-energy >hdeem /CPUO/E</cpuO_energy >
<cpul_-energy >hdeem /CPUl/E</cpul_-energy >
</metrics>

8.3. EXAMON Energy Event Plugin

EXAMON is a scalable HPC measurement infrastructure with different data sources
and plugins. More details can be found at https://github.com/EEESlab/examon.
EXAMON was developed as part of the ANTAREX project (www.antarex-project.
eu).
8.3.1. Installation
To compile this plugin, you need:

e A C++ 14 compiler

e Score-P Version 2+ (SCOREP_METRIC_PLUGIN_VERSION > 1)

e CMake 3.8+

e Other dependencies will be downloaded during the cmake/make process

To build the plugin as follows:

1. Create a build directory

mkdir build
cd build

2. Invoke Cmake

cmake ..

The following settings can be customized:

e SCOREP_CONFIG: Path to the scorep-config tool including the file name.
If you have scorep-config in your PATH, it should be found by CMake.

19

https://github.com/EEESlab/examon
www.antarex-project.eu
www.antarex-project.eu

e CMAKE_INSTALL_PREFIX: Directory where the resulting plugin will be in-
stalled (1ib/ suffix will be added)

e ENABLE MPI (only applicable to the examon_sync_plugin): Enables MPI
communication for the sync plugin, and allows to run more than one MPI
process per node. This is mandatory for READEX!

3. Invoke make

‘ make

4. Install the files

‘ make install

8.3.2. Usage in READEX

For READEX purposes, we use the examon_sync_plugin, which enables us to attribute
energy to specific regions. To use the plugin, it must be enabled during runs with PTF.
To do so, use the following environment variables:

export SCOREP-METRIC_PLUGINS=examon.-sync-plugin

export SCOREP-METRIC.PLUGINS_SEP=" ;”

export SCOREP.METRIC_.EXAMON_SYNC_PLUGIN.BROKER=<MQTT broker address>

#

You can use this option, if your blade counter does not use the systems hostname but
something else;

export SCOREP_METRIC_EXAMON_SYNC_PLUGIN.EXAMON_HOST=<hostname override&>

#

the default is org/antarex/cluster/testcluster

export SCOREP-METRIC.EXAMON_SYNC_PLUGIN.CHANNEL=<the default channel configured in examon’s
—pmu-pub.conf_key_-"topic”>

#

#-~lower _means._.more_overhead , _but_higher_granularity .

#-The_granularity_is_also_limited -from_the EXAMON_publisher , _which_provides_the_data!

export _.SCOREP.METRIC_LEXAMON_SYNC_PLUGIN_INTERVAL=<Readout.delay.in_.seconds.(e.g.,-0.001_for
~l_oms)>

#

export _SCOREP_.METRIC_EXAMON_SYNC_PLUGIN="EXAMON/BLADE/E”

#

#_the_whole_counter .name_used with MQTT_is :

#_$SCOREP-METRIC-EXAMON_SYNC_PLUGIN_-EXAMON-HOST /$SCOREP-METRIC.-EXAMON_SYNC_PLUGIN_.CHANNEL /
$SCOREP_-METRIC.EXAMON_SYNC_PLUGIN_.READEX-BLADE

export _SCOREP-METRIC_.EXAMON_SYNC_PLUGIN.READEX_-BLADE="<The_systems_blade_counter >INT64_s
=0.001";

Furthermore, the metric source definition of your readex_config.xml should look
like this:

<metricPlugin>
<name>examon_sync_plugin </name>
</metricPlugin>
<metrics>
<node_energy >EXAMON/BLADE/E</node-energy >
</metrics>

20

A. READEX tool suite installation on Taurus cluster
(TU Dresden)

A.1. The module environment

Taurus uses so called modules to allow a dynamic environment. This avoids setting
different environment variables by hand. It is therefore recommended to use these
modules instead of manually setting environment variables. To use READEX related
modules please do:

‘module use /projects/p-readex/modules/

It is assumed throughout this document that the modules directory is loaded.

A.2. Allocating a node

Please allocate a node to build the READEX Tool Suite to keep the login server free.
You can do so by running:

srun —p haswell ——time=4:00:00 ——pty ——exclusive —n 1 —c 24 \
——mem=60000 —A p-readex bash —1 —i

A.3. Score-P

To build Score-P please follow these instructions.

