
READEX 1 2nd Periodic Report

GA no. 671657

Periodic Technical Report

Part B

Period covered by the report From 01/03/2017 to 31/08/2018

Periodic report 2nd

Version 1.0

READEX 2 2nd Periodic Report

Document history:

Version Date Author/Editor Description

1.0 30.10.2018 Robert Schöne, Katja Boettcher Fixed typo, update of Sec 5

0.61 10.10.2018 Robert Schöne, Othman Bouzi, Marie-Christine
Sawley

Comments, updated figure

0.6 09.10.2018 Katja Boettcher Section 5

0.5 09.10.2018 Robert Schöne, Michael Gerndt, Per Gunnar
Kjeldsberg, Kai Diethelm

Added comments

0.41 05.10.2018 Robert Schöne Fixed comments

0.4 26.09.2018 Robert Schöne, Katja Böttcher Include input by Katja

0.3 11.09.2018 Robert Schöne, Andreas Gocht, Michael Gerndt Objectives (input from
D5.3, D6.6), Q-Learning,
Section 2, annotations by
MG

0.21 16.08.2018 Robert Schöne, Per Gunnar Kjeldsberg, Kai
Diethelm

Objectives

0.2 14.08.2018 Robert Schöne, Per Gunnar Kjeldsberg, Kai
Diethelm

Changes due to first
review

0.1 24.07.2018 Umbreen Mian Final version for First
Review

0.06 19.07.2018 Robert Schöne, Per Gunnar Kjeldsberg, Andreas
Gocht, Umbreen Mian, Venkatesh Kannan,
Lubomír Říha, Madhura Kumaraswamy, Michael
Gerndt

Second batch of
submissions

0.05 18.07.2018 Robert Schöne, Per Gunnar Kjeldsberg, Andreas
Gocht, Umbreen Mian, Venkatesh Kannan

First submissions

0.01 08.06.2018 Robert Schöne Initial version

READEX 3 2nd Periodic Report

Table of content

 Explanation of the work carried out by the beneficiaries and overview of the progress 7

 Objectives .. 7

1.1.1. O1: Static Energy Efficiency Tuning ... 7

1.1.2. O2: Manual Dynamic Energy Efficiency Tuning ... 8

1.1.3. O3: Integrated Tool Suite for Dynamic Auto-Tuning ... 8

1.1.4. O4: Novel Programming Paradigm .. 9

1.1.5. O5: Use of READEX Technologies .. 10

 Explanation of the work carried out per WP ... 13

1.2.1. WP1 Tuning Parameters .. 13

1.2.2. WP2: Design-time analysis .. 14

1.2.3. WP3: Run-time detection and switching ... 17

1.2.4. WP4: READEX Tool Suite Development ... 19

1.2.5. WP5: Applications and validation .. 21

1.2.6. WP6: Dissemination and communication ... 22

1.2.7. WP7: Coordination and Management .. 24

 Impact .. 28

 Exploitation and dissemination of results ... 28

 Update of the data management plan .. 29

 Follow-up of recommendations and comments from previous review(s) .. 30

 Deviations from Annex 1 and Annex 2 (if applicable) ... 32

 Tasks .. 32

 Use of resources .. 32

5.2.1. Effort spent in the period .. 32

5.2.2. Deviation from the plan .. 34

5.2.3. Unforeseen subcontracting ... 35

5.2.4. Unforeseen use of in kind contribution from third party against payment or free of

charges ... 35

 References ... 35

READEX 4 2nd Periodic Report

List of figures

Figure 1: Installation status of READEX software in Europe ... 12

Figure 2: Vampir trace showing "Compute_Intensity_Dynamism" and "Execution_Time_Dynamism"

metrics. The phase region is named "Loop" and granularity threshold is 500ms 16

Figure 3: Heatmap of energy consumption of a specific region for different core and uncore

frequencies as explored by a Q-Learning algorithm applied at runtime. The algorithm starts at

1.9/2.2 GHz and finds a more suitable setting (2.3/2.2 GHz). .. 19

Figure 4: General Overview on Dissemination Activity ... 29

Figure 5: Effort spent during reporting period (M19-M36). ... 32

Figure 6: Effort spent in total since project start (M1-M36). .. 32

Figure 7: Partner involvement per WP since project start (in %). ... 33

Figure 8: Spent effort per work package from project start until its end. .. 33

Figure 9: Spent effort per partner from project start until its end. .. 34

List of tables

Table 1: Manual static tuning results .. 7

Table 2: Manual dynamic tuning results ... 8

Table 3: Manual tuning results vs. READEX automatized tuning results .. 9

READEX 5 2nd Periodic Report

Glossary

ACP see Application Configuration Parameter

Application Configuration
Parameter

Such a tuning parameter is located in input/configuration files of an
application

ATM see Application Tuning Model

ATP see Application-level Tuning Parameter

Application Tuning Model During DTA, the application is automatically analysed for dynamism,
optimal configurations are determined for the different code regions.
These are classified as scenarios and stored in an Application Tuning
Model.

Application-level Tuning
Parameter

Parameter that determines an execution decision in the application, e.g.,
a selectable code-path

Design-time Analysis The analysis of region and phase characteristics from application runs
before the application is run in production

DK see Domain Knowledge

DKSI see Domain Knowledge Specification Interface

Domain Knowledge The knowledge of a developer related to the application structure, the
application characteristics, and specific application-level tuning
parameters.

Domain-level Knowledge
Specification Interface

The software interface that enables users to use Domain Knowledge

DTA see Design-time Analysis

DVFS see Dynamic Voltage and Frequency Scaling

Dynamic Voltage and
Frequency Scaling

The ability of a set of processor components to change voltage and
frequency at runtime

Dynamic Tuning Usage of different configurations for an application depending on the
current phase or region that is executed

Dynamism Defines whether significant regions within an application have different
optimal configurations. The more different the configurations, i.e. the
more different the settings of single tuning parameters, the higher the
dynamism

HDEEM A power measurement infrastructure designed and implemented by Bull
SAS (Atos technologies) and Technische Universität Dresden

Identifier A piece of information that is used to classify a Runtime Situation

MPI A programming interface for message-passing-based process-parallel
applications

OpenMP A programming paradigm for thread-parallel applications

Periscope Tuning
Framework

A framework for automatic tuning of large-scale parallel applications

PTF see Periscope Tuning Framework

RADAR see READEX Application Dynamism Analysis Report

RAT see Runtime Application Tuning

Runtime Application Tuning The improvement of energy efficiency at runtime via switching of tuning
parameters

READEX Application
Dynamism Analysis Report

A report that describes application dynamism found by manual tuning

READEX 6 2nd Periodic Report

READEX Runtime Library A library that applies tuned configurations at runtime based on the
tuning model created in DTA. Also used in DTA to set parameters during
the search for optimal configurations.

RRL see READEX Runtime Library

RTS see Runtime Situation

Runtime Situation An instance of a significant region

Score-P A scalable performance monitoring library that supports various forms
of instrumentation, monitoring extensions, and measurement back-
ends

Significant region A region of code within an application whose execution time is high
enough to justify switching the configuration

Static Tuning Applying a configuration that deviates from the default one for the
whole application run

Tuning Parameter A hardware or software switch that can be changed and potentially
influences the energy efficiency of a computing system

READEX 7 2nd Periodic Report

 Explanation of the work carried out by the beneficiaries and overview

of the progress

 Objectives

The READEX project identified five objectives that are at the core of the project. These are listed in Section
1.1 of the DoA:

 Static Energy Efficiency Tuning (O1)

 Manual Dynamic Energy Efficiency Tuning (O2)

 Integrated Tool Suite for Dynamic Auto-Tuning (O3)

 Novel Programming Paradigm (O4)

 Use of READEX Technologies (O5)

Below, we describe the work executed to achieve these objectives.

1.1.1. O1: Static Energy Efficiency Tuning

This objective aims at exploring the effects of optimizing parameter settings for whole application runs
(static tuning). In the READEX project, we implemented a dynamic auto-tuning approach and compared it
against the static base line. Static tuning can be done either manually or by using the original approach of
the Periscope Tuning Framework (PTF). We used the former for our comparison, which we lay out in detail
in D5.3.

For static tuning, we used components that we developed in WP1 (handling of the parameters) and WP5
(manual tuning). We used multiple applications, as described in D5.3, for a comparison. In the proposal,
we expected typically +10% static savings in comparison to the non-optimized execution.

