
GA no. 671657

D5.3

Evaluation of the READEX Tool Suite
using the READEX test-suite

Document type: Report

Dissemination level: Report
Work package: WP5

Editor: Lubomı́r Ř́ıha (IT4I-VSB)
Contributing partners: IT4I-VSB, TUM, TUD, INTEL, ICHEC
Reviewer: Michael Gerndt (TUM), Uldis Locans (INTEL)

Version: 1.0

READEX D5.3-Deliverable

Document history

Version Date Author/Editor Description

0.1 27/01/17 Lubomı́r Ř́ıha, Jan Zapletal, Ondřej Vysocký (IT4I-VSB) 1st Draft

0.2 13/08/18

Lubomı́r Ř́ıha, Jan Zapletal, Ondřej Vysocký (IT4I-VSB)
Robert Schone, Andreas Gocht (TUD),
Michael Gerndt (TUM),
Uldis Locans (INTEL)

2nd Draft

1.0 31/08/18

Lubomı́r Ř́ıha, Jan Zapletal, Martin Beseda,
Ondřej Vysocký (IT4I-VSB)
Robert Schone, Andreas Gocht (TUD),
Venkatesh Kannan (ICHEC-NUIG),
Kai Diethelm (GNS),
Jan Christian Meyer, Per Gunnar Kjeldsberg (NTNU)
Michael Gerndt (TUM),
Uldis Locans (INTEL)

Final version

H2020-FETHPC-2014 2

Contents

1 Introduction 4

2 The READEX Test Suite 5

2.1 Benchmark description . 6

3 Test System Description 8

4 Productivity Evaluation 10

4.1 Manual Tuning Effort . 10

4.2 READEX Tuning Effort . 11

5 Hardware and runtime parameters tuning 13

5.1 TU Dresden, Haswell Partition . 13

5.2 IT4I Salomon . 15

6 Application Parameters Tuning 17

6.1 Effort Evaluation for Application Parameter Tuning 17

6.2 Test Applications . 18

6.3 Summary of the Application Parameters Tuning 21

7 Collaboration with External Users 22

7.1 CSC Finland - ELMER Application . 23

7.2 PRACE - Alya Application . 25

7.3 HLRS - FLEXI Application . 26

7.4 AkerBP - OptEWE Application . 27

3

READEX D5.3-Deliverable

1 Introduction

This deliverable presents the evaluation of the READEX Tool Suite based on the READEX
Test Suite. This task is part of Work Package 5 and was handled in particular by following
partners IT4I, TUD, NUIG, and GNS, in project months 19–36 of the project. We compared
the READEX Tool Suite to a manual approach of tuning applications, which includes a step
for static and dynamic manual tuning for hardware parameters. Furthermore, we evaluated
application parameter tuning on a subset of applications. Our evaluation focuses on both
performance and energy savings as well as productivity (effort required for manual tuning
and tuning using the READEX Tool Suite).

To show that the READEX Tool Suite does not only fit a single system, we evaluated it on
different parallel machines and hardware architectures. Furthermore, we tested the READEX
Tool Suite at different sites to show that different software stacks can be used. We also show
that the READEX Tool Suite also supports different compilers, by testing Intel and GNU
compilers. For high precision power measurements, we used the HDEEM [2] measurement
infrastructure at the TU Dresden Haswell partition. We used RAPL measurement infras-
tructure, which is part of all contemporary Intel processors for the other systems, i.e., the
Salomon system at IT4I and the Broadwell partition at TU Dresden

H2020-FETHPC-2014 4

READEX D5.3-Deliverable

2 The READEX Test Suite

As part of task 5.2, we defined the READEX test suite, whose repository is located at
git@acratus.ichec.ie:readex-apps.git. The repository holds several benchmark and
production applications, which are listed in Table 1.

application path maintained by

AMG2013 benchmark apps/amg2013 IT4I
Blasbench benchmark apps/blasbench IT4I
Kripke benchmark apps/kripke IT4I
Lulesh benchmark apps/lulesh TUM
NPB3.3 benchmark apps/NPB3.3-MZ-MPI TUD

BEM4I production apps/BEM4I IT4I
ESPRESO production apps/ESPRESO/ IT4I

espreso readex new
INDEED production apps/Indeed for READEX GNS
OpenFOAM production apps/OPENFOAM IT4I

Table 1: List of applications in the readex-apps repository.

In addition to the source files, the directory of each application contains bash scripts to
compile the application in several configurations. This includes:

1. the compilation of the uninstrumented (plain) version used as a reference and

2. the compilation for every tool in the READEX tool suite (scorep-autofilter, readex-
dyn-detect, PTF, and RRL).