A.3.1. Modules

If you have previously built anything else please do:

‘module use /projects/p-readex/modules/

Please load the following modules to build Score-P using gee/5.3.0 and Bull XMPI:

module load \
svn/1.9.3 \
papi/5.5.1 \
bison /3.0.4 \
scorep—dev /05 \
gce /6.3.0 \
bullxmpi/1.2.8.4

If you would like to use the Intel compiler and Intel MPI instead please load:

module load \
papi/5.5.1 \
bison /3.0.4 \
scorep—dev /05 \
intel /2017.2.174 \
intelmpi /2017.2.174

A.3.2. Download

Please Download Score-P from the following location, using your Score-P access details:

svn co https://silc.zih.tu—dresden.de/svn/silc —root/branches/
TRY_-READEX_online-access-call_-tree_extensions

21

A.3.3. Preparing the Score-P directory
Next please do:

cd TRY_READEX_online_access_call_tree_extensions
./ bootstrap

mkdir build

cd build

A.3.4. Configuring and installing Score-P

You can use your desired directory to install your Score-P version. In order to keep
an overview about the different versions, please stick to the following naming scheme
for the —-prefix argument:

<Desired path for READEX installation >/scorep/
TRY_READEX _online_access_call_tree_extensions.<mpi version>.<compiler verison>

<mpi version >: for example, bullxmpi
<compiler version >: for example, gcc6.3.0

To run configure please do:

../ configure '——prefix=<Desired .path_for _-READEX_installation >/scorep/
TRY_-READEX_online_access_call_tree_extensions_<mpi-version>_<compiler_version >/’ \
’——enable—backend—test —runs’ \

'——with—nocross—compiler —suite=gcc ' \
——with—mpi=bullxmpi’ \
——disable—silent —rules’ \

'——with—libbfd=no’ \
'——with—papi—header=/sw/taurus/libraries/papi/5.5.1/include

——with—papi—lib=/sw/taurus/libraries /papi/5.5.1/1ib’> \
——with—machine—name=taurus . hrsk.tu—dresden .de’
——without—gui’ \

——enable—static’ \

’——enable—shared’ \

'——enable—debug’\

"CFLAGS=—g.—00" \

'CXXFLAGS=—g._.—00"\

make —j 24
make install

For Intel compiler and Intel MPI please change the following flags to:

'——with—nocross—compiler—suite=intel > \
’——with—mpi=intel3’ \

A.3.5. Creating the related Score-P module file

Please build a module file at your desired installation path for READEX in order to
use your Score-P version. Please change to the Score-P module directory:

cd <Desired path for READEX installation >/modules/scorep

Please create there a file with the following name:

TRY-READEX _online_-access_call_-tree_extensions_-<mpi-version>_<compiler_version>

And insert the following content:

#%Modulels
HH#
This is a modules template. Adapt it to your requirements .

Module file for <software xyz>
HH

22

Source zih—modules helper script. It provides the framework for an uniform modules
system .

Additionally , it sets global variables that provide you information about the

application to be loaded and some other information. See the following list :

##

soft_arch Provides information about the architecture.

soft_class Provides the software class. E.g. [applications|compiler|tools]

soft_host Provides the host name.

soft_machine Provides the machine name.

soft_version Provides the software version number to be loaded.

soft_ware Provides the software name to be loaded.

user Provides the user name.

source /sw/modules/global/modulescripts/zih_-modules. tcl

set scorep-root "<Desired_path_for _READEX_installation >/scorep/$soft_version”
Set modules dependencies with version information !!! e.g. intel/11.1.069
#set soft_dependencies 7.7

append soft_dependencies ”"papi/5.5.1_<your_.mpi_verison>.<your—_compiler_version>"

Set variable shortDescription if you want to add specific information that
should be displayed while the module is loaded.

#set shortDescription ”Use_\”bsub_—n<number—of—cpus>_...\” __to_start_the_application_xyz”
Set variable longDescription if you want to add further information about the
software that should be displayed at the module help command.

$soft_ware_provides_a_highly_scalable _measurement_infrastructure.
w

set longDescription ” This
to_trace_your_.parallel _applications .

append longDescription ”\nCompile_with_scorep_<usual_compiler _.command>.”

Set the specific environment variables for your software package
#set lib_path /sw/<global|$soft-machine>/$soft_class/$soft_ware/$soft_version/$soft_arch

#environment settings for Score—P
setenv SCOREP_ROOT S$scorep_root

setenv SCOREP_INC $scorep-root/include
setenv SCOREP.LIB $scorep-root/lib

prepend—path LD_.LIBRARY.PATH $scorep-root/lib
prepend—path PATH $scorep-root/bin

Source modules action information
source /sw/modules/global/modulescripts/zih_-modules_action.tcl

where

<your mpi verison> : for example, bullxmpi
<your compiler version >: for example, gcc/6.3.0

A.4. Using Score-P

Now you can use Score-P by doing:

module load scorep/TRY_READEX_online_access_call_tree_extensions_<mpi-version>_<
compiler_version >

A.5. PTF

This section outlines how to build and use PTF.