Table 1: Manual static tuning results

(Intel Compiler, Intel MPI. Haswell partition of TUD Top500 system Taurus
*gcc measurement, since Intel compilers did not work for this software)

Software Static tuning savings

AMG2013 12.5 %

Blasbench 7.4 %

Kripke 11.5 %

Lulesh 17.6 %

NPB3.3 11 %

BEM4I 15.7 %

INDEED 17.6%

ESPRESO* 4.3 %

OpenFOAM* 15.9 %

Average 12.6 %

READEX 8 2nd Periodic Report

1.1.2. O2: Manual Dynamic Energy Efficiency Tuning

This objective is an extension of O1: Here, we extended the analysis to dynamic parameter settings, i.e.,
switching parameters during the application run. The objective of this task is to find optimal system
configurations for significant regions of the applications, i.e., regions that are running long enough to
justify switching of configuration.

We documented the manual tuning results in D5.3. The measure of success has been up to 20 percentage
points improvement on top of the state-of-the-art static tuning results.

Here, the results vary significantly, depending on the dynamism of the application. The application BEM4I
reaches the highest dynamic savings with 18 % on top of the 15.7 % static savings.

Table 2: Manual dynamic tuning results

(Intel Compiler, Intel MPI. Haswell partition of TUD Top500 system Taurus;
*gcc measurement, since Intel compilers did not work for this software)

Software Manual dynamic tuning savings

AMG2013 0 percentage points

Blasbench +7.9 percentage points

Kripke +7.1 percentage points

Lulesh 0 percentage points

NPB3.3 0 percentage points

BEM4I +18.4 percentage points

INDEED +1.9 percentage points

ESPRESO* +3.9 percentage points

OpenFOAM* +4.2 percentage points

1.1.3. O3: Integrated Tool Suite for Dynamic Auto-Tuning

The design and development of an integrated Tool Suite for dynamic auto-tuning is at the core of the
READEX project. With this Tool Suite, users are able to perform automated optimization for energy-
efficiency through a workflow tool that combines Design-time Analysis (DTA) and runtime tuning (Runtime
Application Tuning, RAT). In a first step, the READEX Tool Suite is capable of analysing applications for
dynamism. If there is no sufficient dynamism, READEX can still make use of static tuning. Then, PTF
determines optimal system configurations for different code regions. At the end of DTA, PTF generates a
tuning model (Application Tuning Model, ATM), which the lightweight READEX Runtime Library (RRL) uses
to tune parameters during runtime.

In Deliverable D4.1, we created a formalism for automated tuning splitting it in design-time and runtime
tuning. We drafted an initial design for the implementation in the same document. Based on this design,
we implemented the required extensions to PTF, Score-P, and the RRL. Furthermore, we established a
strategy for the integration of the different components, which includes software quality assurance
measures and an approach to software management (WP4). We also investigated potential parameters
and implemented ways for controlling these parameters (WP1).

READEX 9 2nd Periodic Report

We made the results available to the public, starting with a pre-alpha in M12 at our development system
Taurus, which is located at TUD. Since M30, we published four beta prototypes at regular intervals, which
users could download from our website. In M36, we created a prototype reference implementation that
is now available for download. The measures of success for this objective was an energy efficiency
improvement at least 50% of the manual dynamic tuning results and a 90% reduction in programming
effort in comparison to manual tuning.

Table 3: Manual tuning results vs. READEX automatized tuning results

(Intel Compiler, Intel MPI. Haswell partition of TUD Top500 system Taurus;
*:gcc measurement, since Intel compilers did not work for this software

**: This benchmark needed domain knowledge to exploit the tuning potential)

Software Overall manual
tuning savings

READEX automatic
savings

READEX compared to
manual

AMG2013 12.5 % 7.0 % 56 %

Blasbench 15.3 % 9.9 % 64.7 %

Kripke 18.5 % 10.5 % 56.8 %

Lulesh 18.7 % 18.2 % 97.3 %

NPB3.3** 11.0 % 0.0 % 0.0 %

BEM4I 34.1 % 34.0 % 99.7 %

INDEED 19.5 % 19.1 % 97.9 %

ESPRESO* 8.2 % 7.1 % 86.6 %

OpenFOAM* 20.1 % 9.8 % 48.8 %

Average 17.5 % 12.8 % 73.2 %

In Table 3, we show the energy savings achieved with READEX and compare it to the manual approaches.
Here, READEX achieves more than 70 % of the manually achieved savings in comparison to the targeted
50 %.

As we discuss in Deliverable D5.3, we had to implement supportive routines to be able to tune the
applications manually, i.e. for accessing the energy measurements and hardware parameters. Without
these supportive routines, it would not have been possible to tune the applications manually. While
applying READEX took between two and eight days for the applications, the implementation of the
supportive routines took significantly longer than ten weeks. This does not even count the performance
monitoring to detect significant regions and the instrumentation itself. Therefore, we reduced the
programming effort by more than 90% in comparison to the manual approach.

1.1.4. O4: Novel Programming Paradigm

The programming paradigm developed in the READEX project allows users to provide application Domain
Knowledge (DK) to the dynamic auto-tuning process in order to improve the dynamism detection and to
facilitate the exploitation of Application-level Tuning Parameters (ATPs).

READEX 10 2nd Periodic Report

In the second reporting period, we implemented the concepts for DK, including user-level code regions
(i.e., region, phase, and input identifiers) and ATPs. We described the latter in more detail in Deliverable
D1.2.

We furthermore used Score-P interfaces to annotate phases, regions, and parameters within the program.
We did this for the reason of standardization. The annotations can now also be used for profiling and
tracing the application or to use the data for other mechanisms besides of READEX.

The measures of success for this objective were an energy efficiency improvement of up to 50% of the
automatically achieved dynamic tuning on top of the automatic dynamic tuning results and a
programming effort reduction of 60% in comparison to manual tuning.

With the usage of the Domain-level Knowledge Specification Interface (DKSI) on the NPB application, we
were able to push the average savings for hardware and system software parameters to more than 80 %
of the manual savings (in average over the whole Test Suite), as compared to the 75 %, which we
targeted. The instrumentation needed 10 minutes by an experienced developer.

Not all applications benefit from an optimization with hardware and runtime parameters. Therefore, we
also tested selected applications for ATPs. This complies with the task given to us in the review for the first
project period. Here, the reviewers wished for emphasis […] on applications with significant tuneable
application parameters. These have greater potential to deliver significant energy performance
increases than the system parameters, which have been the primary focus so far. Therefore, we extended
the list of applications. With the implementation of ATPs and Application Configuration Parameters (ACPs),
we were able to save 33.25 % energy in average in comparison to a reasonable default.

1.1.5. O5: Use of READEX Technologies

The READEX project aimed at achieving a high user uptake of the methodology and the installation of the
Tool Suite on at least 4% of the European systems in the Top500 list from June 2014. However, some of
the systems are not available anymore and others are still restricting important software interfaces. We
therefore also supported the installation and usage of READEX software on clusters of seven sites with
European Top500 installations from June 2018. These represent 9.7% of the European Top500 sites from
June 2018. We furthermore supported the installation of READEX technology on smaller scale systems and
the usage of READEX technology (for example, the support of alternative measurement interfaces).

As said before, providing access to hardware power saving mechanisms is not as common as predicted.
To broaden the applicability of READEX, the Tool Suite now provides support for multiple common
interfaces for hardware parameters1 and energy measurement2. Furthermore, we described how
alternative energy measurement interfaces can be used for Score-P and READEX [1]. For this purpose, we
implemented significant portions of READEX in Score-P that are now part of every Score-P installation.
Therefore, users can easily enable mechanisms like the Runtime Calibration by just downloading and
installing the respective plugin from github and registering them as a new plugin. The interface that we
provide makes it also possible to implement alternative optimization or measurement plugins [1].

The measure of success for this objective was that the READEX Tool Suite and Programming Paradigm
are used at up to 4% of the European supercomputers on the Top500 list from June 2014.

1 https://github.com/readex-eu/libfreqgen/blob/master/README.md
2 https://github.com/score-p/scorep_plugin_x86_energy

https://github.com/readex-eu/libfreqgen/blob/master/README.md
https://github.com/score-p/scorep_plugin_x86_energy

READEX 11 2nd Periodic Report

Currently, READEX is installed and used at four June 2014 Top500 installations: Viljie (NTNU), Taurus (TUD),
SuperMUC (LRZ), and Salomon (IT4I). We also supported the installation and usage at systems that were
listed in newer releases of the Top500 list, since some of the older ones were not available anymore. This
includes partitions on JURECA (JSC), Mistral (DKRZ), and Hazel Hen (HLRS). Based on the number of 117
European Top500 systems in June 2014, this represents 5.9%. We furthermore supported other sites with
installing and using READEX (e.g., KTH, Hartree, BSC) and plan to do so in the future. Figure 1 shows an
overview of usage of READEX software components. We provide more details in Deliverable D6.6.