A.5.1. Modules
If you have previously built anything else please do:

23

module purge

Now load the modules to build PTF with gcc:

module load \
papi/5.5.1
boost /1.63.0 —gnu6.3 \
automake /1.14 \
md/1.4.16 \
python /2.7 \
autoconf /2.69 \
libtool /2.4.2 \
autotools /2015 \
ace /6.3.3 \
libunwind /1.1 \
git \
gee/6.3.0 \
flex /2.5.39 \
bison /3.0.4 \
cereal /1.2.1

module load scorep/TRY_READEX_online_access_call_tree_extensions_<mpi version>_<compiler
version>

<mpi version >: for example: bullxmpi
<compiler version >: for example: gcc6.3.0

For Intel please do:

module load \
papi/5.5.1
boost /1.63.0 —gnu6.3 \
automake/1.14 \
ma/1.4.16 \
python /2.7 \
autoconf/2.69 \
libtool /2.4.2 \
autotools /2015 \
ace /6.3.3 \
libunwind /1.1 \
git
intel /2017.2.174 \
flex /2.5.39 \
bison /3.0.4 \
cereal /1.2.1 \

module load scorep/ TRY_READEX_online_access_call_tree_extensions_<mpi version>_<compiler
version >

Please be sure that the Score-P version is also compiled with the Intel compiler.

A.5.2. Download
Please download the READEX branch of PTF:

git —c http.sslVerify=false clone https://periscope.in.tum.de/git/Periscope.git
cd Periscope
git checkout readex

A.5.3. Preparing the PTF directory

Please do:

./ bootstrap
mkdir build
cd build

24

A.5.4. Configuring and installing PTF

You can use your desired directory to install PTF. Please stick to the following naming
scheme for --prefix:

<Desired path for READEX installation >/ptf/ptf—<day of build>-readex—<compiler version>—
slurm_starter —<mpi version>—with—scorep/

<compiler version> for example: gcc6.3.0
<mpi version> for example: bullxmpi

To configure and install PTF please now do:

../ configure '——prefix=<Desired .path_for _READEX_installation >/ptf/ptf—<day_of_build
>—readex—<compiler_version>—slurm_starter —<mpi_version >-with—scorep /"’
——enable—developer —mode \
——with—starter=slurm \
——enable—ace \
——enable—boost \
——with—boost—1ib=$BOOST_LIB\
——enable—cube \
——with—cube—include=$SCOREP.INC \
——with—cube—1ib=$SCOREP_LIB \
——enable—scorep \
——with—scorep—include=$SCOREP_INC \
——with—scorep—1ib=$SCOREP_LIB \
——enable—cereal \
——with—cereal —include=$CEREAL_INC

make —j 24
make install

If you want to use the Intel compiler to compile PTF, please add the following to
“../configure” :

——with—compiler—suite=intel ‘

Please be aware that no special Cube module is needed if you are using the same
compiler for Score-P and PTF. Therefore the options for ——with-cube-include and
--with-cube-1ib are the same as for -—with-scorep-include and --with-scorep-1lib.

A.5.5. Creating the related PTF module file

Please build a module file in order to use your PTF version, and make it accessible for
others. Please change to the PTF module directory:

cd <Desired path for READEX installation >/modules/ptf ‘

Please create there a file with the following name:

ptf—<day of build>-readex—<compiler version>-slurm_starter —<mpi version>-with—scorep ‘

And insert the following content:

#/%oModule 16

FHH

This is a modules template. Adapt it to your requirements.

Module file for <software xyz>

##

Source zih—modules helper script. It provides the framework for an uniform modules
system .

Additionally , it sets global variables that provide you information about the

application to be loaded and some other information. See the following list:

FH

soft_arch Provides information about the architecture.

soft_class Provides the software class. E.g. [applications|compiler|tools]

soft_host Provides the host name.

soft_machine Provides the machine name.

soft_version Provides the software version number to be loaded.

25

soft_ware Provides the software name to be loaded .
user Provides the user name.

source /sw/modules/global/modulescripts/zih_-modules. tcl

set ptf_root "<Desired_path_for _READEX_installation >/ptf/$soft_version”

Set modules dependencies with version information !!!

#set soft_dependencies ”._”

append soft_dependencies "<mpi_version>_boost/1.63.0—gnu6.3 _<compiler_version>_ace/6.3.3_
libunwind /1.1”"

Set variable shortDescription if you want to add specific information that

should be displayed while the module is loaded.

#set shortDescription ”"Use-\”bsub_—n<number—of—cpus>_...\” o_to_start_the_application_xyz”

Set variable longDescription if you want to add further information about the

software that should be displayed at the module help command.