READEX 12 2nd Periodic Report

Site where READEX is installedSite where installation is planned

Site where installation has started Site with READEX components installed

Figure 1: Installation status of READEX software in Europe

READEX 13 2nd Periodic Report

 Explanation of the work carried out per WP

1.2.1. WP1 Tuning Parameters

The focus of this work package was the investigation of potential tuning parameters and the creation of
tuning plugins for PTF and Score-P. On the PTF side, these plugins provide a set of reasonable parameter
values to the tuning system to find the optimal setting. The plugins have access to profiling data and thus
can employ expert knowledge to choose from the set of all values of a specific parameter. On the Score-P
side, the plugins are responsible for controlling the actual parameter setting process. Therefore, they are
called Parameter Control Plugins (PCPs). As an example, the plugin that controls the processor frequency
is responsible for issuing system calls to set the frequency of all (or a subset of) CPUs to a requested value.
The plugin is controlled by the RRL in Score-P, which receives so-called tuning commands from PTF through
Score-P’s Online Access interface. These commands specify the value of the parameter to set while the
application is in a specific state, i.e., based on the call-path. Moreover, the project partners conducted the
integration of various energy measurement interfaces in Score-P in this work package. TUD led the work
package with support from Intel, NUIG, and IT4I.

Main objectives of the work packages for the second reporting period were:

 The finalisation of application parameter tuning

 Investigation on future tuning parameters

Major results of the work package during the second reporting period are:

 The finalisation of an ATP interface

 The investigation of possible future parameters that are worth evaluating

 The provision of libraries for hardware parameters that support a broader variety of interfaces

Task 1.1 Investigate hardware parameters (TUD, INTEL, M01 - M12)

This task already finished in the first reporting period. We described the findings and implementations of
this task in Deliverables D1.1 and D1.2. However, to broaden the applicability of READEX, TUD
implemented a library that allows users to use the most common interfaces for core and uncore frequency
tuning.

Task 1.2 Investigate application parameters (Intel, IT4I, NUIG, M01 – M24)

Most of this task finished in the first reporting period. We described the findings and implementation of

this task in Deliverable D1.2. In addition to reported tasks, we fully completed the ATP library and ATP

server and tested ATPs with PTF and RRL.

Task 1.3 Investigate runtime system parameters (TUD, IT4I, Intel, M01 – M12)

This task finished in the first reporting period. We described the findings and implementations of this task
in Deliverables D1.1 and D1.2.

Task 1.4 Future Parameter Investigation (NUIG, TUD, INTEL, M25 - M36)

The objective of this task was to investigate and identify potential tuning parameters that were not
targeted in the READEX project but may be available on future and emerging extreme scale systems. NUIG,
TUD and Intel investigated possible tuning parameters that may be available in the network hardware,
future (co-)processor hardware, memory subsystems, operating systems and run-time system hardware.

READEX 14 2nd Periodic Report

We investigated the network hardware related parameters that are currently available in the Intel
OmniPath and Mellanox Infiniband infrastructures. Our criterion for these parameters was that they
influence the performance and/or energy consumption of the network fabric and therefore implicitly also
for the application. At the time of writing, these parameters were only available for static setting, where
network administrators can configure them depending on application characteristics. These characteristics
could be, for example, single-node or multi-node application, single-threaded or multi-threaded
applications, communication workload imparted by the application, sizes of buffers exchanged by
processes in an application, and configuring the use of network interface cards by processor sockets for
communication. We determined the different possible values for the parameters and identified their
influence on applications. On the network software side, we investigated the Intel MPI library to determine
runtime parameters that could influence the applications performance. The main parameters that can
control the behaviour of the MPI runtime are the I_MPI_ADJUST parameters, which control algorithms for
collective operations. On top of that, we investigated parameters that control the behaviour of the fabric
and parameters (I_MPI_HBW_POLICY, I_MPI_BIND) for memory placement.

For processor hardware, we developed a SLURM plugin for changing NVIDIA GPGPU hardware parameters.
With this infrastructure available, we were able to measure the influences of GPU core and memory
frequencies on different benchmarks. Furthermore, we analysed a newer processor architecture of Intel
to verify whether our approaches will still work for future architectures. We also analysed the availability
of new power measurement interfaces for newer operating systems and architectures and extended the
power measurement plugins accordingly3. Furthermore, we investigated the usage of AVX instructions and
their influence on execution time and power consumption of the application. Here, users can use the ATP
library to use the most energy efficient instruction set for their applications.

We also investigated High Bandwidth Memory (HBM), which is used on Intel Xeon Phi processors and FPGA
boards. Users can either use HBM as a cache for the DRAM or place data explicitly in HBM, bypassing
DRAM. Optane memory can also be used to extend the memory pool of the application or as a cache
between storage and DRAM. The tuning parameters that could be used in READEX for the memory
subsystems could be the placement data structures in the memories.

We provided a more detailed analysis in Deliverable D1.3.

1.2.2. WP2: Design-time analysis

The focus of this work package was the semi-automatic analysis of the application characteristics to
determine optimized system configurations for the application’s Runtime Situations (RTS). This analysis is
carried out at design-time, i.e., before the application runs in production, and leads to the creation of an
Application Tuning Model (ATM). This ATM is used later by the READEX Runtime Library (RRL, WP3), which
dynamically adapts the system configuration in order to increase the application’s energy efficiency.

This work package was led by TUM and involves contributions from TUD, NTNU, IT4I and NUIG.

Main objectives for the second reporting period were:

 The finalisation of the Periscope Tuning Framework (PTF) for READEX purposes

 The finalisation of intra-phase dynamism handling

 The finalisation of visualization activities for dynamism and optimization

 The extension of the analysis with domain knowledge

3 https://github.com/tud-zih-energy/x86_energy/tree/v_2

https://github.com/tud-zih-energy/x86_energy/tree/v_2

READEX 15 2nd Periodic Report

 The provision of PTF versions for regression testing

 The support of inter-phase dynamism

Major results of the work package during the second reporting period are:

 The extension of the readex_intraphase tuning plugin. It now analyses the application for
dynamism inside a phase. During this period, we added support for ATPs, and input identifiers.

 The finalization of the tuning model visualization and runtime switching visualization with Vampir

 The implementation of domain knowledge support and its integration into the intra-phase
analysis.

 The continuous provision of updated DTA tools

 The implementation of the readex_interphase tuning plugin and its integration with RAT

 The implementation of a new tuning plugin called readex_configuration, which allows application
experts to tune Application Configuration Parameters that manifest in the input files of the
application.

Task 2.1: Scenario identification (NTNU, IT4I, TUM, M1-M30)

This task focused on generating the ATM based on the analysis results from the pre-computation described
in Task 2.2. In the First Periodic Report, we described the work on developing a formal mathematical
description and common understanding of the READEX concepts as reported in Deliverable D4.1. We have
also described the work on the first scenario identification mechanism based on clustering of runtime
situations with identical configurations in Deliverable D4.2.

In the second half of the project, we extended the scenario identification mechanism to perform grouping
of runtime situations based on configuration similarity. We also enabled users to perform the pre-
computation of configurations multiple times with different application input, which are described
through input identifiers. In such cases, the scenario identification includes a merging of tuning models.
Finally, we added support for inter-phase tuning during the second half of the project. We described all of
this work in Deliverable D2.3, with additional information in Deliverables D4.3 and D4.4.

Task 2.2: Pre-Computation of configurations (TUM, NTNU, M1-M30)

The pre-computation of configurations determines the best settings for tuning parameters, which are then
stored in an ATM by the scenario identification described above. This pre-computation of configurations
is carried out by tuning plugins of PTF, exploiting intra-phase and inter-phase dynamism via efficient search
methods. The analysis carried out by the provided plugins focuses on assessing configurations during
individual program phases and offers different search algorithms so that exhaustive search with full
application runs for each configuration are avoided. This is a pre-condition for handling long running real
world applications.

In the reporting period, we extended the readex_intraphase plugin to support the READEX Domain-level
Knowledge Specification Interface (DKSI), which provides means to specify the application structure,
application characteristics, and ATPs, as documented in Deliverable D4.5. We extended the supported
objectives with normalized versions, which enables users to tune applications where only the execution
time of significant regions changes but not their characteristics. We also implemented support for input
parameters, which enables users to generate different tuning models for different inputs. The READEX
Tool Suite is now able to merge these tuning models into a single tuning model, as described in Task 2.1.
We created a new PTF plugin for handling inter-phase dynamism. This plugin uses a novel tuning approach

READEX 16 2nd Periodic Report

for applications with phase characteristics that change over the sequence of phases. It applies experiments
with a random search strategy and collects the objective values and the phase features for each phase.
The phase features capture the characteristics of the phases and allow a clustering of these based on
similarity. The used mechanism determines the best configurations for the phase region and for the
individual RTSs based on the clusters. We documented both plugins in Deliverable D2.3.

On request of the application experts in the READEX project, we created an additional tuning plugin, which
supports static tuning of Application Configuration Parameters (ACP). ACPs are tuning parameters in the
input files of the application. Therefore, they can only be tuned statically. The readex_configuration tuning
plugin provides a flexible configuration file for the specification of ACPs and their value ranges. The plugin
identifies input file templates in which the ACP names are replaced by the value chosen during DTA. DTA
then searches the design space to create configurations and assesses each configuration by copying the
input template files. Afterwards, the application is restarted and either a single phase or, if specified by
the user, multiple phases are executed, and the objective values are measured. Finally, DTA writes the
optimal configuration into the input files and into a result file. After this static optimization, either the
intra-phase or the inter-phase plugin is executed. We document the usage of the readex_configuration
tuning plugin in the user’s guide, which is part of Deliverable D4.4.

Task 2.3: PTF analysis of tuning potential (TUM, NTNU, NUIG, M7-M12)

This task already finished in M12. We described it in Deliverables D2.1 and D7.2.

Task 2.4: Visualization of application dynamism (TUD, TUM, M13-M24)

This task focused on providing ways to visualize application dynamism. Users can do that at different stages

of the READEX tuning process. First, the readex_dyn_detect tool, which we developed under Task

2.3, shows the application dynamism in terms of execution time dynamism and compute intensity

dynamism as text. Here, we implemented another way to visualize the dynamism at this stage. A script

enhances an existing trace of an application by the dynamism information given to enable a user to

examine the behaviour more graphically, as shown in Figure 2.

Figure 2: Vampir trace showing "Compute_Intensity_Dynamism" and "Execution_Time_Dynamism " metrics. The phase
region is named "Loop" and granularity threshold is 500ms

READEX 17 2nd Periodic Report

To enable the user of the READEX Tool Suite to investigate the ATM generated during DTA, we designed
different ways to visualise the results of the READEX methodology. One tool is based on the JavaScript
library D3.js. It enables users to compare scenarios in the ATM with respect to their similarity and weight.
We have updated the visualization tool for new versions of the tuning model format. We added minor
improvements to increase its usability. These cover the layout of the force layout used for visualizing
similarities among the scenarios and the textual output when inspecting individual scenarios or RTSs. We
also support visualization for the application of the tuning model. Here, we examine the actual tuning
process. To do so, we added Score-P metric support to the RRL. This enables users to visualize each of the
configuration switches, which apply during the application tuning process. Users can also verify the
application by reading hardware performance monitoring counters.

We described the components in more detail in Deliverable D2.2.

1.2.3. WP3: Run-time detection and switching

The focus of this work package is on the implementation of the READEX Runtime Library and its use at
runtime. To achieve this objective, we implemented a scalable RRL architecture. It makes use of the ATM,
which is provided by the DTA (WP2) and enhances it by a Runtime Calibration mechanism. With this
approach, the READEX Tool Suite enables dynamic runtime adaptation to changing application
characteristics in order to increase the application’s energy efficiency. In addition, PTF uses the RRL for
controlling parameter settings during DTA.

Main objectives of the work package for the second reporting period were:

 A final definition and creation of a scalable runtime library

 A final definition and creation of efficient scenario detection and switching mechanisms

 A final definition of an efficient runtime scenario calibration mechanism

Major results of the work package during the second reporting period are:

 The finalisation of a scalable runtime library and its testing and validation

 A runtime scenario detection that extends the traditional DTA/RAT difference

 A runtime scenario detection mechanism that include all identifier types determined in the project
and signals need for calibration

 A runtime calibration mechanism that is able to calibrate the tuning model and tune applications
during runtime

 The provision of interfaces as part of a commonly used performance monitoring infrastructure

 A scenario switching mechanism that enables configuration of all tuning parameters determined
in the project

Task 3.1: Scalable runtime library architecture (TUD, TUM, M1-M24)

This task focused on the development of a scalable architecture for the READEX Runtime Library (RRL),
which performs the detection of the system scenarios at runtime, applies the ATM generated at design
time by adjusting tuning parameters, and enables an efficient run-time scenario calibration. The design
goal of the RRL was to create an easy to modify and easy to extend library that provides low-overhead
switching capabilities in order to keep the impact of the library on application performance as low as
possible. The library was implemented in C++14. For the communication between PTF and RRL as well as
the ATM, we used the JSON standard.

READEX 18 2nd Periodic Report

The READEX project implemented an extension to Score-P called Substrate Plugin Interface. This interface
provides a plugin infrastructure for consumers of events generated from the instrumentation. We
implemented the RRL as a substrate plugin to avoid direct integration of the tuning functionality into the
Score-P code base. This is necessary to minimize the impact on the regular Score-P development process
and to reduce maintenance efforts for both the Score-P and the READEX developers by using a stable and
abstract interface between the two projects. The Substrate Plugin Interface is now part of the Score-P
release 4.0.

The RRL performs the detection of runtime situations, the classification of runtime situations into
scenarios, the selection of configurations and the application of these configurations through parameter
control plugins. Moreover, it includes the interaction between the tuning model, the Score-P substrate
plugin interface (used for the detection of runtime situations), the Online Access interface (used at design-
time to control parameter settings), and the calibration mechanism. It also includes the support for
applying ATP tuning both at design-time and at runtime.

Task 3.2 Runtime scenario detection (NTNU, TUM, M1-M30)

The work of this task in the second half of the project is a continuation of the runtime scenario detection
work described in in Deliverable D4.2 and D7.2. We extended the RRL to handle the new version of the
ATM, which includes input identifiers, user parameters, and inter-phase tuning. If the RRL cannot identify
a current scenario, it is now able to detect the need for scenario calibration, as well as include new
scenarios for detection after calibration. We described our work in more detail in Deliverables D3.2 and
D4.4.

Task 3.3: Runtime calibration mechanism (TUD, NTNU, M13-M30)

For runtime calibration, we provide two different Machine Learning based approaches. The first approach
is a Q-Learning based mechanism. The algorithm starts at the maximal core and uncore frequency. With a
probability of 𝝐, the algorithm selects a different setting from the next direct neighbours. Then it measures
the energy at this point. Based on that, it calculates a so-called Q-Value. Afterwards, the algorithm chooses
the next optimal status according to the Q-Value and starts from the beginning. Figure 3 shows how the
mechanism searches for an energy efficient optimum (core frequency = 2.3 GHz, uncore
frequency = 2.2 GHz) starting from a selected initial setting (core frequency = 1.9 GHz, uncore
frequency = 2.2 GHz).

In a second approach, we used performance counters to predict the optimal setting using Neural

Networks. First, the approach identifies the most relevant performance counters. In a second step, it trains

a shallow neural network in order to predict a good frequency. This model is then loaded during runtime.

Once the RRL encounters an unseen RTS, it measures the relevant performance counters and uses the

neural network to predict a good setting. In opposite to the Q-Learning approach, this approach does

require a pre-training, which has to be performed once per system. However, once this is done, the

network needs just to be evaluated, which requires less tuning and runtime overhead compared to the Q-

Learning approach. We described the mechanisms in Deliverable D3.2.

READEX 19 2nd Periodic Report

Figure 3: Heatmap of energy consumption of a specific region for different core and uncore frequencies as explored by a Q-

Learning algorithm applied at runtime. The algorithm starts at 1.9/2.2 GHz and finds a more suitable setting (2.3/2.2

GHz).

Task 3.4 Efficient switching decision making (NTNU, TUD, TUM, M1-M30)

The work of this task in the second half of the project was a continuation of the switching decision work
described in Deliverables D4.2 and D7.2. The switching decision making takes place after the scenario
identification is finished. If the configuration of the upcoming scenario differs from that of the current
scenario, a switch takes place where the relevant platform parameters are changed.