#set longDescription ”This_$soft_ware_provides_a_highly_scalable_measurement_infrastructure
—~to_trace_your_parallel_.applications.”

#append longDescription ”\nCompile_with_scorep_<usual_compiler_command>.”

Set the specific environment variables for your software package
#set lib_path /sw/<global|$soft_machine>/$soft_class/$soft_ware/$soft_version/$soft_arch

#environment settings for Score—P
setenv PTF_ROOT $ptf_root

setenv PTF.INC S$ptf_root/include
setenv PTF.LIB $ptf_root/lib

prepend—path LD_LIBRARY.PATH $ptf_root/lib
prepend—path PATH $ptf_root/bin

Source modules action information
source /sw/modules/global/modulescripts/zih_modules_action.tcl

where
<compiler version> for example: gcc/5.3.0
<mpi version> for example: bullxmpi

A.5.6. Using PTF
Now you can use PTF by doing:

module load ptf/ptf—<day of build>-readex—<compiler version>-slurm._starter —<mpi version >—
with—scorep

A.6. RRL

This section outlines how to build and use RRL.

A.6.1. Modules

If you have previously built anything else please do:

module purge

Now load the modules to build the RRL:

26

module load modenv/both

module load scorep/TRY_READEX_online-access_call_tree_extensions-<mpi version>.<compiler
version>

module load cmake/<3.11 or later >

module load papi/5.5.1

module load protobuf/3.5.0—intel2017.2.174

module load TensorFlow/1.6.0 —intel —2018a—Python —3.6.4

where
<mpi version >: for example: bullxmpi
<compiler version >: for example: gcc6.3.0

A.6.2. Download
Please download the READEX RRL git:

git clone ——recursive git@gitlab.hrz.tu—chemnitz.de :READEX/RRL. git

You’ll need to be registered at the TU Chemnitz gitlab. If you are not, please log
in into https://gitlab.hrz.tu-chemnitz.de/ and place your public ssh key there.
Please have a look at https://docs.gitlab.com/ce/ssh/README.html for details
about ssh keys.

A.6.3. Preparing the RRL directory

Please do:

cd readex—rrl/TUD_RRL/
mkdir build
cd build

A.6.4. Configuring and installing the RRL

You can use your desired directory to install RRL. Please stick to the following naming
scheme for -DCMAKE_INSTALL_PREFIX:

<Desired path for READEX installation >/readex—rrl/rrl—<compiler version>—<mpi version>

<compiler version> for example: gcc6.3.0
<mpi version> for example: bullxmpi

Now, to build the RRL please now do:

export CPATH=/sw/taurus/eb/TensorFlow/1.6.0 —intel —2018a—Python —3.6.4/include :$CPATH

export LD.LIBRARY-PATH=$LD_LIBRARY_-PATH:/usr/local/lib:/sw/taurus/eb/TensorFlow/1.6.0—intel
—2018a—Python —3.6.4/1ib /python3.6/site —packages/tensorflow /../ _solib_k8/
_U_S_Sthird_Uparty_-Smkl_Cintel_Ubinary_Ublob___Uexternal_Smkl_Slib/

cmake ../ —DCMAKE_INSTALL_PREFIX=<Desired path for READEX installation >/readex—rrl/rrl—<
compiler version>—<mpi version> —DEXTERN_TENSORFLOW=ON —DEXTERN_PROTOBUF=ON

make —j24

make install

27

https://gitlab.hrz.tu-chemnitz.de/
https://docs.gitlab.com/ce/ssh/README.html

A.6.5. Creating the related RRL module file

Please build a module file in order to use your RRL version, and make it accessible
for others. Please change to the RRL module directory:

cd <Desired path for READEX installation >/modules/readex—rrl

Please create there a file with the following name:

rrl —<compiler version>—<mpi version>

And insert the following content:

#7%Modulel0

#H#

This is a modules template. Adapt it to your requirements.

Module file for <software xyz>

FHH

Source zih—modules helper script. It provides the framework for an uniform modules
system .

Additionally , it sets global variables that provide you information about the

application to be loaded and some other information. See the following list :

##

soft_arch Provides information about the architecture.

soft_class Provides the software class. E.g. [applications|compiler|tools]

soft_host Provides the host name.

soft_machine Provides the machine name.

soft_version Provides the software version number to be loaded.

soft_ware Provides the software name to be loaded.

user Provides the user name.

source /sw/modules/global/modulescripts/zih_modules.tcl
set rrl_root "<Desired_path_for _READEX_installation >/readex—rrl/$soft_version”
Set modules dependencies with version information !!!

#set soft_.dependencies

append soft_dependencies ”"<your_mpi_verison>_<your_compiler_version>"

Set variable shortDescription if you want to add specific information that
should be displayed while the module is loaded.