We extended the mechanism to take into account additional parameters, as well as the possibility of
adding scenario configuration settings after runtime calibration. Furthermore, we implemented a
mechanism where the user can decide whether the previous configuration should be restored after the
exit of a region or if the new configuration shall be kept. We described our work in Deliverables D3.2 and
D4.4.

1.2.4. WP4: READEX Tool Suite Development

The main objective of WP4 was to integrate the developed techniques of WP1, WP2, and WP3 into the
overall READEX Tool Suite. As part of this objective, we defined the interfaces between the design and run-
time components and overall tuning steps, based on the terminology specified in Task 2.1. We also defined
and developed a generic specification for providing domain knowledge about application dynamism. As
part of our integration efforts, we exploited the Pathway tool to integrate the overall READEX tuning
process into tuning workflows. In this work package, we also coordinated the development of the READEX
Tool Suite prototypes and the final version of the overall Tool Suite, including the final software release.

NUIG lead this work package and received contributions from TUM, TUD, NTNU and IT4I. WP4 has
depended on input from work packages WP1-WP3, with the output of WP4 feeding into WP5 and WP6.

Main objectives of the work packages for the second reporting period were:

READEX 20 2nd Periodic Report

 The finalisation of the objectives named above, excluding the definition of interfaces

 The integration of further prototypes

 The delivery of a final software

Major results of the work package during the second reporting period are:

 The finalisation of an interface to specify domain-level knowledge about dynamism in an
application, called Domain Knowledge Specification Interface.

 Extensions to the Pathway tool with additional components and features to support applying and
engineering the READEX workflow on applications.

 Regular versions of the READEX Tool Suite prepared through continuous integration and
regression testing using the READEX Test Suite, in the form of beta and release candidate versions,
supported by installation and user guides.

 The provision of beta-releases and the final software release candidate on the project website

Task 4.1: Design-time/runtime interface (TUM, TUD, NTNU, NUIG, M01-M12)

This task finished in the first reporting period. We documented the progress in Deliverables D4.1, D4.2,
and D7.2.

Task 4.2: Domain-level dynamics specification (TUM, TUD, NTNU, IT4I, NUIG, M7-M24)

During the second reporting period, we developed the READEX DKSI, which provides means to express the
expert’s domain knowledge related to the application structure, the application characteristics, and
specific application-level tuning parameters. The specification of the application structure and the
application characteristics leverage features available in Score-P, such as user regions and user
parameters. An additional specification file, which provides input characteristics to the DTA, supports
different input identifiers capturing characteristics of a given input. The ATP library provides an API, which
publishes the specified application-level tuning parameters. We described the DKSI specification in more
detail in Deliverable D4.5.

Task 4.3: Performance engineering workflows (NUIG, TUM, M13 - M30)

The objective of this task was to use and extend the existing performance engineering workflow tool called
Pathway in order to integrate the steps of DTA and RAT of the READEX Tool Suite.

Following the initial extensions listed in the first periodic report D7.2, we added more features and
components to Pathway for the extensions in the beta prototype by M30.

The extensions for the beta prototype include:

 Using the ATP library in the workflow during DTA and RAT,

 A structured report of the Tool Suite outputs (tabulated tuning potential reported by readex-
dyn-detect and the tuning model generated by PTF),

 A feature to merge multiple tuning models generated by PTF,

 A feature to allow PTF to use a dedicated node during DTA,

 Generic tasks that allow the end-user to provide customised application build, and

 Execution scripts and specification of choice and value ranges for different hardware and system
software tuning parameters.

READEX 21 2nd Periodic Report

At the end of the task in M30, the extended Pathway tool was tested using the benchmark applications
and is now available via the Pathway repository at https://periscope.in.tum.de/git/pathway.git as well as
on the READEX github page.

Task 4.4: Framework integration (NUIG, TUD, NTNU, IT4I, TUM, M7-M36)

The objective of this task was to provide mechanisms to integrate the different components developed
for the READEX Tool Suite by ensuring software quality, regression testing, bug tracking, and reporting to
the owners for debugging and fixing.

For this, we used the Jenkins continuous integration system at TUM to set up projects that automatically
check the repositories of the READEX components for updates. The system triggers builds of the relevant
tools, performs regression tests using the benchmark applications in the READEX Test Suite, and reports
any errors in these steps to the tool owners along with the error summary.

The application owners at TUD, TUM, IT4I, GNS and NUIG prepared scripts for regression tests for their
applications in the READEX Test Suite, which we have described in Deliverable D5.3. The continuous
integration process uses these scripts to automatically run the tests and report results/errors to the
developers and evaluators.

For bug reporting, bug tracking, discussions of debugging and features, we used a GitLab setup to
categorise and facilitate issues related to each component (Score-P, PTF, RRL, ATM, PCPs, ATP), continuous
integration setup, documentation and scripts to automate applying the Tool Suite on HPC applications.

This continuous integration system also automatically creates modules for the different tools and the
READEX Tool Suite as a whole on the cluster at TUD. Additionally, we have periodically prepared regular
versions of the READEX Tool Suite (alpha, beta and updated beta versions) along with corresponding
installation and user guides. We made the beta versions available to both consortium members and
external users via the READEX website (www.readex.eu) starting in March 2018. The installation and user
guides contain information to support deploying the Tool Suite on any external HPC system, while also
providing concrete examples and scripts based on the cluster at TU Dresden.

This task culminated in the preparation of the final release of the READEX Tool Suite along with the
installation and user guides, and a Deliverable D4.4 that briefly summarises the design features of the Tool
Suite components in M36.

1.2.5. WP5: Applications and validation

This work package mainly focused on the evaluation of the dynamism of real world applications. However,
in order to be able to test complex applications efficiently, we needed to develop support routines for
manual instrumentation and manual energy efficiency evaluation. We evaluated saving potentials of
applications as part of Task 5.1 and investigated application behaviour in both, Task 5.1 and Task 5.2.
Furthermore, we evaluated the READEX Tool Suite in Task 5.3.

Main objectives of the work packages for the second reporting period were:

 A finalisation of the application set for evaluation

 The evaluation of the READEX Tool Suite

The major results of the work package during the second reporting period are:

 The definition of a set of applications used for tests and evaluation

https://periscope.in.tum.de/git/pathway.git
http://www.readex.eu/

READEX 22 2nd Periodic Report

 The finalisation of the manual tuning analysis

 An evaluation of beta prototypes of the READEX Tool Suite and provision of hints for the Tool Suite
developers

 The general evaluation of the READEX Tool Suite in comparison to other approaches

Task 5.1: Evaluating Dynamism in HPC applications (NUIG, NTNU, IT4I, GNS, M01-M18)

This task ended in the previous reporting period and was described in detail in Deliverables D5.1 and D7.2.

Task 5.2: Manually exploiting application dynamism (IT4I, GNS, M07 - M30)

The work of this task in the second half of the project was to extend the portfolio of the applications that

forms the final READEX Test Suite. We omitted some of the applications that we evaluated earlier for a

lack of dynamism or unsuitable programming techniques. This includes the following applications: Blender

graphic Tool Suite, SMURFF, Betweenness, Probabilistic Time-Dependent Routing kernel (applications

from ANTAREX project). We have presented the final list of selected application in Deliverable D5.2.

For the final set of applications, we developed scripts for manual tuning and integrated these scripts into

READEX Test Suite, where these provides results for manual static and manual dynamic tuning as

presented in D5.3. For the manual effort (Objective O4), we also recorded our effort in order to compare

it with fully automatic tuning provided by READEX Tool Suite.

Task T5.3: Evaluation of the READEX Tool Suite (IT4I, TUD, NUIG, GNS, M19 – M36)

This task was active for the entire second half of the project duration. In this task, all partners validated

the applications specified in Deliverable D5.2 to enable the application of the READEX Tool Suite. A

significant amount of effort was devoted to debugging of the READEX Tool Suite and pointing out

limitations that could only be identified when we used the READEX Tool Suite with complex applications

such as ESPRESO or OpenFOAM. We also added some complex scientific applications to the READEX Test

Suite. We ported the Test Suite to multiple batch systems (SLURM and PBS) and machines. We used the

Top500 listed clusters Taurus (TUD) and Salomon (IT4I) for evaluation. We presented the results of this

task in Deliverable D5.3. We also presented ATP tuning for complex applications using both a dynamic but

in most cases a static approach using ACPs.

1.2.6. WP6: Dissemination and communication

The objective of this work package was to implement dissemination and communication strategies to
inform project stakeholders, the general public, the technology community, and interested parties about
ongoing developments and project results.

The objectives of this work package stretched from M01 to M36 and include:

 Dissemination, including papers at conferences, journals, and trade journals

 Organization of workshops

 Exploitation of results

 Communication through website, mailing list, social media, and press releases

 Communication of project results

Major results of the work package are:

READEX 23 2nd Periodic Report

 The utilization of public communication channels to reach out to public, scientific, and industry
communities

 The dissemination of scientific results in presentations, and publications

 The (co-)organization of four workshops

 The maintenance of an external advisory board

 The collaboration with other projects and research groups

Task 6.1: Project website and awareness raising (TUD, M01-M36)

The project partners started disseminating project ideas and results early on in the project. These activities
included the creation of dissemination material such as flyers and presentation templates, electronic
dissemination through a website (https://www.readex.eu), a twitter account (@readex_eu), and a
Research Gate project (https://www.researchgate.net/project/READEX). During the second reporting
period, we organized four workshops to provide a platform for an exchange of ideas on the topic of energy
efficiency auto-tuning.

Through these activities, the READEX project reached a broad audience. The READEX website provides
both an overview and more detailed information on the project to policy makers, the general public, and
interested users. We publish updates on the project through the website, twitter feed, and Research Gate.
More information is available in Deliverable D6.6.
Task 6.2: Dissemination of project results (TUD, NTNU, IT4I, NUIG, INTEL, TUM, M01-M36)

All project partners actively participated in the dissemination of project results. This includes scientific
publications, presentations at workshops and conferences, and non-scientific (popularised) publications.
We presented more details in Deliverable D6.6.

Task 6.3: Exploitation of project results (INTEL, IT4I, GNS, M01-M36)

During the second phase of the project, the project partners IT4I and GNS tested and applied the READEX
Tool Suite with their applications. The project partner Intel used the parameter analyses to determine
energy efficiency knobs in preparation to a collaboration with the Open Source tool GEOPM. Furthermore,
Intel used READEX for the optimization of the application Alya in collaboration with EoCoE and BSC. We
will also use READEX technology in future projects (e.g., the EU project PRACE-5IP, and the German BMBF
IKT-Forschungsvorhaben ProVerB4). Furthermore, we will exploit the READEX Tool Suite with partners
associated with the European Exascale Labs, the IPCC centres, and IXPUG community. We present more
details in Deliverable D6.6 and Section 2 of this document.

Task 6.4 Synchronisation with External Advisory Board (TUD, INTEL, TUM, M01 - M36)

In the second reporting period, we held two EAB meetings in project months 23 and 29, respectively. We
described the status of the software to the EAB members, laid out our development plans, and discussed
the project and the software. The general feedback of the external advisory board during these meetings
was positive. Feedback from Bronis di Suspinski (LLNL) regarded the merging of regions, which is not
possible with the READEX approach. We have published a way to track region order, which is necessary to
achieve this [1]. However, such an approach would significantly increase measurement overhead. We
therefore decided not to include it. Furthermore, the External Advisory Board criticised the manual
marking of a phase in READEX. We therefore developed a patch that enables users to use compiler
instrumentation alternatively. However, since none of the codes we analysed was structured in a way that

4 https://www.softwaresysteme.pt-dlr.de/media/content/Projektblatt_ProVerB.pdf

https://www.readex.eu/
https://www.researchgate.net/project/READEX
https://www.softwaresysteme.pt-dlr.de/media/content/Projektblatt_ProVerB.pdf

READEX 24 2nd Periodic Report

such an approach was usable, we lowered the priority for such a fix and left its final integration as future
work. The next concern regarded the overhead and granularity of energy measurements in the first
prototype. To overcome this hurdle, we integrated lower-overhead energy measurement interfaces. This
enabled us to re-define the granularity of regions from hundreds to tens of milliseconds. Even though the
interest of IMEC is currently not about energy efficiency optimizations, the EAB member Francky Catthoor
was and is interested in collaboration regarding energy efficiency analysis. We held two telephone
conferences for discussion and provided them with access to the project test cluster and software that
IMEC actively uses at their site.

We furthermore sent out a survey to the EAB and other sites, where we collected information about
potential software that we could target, used processor architectures, and available software interfaces.
We used the responses to extend our Tool Suite to be applicable on additional platforms.

Task 6.5 Contribution to external working groups (TUD, NTNU, INTEL, M01 - M36)

NTNU actively participated in the "Special interest group on Scenario Driven Design for Embedded
Systems", as discussed in the interim report (PM9), and continues to do so. Currently the group is finalizing
a book on system scenario based design, where the results from READEX is included. TUD contributed to
the Score-P project for the 4.0 release. The project partners provided feedback and improvement
suggestions to the HDEEM project, based on the experience on the Taurus test system. Research
cooperation with the DFG SFB HAEC5 resulted in multiple publications. Furthermore, it resulted in the
development of a new performance and energy efficiency monitoring tool and a proposal for a patch for
the Linux kernel, whose final form is included in Linux kernel 4.17 and can tens of millions € annually for
European data centres. We described more details in Deliverable D6.6. TUD collaborated with the
EEHPCWG in organizing a workshop at ISC’18 and sparking the interest for READEX at the SC’17
conference.

1.2.7. WP7: Coordination and Management

The objective of WP7 is to ensure an effective management of the project, including day-to-day
administration, project co-ordination and monitoring of the work in progress.

The objectives of this work packages stretch from M01 to M36:

 Ensure highest quality of research activities, streamline the research and development activities
carried out by all partners;

 Ensure the project's implementation within the targets of time, budget and quality and the
achievement of objectives;

 Provide a management structure and platform for efficient communication and decision-making
between the partners while establishing and maintaining a high level of team spirit;

 Co-ordinate the overall project

 Provide the interface between the European Commission and other stakeholders for
communication ensuring visibility of the project

 Provide the interface for the External Advisory Board in order to involve it in major decisions within
the project and ensure efficient communication of relevant issues and information

5 http://gepris.dfg.de/gepris/projekt/164481002

http://gepris.dfg.de/gepris/projekt/164481002

READEX 25 2nd Periodic Report

Major results of the work package are:

 The coordination of the project, for example via face-to-face meetings, online meetings, and
collaboration tools, to ensure collaboration between project partners and dissemination quality;

 The establishment and hosting of internal collaboration tools;

 The communication and synchronization with the External Advisory Boards;

 Regular reporting activities to the European Union.

We carried out the activities in WP7 Project Management according to plan. TUD coordinated the activities
within this work package and carried out all tasks in cooperation and with support from all project
partners.

Task 7.1 Project coordination (TUD, M01 - M36)

The focus of Task 7.1 was the supervision of the research progress considering the scientific objectives
targeted by the project. This included several aspects such as

 Ensuring accomplishment of the project's objectives;

 Quality management and monitoring compliance by the consortium participants with their
obligations, verifiable assessment and reviewing of the project against the deliverables and
milestones;

 Ensuring knowledge transfer among work packages;

 Management of risks and conflicts, internal reporting, internal dissemination of information;

 Preparing and chairing of meetings, preparing minutes of meetings and monitoring
implementation of decisions taken at meetings;

 Collecting, reviewing, and submitting technical reports and other deliverables (including financial
statements and related certification) to the European Commission

Project management structure

The READEX project coordination ensured a smooth implementation and execution of the project. We
used a highly efficient management structure. This management structure included three control levels:

 At the strategic level, the General Assembly (GA), in which each partner was represented, decided
the overall strategic orientation of the project, agreed on plans, monitored milestones and
approved results.

 At technical and operational level, the Board of Work Package Leaders (WPL) steered the technical
activities of the project and ensured the technical quality of the deliverables. The External
Advisory Board (EAB) acted as gateways between READEX and its stakeholders.

 During day-to-day operation, the Coordination Office at TUD conducted the daily affairs at
technical and scientific level.

Meetings

Since the beginning of the project, we exchanged information internally on a regular basis. To do so, we
used online collaboration tools and audio conferencing tools whenever possible. The READEX project
meetings during the second project period were scheduled and held as follows:

 Monthly GA phone meetings,

READEX 26 2nd Periodic Report

 Bi-weekly technical online meetings,

 Bi-annual face-to-face plenary workshops (at least two days of technical discussions)

o Review preparation meeting: May 11, 2017 @Munich/DE

o Rehearsal and review meeting: May 22-23, 2017 @Brussels/BE

o Plenary meeting 4: September 12-13, 2017 @NTNU in Trondheim/NO

o Plenary meeting 5: March 5-7, 2018 @NUIG in Dublin/IE

o Review preparation meeting: August 28, 2018 @Dusseldorf/DE

 External Advisory Board meetings

o 2nd EAB meeting: June 19, 2017, @Frankfurt/DE

o 3rd EAB meeting: January 10, 2018, online

We refer to the Sharepoint for more information on the agenda and the meeting minutes of the past face-

to-face meetings.