#set shortDescription ”Use_\”bsub_—n<number—of—cpus>_...\” —_to_start_the_application_xyz”
Set variable longDescription if you want to add further information about the

software that should be displayed at the module help command.

set longDescription ”TODO”

append longDescription »\nTODO”

Set the specific environment variables for your software package
#set lib_path /sw/<global|8$soft_-machine>/$soft_class/$soft_ware/$soft_version/$soft_arch

#environment settings for Score—P
setenv RRL.ROOT $rrl_root

setenv RRL_INC $rri_root /include
setenv RRL_LIB $rrl_root /lib

prepend—path LD_LIBRARY-PATH $rrl_root/lib
prepend—path PATH $rrl_root/bin
prepend—path CPAHT $rrl_root/bin/include

Source modules action information
source /sw/modules/global/modulescripts/zih_-modules_action.tcl

where
<mpi version> : mpi version of the scorep version you used
<compiler version> : compiler of the scorep version you used

28

A.6.6. Using RRL
Now you can use RRL by doing:

module load readex—rrl/rrl—<compiler version>—<mpi version>
export SCOREP_SUBSTRATE_PLUGINS='rrl’
export SCOREP_RRL_VERBOSE="DEBUG”

export SCOREP_TUNING_PLUGINS=’'OpenMPTP, ...’

<or>
export SCOREP-RRL-PLUGINS=’'OpenMPTP, ...~

#optional , if a tuning model is present
#export SCOREP.RRL.TMM.PATH="/path/to/the/tuning/model.json”

A.6.7. Building doc
Please go to your build folder and do:

module load doxygen/1.8.11
make doc

A.7. PCP’s

This section outlines how to build the different Parameter Control Plugins.

A.7.1. Modules

If you have previously built anything else please do:

module purge

Now load the modules to build the RRL:

module load readex—rrl/rrl—<compiler version>—<mpi version>

Where is:
<mpi version >: for example: bullxmpi
<compiler version >: for example: gcc6.3.0

A.7.2. Download
Please download the PCP git:

‘git clone git@gitlab.hrz.tu—chemnitz.de:READEX/PCPs. git

You’ll need to be registered at the TU Chemnitz gitlab. If you are not, please log
in into https://gitlab.hrz.tu-chemnitz.de/ and place your public ssh key there.
Please have a look at https://docs.gitlab.com/ce/ssh/README.html for details
about ssh keys.

29

https://gitlab.hrz.tu-chemnitz.de/
https://docs.gitlab.com/ce/ssh/README.html

A.7.3. Configuring and installing the PCP’s

You can use your desired directory to install the PCP’s. Please stick to the following
naming scheme for the second argument of the build script:

<Desired path for READEX installation >/parameter-control_plugins/pcp—<compiler version>

<compiler version> for example: gcc6.3.0

To build the PCP’s please now do:

export RRL.INC=<Path to RRL include directory>

cd PCPs

./ build.sh <Desired path for READEX installation >/parameter_control_plugins/pcp—<compiler
version >

A.7.4. Creating the related PCP’s module file

Please build a module file in order to use your PCP version, and make it accessible
for others. Please change to the PCP module directory:

cd <Desired path for READEX installation >/modules/pcp/

Please create there a file with the following name:

pcp—<compiler version>

And insert the following content:

#%Module 10;

FHH

This is a modules template. Adapt it to your requirements .

Module file for <software xyz>

##

Source zih—modules helper script. It provides the framework for an uniform modules
system .

Additionally , it sets global variables that provide you information about the

application to be loaded and some other information. See the following list:

FHH

soft_arch Provides information about the architecture.

soft_class Provides the software class. E.g. [applications|compiler|tools]

soft_host Provides the host name.

soft_machine Provides the machine name.

soft_version Provides the software version number to be loaded.

soft_ware Provides the software name to be loaded.

user Provides the user name.

source /sw/modules/global/modulescripts/zih_modules. tcl

set pcp-root "<Desired._path_for READEX._installation >/parameter_control_plugins/pcp—<
compiler_version >”

Set modules dependencies with version information !!!
#set soft_dependencies 77

append soft.dependencies "<your_mpi-verison>_<your_compiler_version>”

Set variable shortDescription if you want to add specific information that
should be displayed while the module is loaded.