Task 7.2 Legal, financial and administrative coordination (TUD, M01 - M36)

This task supervised all legal, financial and administrative issues including

 monitoring of work flows and scheduling of work, communication between partners and to EC;

 monitoring and collecting deliverables according to DoA, monitoring of milestones, external
reporting to EC;

 collecting, reviewing, and submitting technical and financial reports and other deliverables
(including financial statements and related certification) to EC, budgeting and distribution of
money to the partners.

Progress follow-up internal reporting (technical and financial)

On a quarterly basis, all partners and WP Leaders produced a short internal technical status report

describing the progress for the past period, while considering any deviations from the plan and proposing

corrective measures. This included an overview about resources (spent person months and costs), which

eased timely corrective measures in case of substantial deviations. These financial reports allowed the

Administrative Manager at TUD to monitor actual costs and spent effort, but also detect and prevent

possible financial errors. All reports were prepared based on structured templates and uploaded in

Sharepoint for all partners and the Project Coordinator.

Task 7.3 Internal website and communication tools (TUD, M01 - M36)

At the beginning of the READEX project several tools we set-up tools to coordinate and manage the
development and research activities. All partners used these tools for the internal communication.

The main mechanism for project communication was through email and by means of two mailing lists:

 one for development and active research discussions (mailto:readex-dev@fusionforge.zih.tu-
dresden.de), and

 one for general project organisation and management (mailto:readex-project@fusionforge.zih.tu-
dresden.de).

mailto:readex-dev@fusionforge.zih.tu-dresden.de
mailto:readex-dev@fusionforge.zih.tu-dresden.de
mailto:readex-project@fusionforge.zih.tu-dresden.de
mailto:readex-project@fusionforge.zih.tu-dresden.de

READEX 27 2nd Periodic Report

For managing documents, deadlines, and tasks, we used a Sharepoint project, which is accessible via
https://sharepoint.tu-dresden.de/projects/readex/.

For the distributed development and managing of the source code of the project, we used two instances
of the version management system GIT, located at TU Munich and TU Chemnitz, respectively. The first
repository mainly holds documents like deliverables (http://periscope.in.tum.de/git), and publications.
For development purposes, we mostly relied on the second repository. In addition to the mere version
control, the TU Chemnitz gitlab server (https://gitlab.hrz.tu-chemnitz.de/READEX) provided us with issue
trackers, continuous integration hooks and other features for distributed software development.

Last but not least, we used an Adobe Connect video room for the regular monthly status calls, bi-

weekly technical calls, and any remote extraordinary meeting (https://webconf.vc.dfn.de/readex).

https://sharepoint.tu-dresden.de/projects/readex/
http://periscope.in.tum.de/git
https://gitlab.hrz.tu-chemnitz.de/READEX
https://webconf.vc.dfn.de/readex

READEX 28 2nd Periodic Report

 Impact

Topic item 1: Contribution to the realisation of the ETP4HPC Strategic Research Agenda

There is no change in the expected impact, described in Section 2.1 of the DoA. We defined a programming
paradigm that enables users to provide application domain knowledge. We introduced metrics to find
application dynamism and implemented the Tool Suite.

Topic item 2: Covering important segments of the broader and/or emerging HPC markets

There is no change in the expected impact, described in Section 2.1 of the DoA. We demonstrated that the
READEX Tool Suite can be used to enhance energy efficiency at different hardware and software stacks in
Deliverable D5.3. We worked together with the EAB and other users across Europe to ensure a stable
deployment process and a precise documentation.

Topic item 3: Impacts on standard bodies and other relevant international research programmes and

frameworks

There is no change in the expected impact, described in Section 2.1 of the DoA. The project members
contributed to the external working groups as described in Deliverable D6.6.

Topic item 4: European excellence in mathematics and algorithms for extreme parallelism and extreme

data applications to boost research and innovation in scientific areas such as physics, chemistry, biology,

life sciences, materials, climate, geosciences, etc.

The impact described in Section 2.1 of the DoA is still valid. The project partners showed the applicability
of the Tool Suite on a variety of applications.

 Exploitation and dissemination of results
The project partners published 34 articles and papers, including accepted ones. The partners organized
and co-organized five workshops and presented READEX posters at 20 conferences and workshops. We
also communicated results through the project web page, a Twitter account, and a ResearchGate project.
As suggested in the interim review, we used the final phase of the project for exploitation and
collaboration, where we collaborated with external partners on tuning their codes and supporting
installation at European HPC sites. We also collaborated with other European and national research
projects to advertise our tools and combine expertise for related questions. We implemented numerous
software components, which are available with non-restrictive Open Source licenses at the READEX github
repository6. We show an overview of dissemination activities in Figure 4: General Overview on
Dissemination Activity. Here each dot represents one or multiple (up to five) activities of the three
dissemination domains during a project month. We present more information in Deliverable D6.6 and Part
A of the final report.

The industry partner GNS plans to use READEX technology for the optimization of its existing software
products. Furthermore, GNS will use it in development of a new software package related to the ultra long-
term simulation of behaviour of concrete under mechanical load (BMBF funded project ProVerB). In both
cases, the company believes that the use of the READEX technology will lead to improvements of these
software systems that lead to a better performance and reduced energy requirements that will, in turn,
provide a better position on the market. In addition to these actions, GNS will also develop a marketing
strategy for introducing energy-related consulting services for commercial HPC centre operators. In the
long run, it is hoped that this will lead to an additional market that GNS can serve, thus diversifying its

6 https://github.com/readex-eu

https://github.com/readex-eu

READEX 29 2nd Periodic Report

product and service portfolio and reducing its dependence on the currently served markets. We will use
the READEX Tool Suite in future projects and present it during user trainings. Furthermore, the interfaces
we created will spark research activities in other areas.

The industry partner Intel opened a discussion with the GEOPM7 team to further use READEX technology.

Among the novel ideas that have shown to be efficient, is the automated identification of interesting

regions: the automated detection of the runtime situations. The promising idea is to take into account the

various peripherals that play a role in the energy savings, like the network fabric and memory

management. Intel is committed to use the findings of the academic partners in the READEX project for

the open source project GEOPM.

Figure 4: General Overview on Dissemination Activity

 Update of the data management plan
As described in the proposal, we published all of our software components using the most liberal open
source licenses at https://github.com/readex-eu. We used the BSD license whenever possible.
Furthermore, we also provide the test applications and test scripts at this location to enable other users
and researchers to test and validate the READEX Tool Suite.

7 https://geopm.github.io/

0 3 6 9 12 15 18 21 24 27 30 33 36

Project month

Poster presentations Talks and keynotes

Workshop (co-)organization

https://github.com/readex-eu
https://geopm.github.io/

READEX 30 2nd Periodic Report

 Follow-up of recommendations and comments from previous review(s)
In addition to continuing to implement the work plan, which remains a good and relevant guide in this

project, the key consideration of the consortium should be to maximise the uptake of the technology,

which they are developing.

The idea of site visits to potential user institutions, including those represented in the external advisory

board, is a good one. However, there are also other issues, which should be addressed, in particular to

convince application developers that the READEX technology is worth investing in.

Recommendation 1:

The website should become focussed on the product rather than the project, with an emphasis

on high quality documentation and working, responsive support routes.

How it was addressed by READEX:

We re-structured the website with a focus on the software, added regular updated versions of

our software, added a user support mailing list and opened a github page.

Recommendation 2:

The software needs to be easily and robustly deployable to workstations as well as

supercomputers so that application developers can integrate it into their test and development

workflows.

How it was addressed by READEX:

We clearly defined the dependencies for our software and tested it with common freely

available software versions. For the workflow integration, we provide Pathway with READEX

specific extensions.

Recommendation 3:

In selecting the remaining test applications, emphasis should be placed on applications with

significant tuneable application parameters. These have greater potential to deliver significant

energy performance increases than the system parameters, which have been the primary focus

thus far. Demonstrating success in this area may induce application developers to invest time in

employing READEX.

How it was addressed by READEX:

To support more application tuning parameters, we put additional effort in implementing

Application Configuration Parameters. These can be used without instrumenting the existing

source code and can be optimized with the READEX Tool Suite.

Recommendation 4:

The project is not participating in the open data pilot, which is perfectly fine under current rules.

However good scientific practice demands that a best effort approach to traceability and

reproducibility of results be taken. In particular, this should mean that the code employed, the

raw result data, and the processing scripts used to produce the publications of the project should

be properly recorded and archived, using a service such as Zenodo or Figshare.

How it was addressed by READEX:

READEX 31 2nd Periodic Report

The READEX Test Suite, i.e. the set of applications used for the evaluation of the READEX Tool

Suite, is stored in a public repository at https://github.com/readex-eu/readex-apps. We

instrumented the applications manually for the evaluation of the manual tuning. In addition, we

prepared scripts for the READEX Tool Suite, which use automatic instrumentation. This includes

compilation and run scripts for SAF, RDD, PTF and RRL on several HPC clusters (Taurus Haswell

partition and Taurus Broadwell partition at TUD and Salomon machine at IT4I). Therefore,

researchers can reproduce the results reported in D5.3 by cloning the repository and using the

prepared scripts. Moreover, the scripts can be easily adapted for new applications and for new

READEX users. The Test Suite’s Zenodo link is https://zenodo.org/record/1451438.

https://github.com/readex-eu/readex-apps
https://zenodo.org/record/1451438

READEX 32 2nd Periodic Report

 Deviations from Annex 1 and Annex 2 (if applicable)

 Tasks

There have been no deviations at task level. All deliverables have been delivered in time and the

milestones achieved according to the plan.

 Use of resources

5.2.1. Effort spent in the period

Figure 5 summarises the effort spent per partner spent during the second reporting period (March

2017 - August 2018). In contrast, the effort spent per partner and per work package from the beginning of

the project (September 2015) until its end (August 2018) is shown in figures 6 and 7.

Figure 8 illustrates the planned total effort vs. reported effort in M1-M36 per work package, whereas

Figure 9 focuses on the distribution at partner level.

Figure 5: Effort spent during reporting period (M19-M36).

Figure 6: Effort spent in total since project start (M1-M36).

Plan

M19-36

Spent

M19-36

Plan

M19-36

Spent

M19-36

Plan

M19-36

Spent

M19-36

Plan

M19-36

Spent

M19-36

Plan

M19-36

Spent

M19-36

Plan

M19-36

Spent

M19-36

Plan

M19-36

Spent

M19-36

Plan

M19-36

Spent

M19-36

TUD 4,00 5,14 3,00 1,82 8,30 13,60 5,40 3,27 9,00 8,68 5,50 5,63 9,00 6,82 44,20 44,96

NTNU 0,00 0,00 7,60 9,76 10,10 8,99 4,80 5,85 0,00 0,88 2,50 7,10 0,00 0,00 25,00 32,58

IT4I 2,00 6,59 2,40 4,41 0,00 0,00 2,80 4,24 21,50 32,91 3,00 4,75 0,00 0,00 31,70 52,90

NUIG 4,70 6,53 0,00 0,00 0,00 0,00 13,80 19,07 6,00 7,15 2,00 2,42 0,00 0,00 26,50 35,17

INTEL 7,00 18,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 4,50 8,86 0,00 0,00 11,50 27,33

TUM 0,00 0,00 15,80 17,50 4,30 5,50 5,50 7,50 0,00 0,00 2,50 3,50 0,00 0,00 28,10 34,00

GNS 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 12,00 15,80 1,00 2,10 0,00 0,00 13,00 17,90

Total 17,70 36,73 28,80 33,49 22,70 28,09 32,30 39,93 48,50 65,42 21,00 34,36 9,00 6,82 180,00 244,84

WP5 WP6 WP7 TOTALWP1 WP2 WP3 WP4

Plan

M1-36

Spent

M1-36

Plan

M1-36

Spent

M1-36

Plan

M1-36

Spent

M1-36

Plan

M1-36

Spent

M1-36

Plan

M1-36

Spent

M1-36

Plan

M1-36

Spent

M1-36

Plan

M1-36

Spent

M1-36

Plan

M1-36

Spent

M1-36

TUD 20,00 23,22 6,00 5,37 17,00 22,47 9,00 9,18 9,00 8,68 11,00 9,78 18,00 11,42 90,00 90,12

NTNU 0,00 0,00 21,00 18,16 24,00 19,99 8,00 10,65 2,00 2,58 5,00 8,10 0,00 0,00 60,00 59,48

IT4I 11,00 10,99 6,00 6,01 0,00 0,00 6,00 6,04 43,00 48,01 6,00 5,95 0,00 0,00 72,00 77,00

NUIG 7,00 7,53 6,00 4,00 0,00 0,00 29,00 30,07 12,00 10,15 4,00 2,72 0,00 0,00 58,00 54,47

INTEL 30,00 28,27 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 9,00 8,86 0,00 0,00 39,00 37,13

TUM 0,00 0,00 42,00 41,50 12,00 11,80 13,00 13,50 0,00 0,00 5,00 5,20 0,00 0,00 72,00 72,00

GNS 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 18,00 22,20 2,00 2,60 0,00 0,00 20,00 24,80

Total 68,00 70,01 81,00 75,04 53,00 54,26 65,00 69,44 84,00 91,62 42,00 43,21 18,00 11,42 411,00 415,00

WP1 WP2 WP3 WP4 WP5 WP6 WP7 TOTAL

READEX 33 2nd Periodic Report

Figure 7: Partner involvement per WP since project start (in %).

Figure 8: Spent effort per work package from project start until its end.

READEX 34 2nd Periodic Report

Figure 9: Spent effort per partner from project start until its end.

5.2.2. Deviation from the plan

Over the period M1 – M36, partner GNS spent more effort than initially planned (see figure 9). The effort

required becoming familiar with the concepts and techniques from the Embedded Systems world and the

effort for the Application Parameter Tuning were higher than expected. Moreover, the addition of new

staff members to the project during the run time caused a higher time effort because of the introductory

training required by these employees. This effect is compensated by the fact that the salaries of the

employees involved in the project were lower than expected at the time of writing the proposal. Therefore,

there was no noteworthy overspending for GNS from the financial point of view.

At WP level, there are slight deviations of planned versus spent effort in WP5 and WP7 (see figure 8).

The overspending in WP5 was related to evaluation of additional applications (NTNU, IT4I) and

evaluation of ACP (Application Configuration Parameters) (IT4I, GNS) which was introduced during the

project runtime. In case of NTNU the overspending was only 0.6 person-months. In case of IT4I and GNS

more person-months have been used, but due to lower average salaries than expected there was no

overspending from a budgetary point of view.

Finally, the underspending in WP7 resulted from the fact that the coordination effort from TUD could not

be charged completely to the project as the source of funds for the personnel cost is not READEX itself.

5.2.3 Adjustments of previous reporting period

Partners TUD, NUIG, TUM, and INTEL submitted adjustment of the previous reporting period due to the

following reasons:

 TUD: Adjustment of personnel costs and of annual special payment taking into account the
Horizon 2020 calculation scheme and required double ceiling.

 TUM: The adjustment became necessary as the costs of two travels were wrongly charged to the
project in the first period and some travels during the end of the first period that were not charged

READEX 35 2nd Periodic Report

to the first reporting period. Additionally, the total of personnel costs had to be corrected due to
Horizon 2020 calculation scheme.

 NUIG: Correction of personnel costs due to Horizon 2020 calculation scheme.

 INTEL: The adjustment for the first reporting period comes from the small error in calculations
which was found during the check while preparing second financial statement. Not all the incurred
eligible personnel costs was taken into calculation in total.

5.2.3. Unforeseen subcontracting

not applicable

5.2.4. Unforeseen use of in kind contribution from third party against payment or free of

charges

not applicable

 References

[1] R. T. T. I. J. S. D. H. W. E. N. Robert Schöne, “Extending the Functionality of Score-P through Plugins:

Interfaces and Use Cases,” Tools for High Performance Computing 2016, pp. 59-82, 2017.

[2] R. S. M. B. A. G. D. H. Thomas Ilsche, “lo2s—Multi-core System and Application Performance Analysis

for Linux,” IEEE International Conference on Cluster Computing (CLUSTER), , 2017.

[3] M. H. R. S. M. B. D. H. Thomas Ilsche, “Powernightmares: The challenge of efficiently using sleep

states on multi-core systems,” European Conference on Parallel Processing, pp. 623-635, 2017.