#set shortDescription ”Use_\”bsub_—n<number—of—cpus>_...\” c_to_start_the_application_xyz”
Set variable longDescription if you want to add further information about the

software that should be displayed at the module help command.

set longDescription ”TODO”

append longDescription ”\nTODO”

Set the specific environment variables for your software package

30

#set lib_path /sw/<global|$soft_machine>/$soft_class/$soft_ware/$soft_version/$soft_arch
#environment settings for Score—P

setenv PCP.ROOT $pcp-root

setenv PCP_LIB $pcp-root/lib

prepend—path LD_LIBRARY.PATH S$pcp-root/lib

Source modules action information
source /sw/modules/global/modulescripts/zih_-modules_action.tcl

where
<mpi version >: for example: bullxmpi
<compiler version >: for example: gcc6.3.0

A.7.5. Using PCP’s

Now you can use the PCP’s by adding them to SCOREP_RRL_PLUGINS:

module load pcp/pcp—<compiler version>
export SCOREP_RRL_PLUGINS='OpenMPTP, cpu-freq-plugin ,epb_plugin ,uncore_freq_plugin ,..."’

A.8. ATP

This section outlines how to build and use the ATP library.

A.8.1. Modules

If you have previously built anything else please do:

module purge

Now load the modules to build the ATP library:

module load readex—rrl/rrl—<compiler version>—<mpi version>
module load cmake/<3.11 or later>

<mpi version >: for example: bullxmpi
<compiler version >: for example: gcc6.3.0

A.8.2. Download
Please download the ATP git:

git clone git@gitlab.hrz.tu—chemnitz.de:READEX/ATP. git

You’ll need to be registered at the TU Chemnitz gitlab. If you are not, please log
in into https://gitlab.hrz.tu-chemnitz.de/ and place your public ssh key there.
Please have a look at https://docs.gitlab.com/ce/ssh/README.html for details
about ssh keys.

A.8.3. Preparing the ATP directory

Please do:

cd ATP/
mkdir build
cd build

31

https://gitlab.hrz.tu-chemnitz.de/
https://docs.gitlab.com/ce/ssh/README.html

A.8.4. Configuring and installing the ATP

You can use your desired directory to install ATP. Please stick to the following naming
scheme for -DCMAKE_INSTALL_PREFIX:

<Desired path for READEX installation >/readex—atp/atp—<compiler version>—<mpi version>

<compiler version> for example: gcc6.3.0
<mpi version> for example: bullxmpi

To build the ATP please now do:

cmake ../ —DCMAKE.INSTALL_.PREFIX=<Desired path for READEX installation >/readex—atp/atp—<
compiler version>—<mpi version>

make —j24

make install

A.8.5. Creating the related ATP module file

Please build a module file in order to use your ATP version, and make it accessible for
others. Please change to the ATP module directory:

cd <Desired path for READEX installation >/modules/readex—atp

Please create there a file with the following name:

atp—<compiler version>—<mpi version>

And insert the following content:

#%Module 10;

FHH

This is a modules template. Adapt it to your requirements .

Module file for <software xyz>

##

Source zih—modules helper script. It provides the framework for an uniform modules
system .

Additionally , it sets global variables that provide you information about the

application to be loaded and some other information. See the following list:

FHH

soft_arch Provides information about the architecture.

soft_class Provides the software class. E.g. [applications|compiler|tools]

soft_host Provides the host name.

soft_machine Provides the machine name.

soft_version Provides the software version number to be loaded.

soft_ware Provides the software name to be loaded.

user Provides the user name.

source /sw/modules/global/modulescripts/zih-modules. tcl

et atp.root 7"<Desired.path_for_READEX._installation >/readex—atp/$soft_version?”

@

Set modules dependencies with version information !!! e.g. intel/11.1.069
#set soft_dependencies
append soft-dependencies "readex—rrl/rrl—gcc6.3.0—bullxmpi”

Set variable shortDescription if you want to add specific information that
should be displayed while the module is loaded.

#set shortDescription ”Use_\”bsub_—n<number—of—cpus>_...\” c_to_start_the_application_xyz”
Set variable longDescription if you want to add further information about the

software that should be displayed at the module help command.

set longDescription ”TODO”

append longDescription ”\nTODO”

Set the specific environment variables for your software package

32

#set lib_path /sw/<global|$soft_machine>/$soft_class/$soft_ware/$soft_version/$soft_arch

#environment settings for ATP
setenv ATP_PATH S$atp-root/bin

prepend—path LD_.LIBRARY_.PATH $atp-root/lib
prepend—path PATH $atp_root/bin
prepend—path CPATH $atp-root/include

Source modules action information
source /sw/modules/global/modulescripts/zih_modules_action.tcl

<mpi version> . mpi version of the scorep version you used
<compiler version> . compiler of the scorep version you used

A.8.6. Using ATP
Now you can use ATP by doing:

‘ module load readex—atp/atp—<compiler version>—<mpi version>

A.9. Cluster Prediction

This section outlines how to build and use the Cluster Prediction library.

A.9.1. Modules

If you have previously built anything else please do:

‘ module purge

Now load the modules to build the ATP library:

module load readex—rrl/rrl—<compiler version>—<mpi version>
module load cmake/<3.11 or later>
module load papi/<5.5.1 or later>

<mpi version >: for example: bullxmpi
<compiler version >: for example: gcc6.3.0

A.9.2. Download

Please download the Cluster Prediction git:

‘git clone git@gitlab.hrz.tu—chemnitz.de:READEX/ Cluster-Prediction .git

You’ll need to be registered at the TU Chemnitz gitlab. If you are not, please log
in into https://gitlab.hrz.tu-chemnitz.de/ and place your public ssh key there.
Please have a look at https://docs.gitlab.com/ce/ssh/README.html for details
about ssh keys.

A.9.3. Preparing the Cluster Prediction directory

Please do:

cd Cluster_Prediction/
mkdir build
cd build

33

https://gitlab.hrz.tu-chemnitz.de/
https://docs.gitlab.com/ce/ssh/README.html

A.9.4. Configuring and installing the Cluster Prediction library

You can use your desired directory to install Cluster Prediction. Please stick to the
following naming scheme for ~-DCMAKE_INSTALL _PREFIX:

<Desired path for READEX installation >/cluster_prediction/cluster_prediction —<compiler
version>-<mpi version>

<compiler version> for example: gcc6.3.0
<mpi version> for example: bullxmpi

To build the Cluster Prediction library please now do:

cmake ../ —DCMAKE.INSTALL.PREFIX=<Desired path for READEX installation >/cluster_prediction/
cluster_prediction —<compiler version>—<mpi version> —DCMAKE_PREFIX_ PATH=<papi
installation root folder >

make

make install

A.9.5. Creating the related Cluster Prediction module file

Please build a module file in order to use your Cluster Prediction version, and make
it accessible for others. Please change to the Cluster Prediction module directory:

cd <Desired path for READEX installation >/modules/cluster_prediction

Please create there a file with the following name:

cluster_prediction —<compiler version>-<mpi version>

And insert the following content:

#%Module 10

##

This is a modules template. Adapt it to your requirements.

Module file for <software xyz>

#H#

Source zih—modules helper script. It provides the framework for an uniform modules
system .

Additionally , it sets global variables that provide you information about the

application to be loaded and some other information. See the following list:

FHH

soft_arch Provides information about the architecture.

soft_class Provides the software class. E.g. [applications|compiler|tools]

soft_host Provides the host name.

soft_-machine Provides the machine name.

soft_version Provides the software version number to be loaded.

soft_ware Provides the software name to be loaded.

user Provides the user name.

source /sw/modules/global/modulescripts/zih_modules. tcl

set cluster_prediction_root "<Desired_.path_for _READEX_installation >/cluster_prediction/
$soft_version”

Set modules dependencies with version information !!! e.g. intel/11.1.069
#set soft_.dependencies

append soft-dependencies ”readex—rrl/rrl—gcc6.3.0—bullxmpi’

Set variable shortDescription if you want to add specific information that
should be displayed while the module is loaded .

#set shortDescription ”Use_\”bsub_—n<number—of—cpus>_...\” o_to_start_the_application_xyz”
Set variable longDescription if you want to add further information about the

software that should be displayed at the module help command.

set longDescription ”TODO”

append longDescription ”\nTODO”

34

Set the specific environment variables for your software package

#set lib_path /sw/<global|$soft-machine>/$soft_class/$soft-ware/$soft_-version/$soft_arch
#environment settings for CLUSTER-PREDICTION

setenv CLUSTER_PREDICTION_LIB $cluster_prediction_root/lib

setenv CLUSTER_PREDICTION._INC $cluster_prediction_root/include

setenv CLUSTER_PREDICTION_PATH $cluster_prediction_root

prepend—path LD_LIBRARY.PATH S$cluster_prediction_root/lib

Source modules action information
source /sw/modules/global/modulescripts/zih_modules_action.tcl

<mpi version> : mpi version of the

scorep version you used
<compiler version> . compiler of the

scorep version you used

A.9.6. Using Cluster Prediction

Now you can use Cluster Prediction by doing:

‘ module load cluster_prediction/cluster_prediction —<compiler version>—<mpi version>

35

B. READEX Docker Image

A docker file to create a docker image with the READEX tool suite installed on an
Ubuntu OS is available at https://github.com/readex-eu/readex-docker.

The steps to create a docker image using the provided docker file are as follows:
1. Install docker.
2. Download the READEX docker file (Dockerfile.readex_gec7.3.0).

3. Build the READEX docker image from the dockerfile in the current directory
using the following command:

‘ docker build —t="docker/readex_gcc7.3.0” —f Dockerfile.readex_gcc7.3.0 . ‘

To run the docker image, execute the following command:

‘ docker run —it ——rm docker/readex_gcc7.3.0 ‘

Note: All environment variables that are required to use the individual tools in the
READEX tool suite are set in the docker image.

36

https://github.com/readex-eu/readex-docker
https://www.docker.com/
https://github.com/readex-eu/readex-docker/blob/master/Dockerfile.readex_gcc7.3.0

C. READEX Integrated Installation Script

A script for downloading and installing the software components of the READEX Tool
Suite is available at https://github.com/readex-eu/readex-install-script.

Before running the installation script, edit it and provide the right paths to the required
software, if necessary.

C.1. Requirements
Please make sure you have installed the required software on your system:
e GCC (G++ and GFortran) 6.3.0/7.1.0 or Intel compiler 2017.2.174/2018.1.163
e Bison 3.0.4
e PAPI 5.5.1 or higher
e Python 3.6 or higher
e Ace 6.5.0
e Flex 2.5.39
e Boost 1.65.0
e Cereal 1.2.1
e CMake 3.11 or higher
e Lua 5.1 or higher

If the installation script (readex-install.sh) doesn’t find right versions of the re-
quired software, the script will install it in the installation path or if the right version is
in the package repository, it will be installed with sudo apt-get install (package).

C.2. Usage

To run the installation script, execute the following command:

./readex—install.sh <installation path> ‘

If no installation path is specified, it will be installed in the /opt directory.
After checking the required software you can continue or abort the installation.

Do you want to continue with the Installation of READEX Tool Suite? (yes|no) ‘

The installation of x86_adapt is optional, so you can decide if it should be installed.

Do you want to install x86_.adapt? (yes|no) ‘

After the installation, you can install Environment Modules to get easy access to
the READEX Tool Suite.

37

https://github.com/readex-eu/readex-install-script

Do you want to use Environment Modules to get easy access to the READEX Tool Suite? (yes]|no

In case, you want to use Modules, you can decide if it should be installed or if you
have already installed and configured it.

‘Do you have Environment Modules already installed and configured? (yes|no)

If you have a functional version, a modulefile is provided, which you can place in your
modulefilesdir. In the other case, the script will automatically install Environment
Modules in the given installation path and configure it. So you can use the READEX
Tool Suite with module load Readex\(mpi_version)_(compiler).

If you don’t want to use Modules at all, you will get commands to append your
$PATH and $LD_LIBRARY_PATH variable, so you can use the READEX Tool Suite.

After the script finished successfully, you can clean your work directory or keep the
archive files and directories.

‘Do you want to clean the current directory? (yes|no)

38

	About different compilers
	Score-P
	Requirements
	Download
	Preparing the Score-P directory
	Configuring and installing Score-P

	PTF
	Requirements
	Download
	Preparing the PTF directory
	Configuring and installing PTF
	Managing starter plugins

	RRL
	Requirements
	Download
	Preparing the RRL directory
	Configuring and installing the RRL

	PCPs
	Requirements
	Download
	Configuring and installing the PCP's

	ATP
	Requirements
	Download
	Preparing the ATP library directory
	Configuring and installing the ATP library

	Cluster Prediction
	Requirements
	Download
	Preparing the Cluster Prediction library directory
	Configuring and installing the Cluster Prediction library

	Score-P Metric Plugins
	Processor Energy Event Plugin
	Installation
	Usage in READEX

	HDEEM Energy Measurement Plugin
	Installation
	Usage in READEX

	EXAMON Energy Event Plugin
	Installation
	Usage in READEX

	READEX tool suite installation on Taurus cluster (TU Dresden)
	The module environment
	Allocating a node
	Score-P
	Modules
	Download
	Preparing the Score-P directory
	Configuring and installing Score-P
	Creating the related Score-P module file

	Using Score-P
	PTF
	Modules
	Download
	Preparing the PTF directory
	Configuring and installing PTF
	Creating the related PTF module file
	Using PTF

	RRL
	Modules
	Download
	Preparing the RRL directory
	Configuring and installing the RRL
	Creating the related RRL module file
	Using RRL
	Building doc

	PCP's
	Modules
	Download
	Configuring and installing the PCP's
	Creating the related PCP's module file
	Using PCP's

	ATP
	Modules
	Download
	Preparing the ATP directory
	Configuring and installing the ATP
	Creating the related ATP module file
	Using ATP

	Cluster Prediction
	Modules
	Download
	Preparing the Cluster Prediction directory
	Configuring and installing the Cluster Prediction library
	Creating the related Cluster Prediction module file
	Using Cluster Prediction

	READEX Docker Image
	READEX Integrated Installation Script
	Requirements
	Usage