The compilation scripts have been prepared both for manual and automated tuning using
the READEX tool suite. While we use the former approach for the evaluation of possible
savings, we use the latter to evaluate the automated READEX tool suite in comparison to
the manual effort. In addition to the compilation scripts, the repository contains scripts to
launch the individual READEX tools and a brief READEX_README.txt help file that describes
the usage. Please refer to Deliverable D5.2 [4] to find out how to use the READEX test suite
and description of particular execution scripts.

During our collaboration with other HPC centers we have evaluated four additional complex
HPC applications: ELMER, ALYA, FLEXI, and OptEWE. These are presented in Section 7.

H2020-FETHPC-2014 5

READEX D5.3-Deliverable

application HPC center, Country maintained by

ELMER CSC, Finland IT4I
ALYA BSC, Spain ICHEC
FLEXI HLRS, Germany TUD
OptEWE AkerBP, Norway NTNU

Table 2: New applications identified during collaboration with European HPC centers.

2.1 Benchmark description

2.1.1 AMG2013

AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on
unstructured grids. It has been derived directly from the BoomerAMG solver in the hypre
library, a large linear solver library that is being developed in the Center for Applied Scientific
Computing (CASC) at LLNL. The driver provided in the benchmark can build various test
problems. For our tests the Laplace type problem on an unstructured domain with various
jumps and an anisotropy in one part is used.

2.1.2 Blasbench

Blasbench is a simple artificial benchmark designed to simulate different workloads including
compute, memory, I/O, or communication bound regions. The users can define their own
mixture of such regions to obtain a highly dynamic code.

2.1.3 Kripke

Kripke is a simple, scalable, 3D Sn deterministic particle transport code. Its primary pur-
pose is to research how data layout, programming paradigms and architectures effect the
implementation and performance of Sn transport. A main goal of Kripke is investigating
how different data-layouts affects instruction, thread and task level parallelism, and what the
implications are on overall solver performance.

2.1.4 Lulesh

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) is part of
the ALE3D Software Infrastructure. According to the documentation, it is “one of five
challenge problems in the DARPA UHPC program and has since become a widely studied
proxy application in DOE co-design efforts for exascale.” It is implemented in C++ and uses
OpenMP and MPI for parallelization.

H2020-FETHPC-2014 6

https://codesign.llnl.gov/amg2013.php
https://codesign.llnl.gov/kripke.php
https://codesign.llnl.gov/lulesh.php

READEX D5.3-Deliverable

2.1.5 NPB3.3

The NAS Parallel Benchmarks are a set of micro benchmarks that mimic real applications
used in HPC. In our test suite, we use the hybrid parallel benchmarks written in FORTRAN
and parallelized with MPI and OpenMP. In particular the pseudo application BT-MZ-Block
Tri-diagonal (Multi-Zone) solver from the benchmark suite is used. We used the READEX
Domain-level Knowledge Specification Interface [1] for instrumentation.

2.1.6 BEM4I

BEM4I is a solver for partial differential equations based on the boundary element method
and is under development at IT4Innovations. Contrary to finite element solvers, BEM4I
produces dense matrices and due to the nature of boundary integral equations the assembly
of system matrices is more or less compute bound. This is in contrast to the iterative solver
used for the solution of the resulting system of linear equations which is usually memory
bound due to matrix vector multiplications. BEM4I is thus a suitable library to be involved
in the test apps repository.

2.1.7 ESPRESO

The ESPRESO library is a combination of Finite Element (FEM) and Boundary Element
(BEM) tools and TFETI/HTFETI solvers. It supports FEM and BEM (uses BEM4I library)
discretization for Advection-diffusion equation, Stokes flow and Structural mechanics. The
ESPRESO solver is a parallel linear solver, which includes a highly efficient MPI communi-
cation layer designed for massively parallel machines with thousands of compute nodes. The
parallelization inside a node is done using OpenMP.

2.1.8 INDEED

INDEED is a sheet metal forming simulation software that combines ease of use with high
quality simulation. It is written in Fortran. Since it is a commercial tool, we do not provide
the sources in the repository, but only the diff that has to be applied for manual instrumen-
tation.

Note that, due to a change in the marketing strategy, the INDEED software system will in
the future be known under the name OpenForm/Solv or, for short, OF/Solv.

2.1.9 OpenFOAM

OpenFOAM is an open source C++ toolbox for computational fluid dynamics (CFD). Open-
FOAM does not have a generic solver applicable to all cases, but there is a long list of solvers
each for specific class of problems e.g. compressible and incompressible flow, multiphase flow,
combustion, particle-tracking flows heat transfer and many more.

H2020-FETHPC-2014 7

https://www.nas.nasa.gov/publications/npb.html
http://bem4i.it4i.cz/
http://espreso.it4i.cz/
http://gns-mbh.com/products/indeed/
https://www.openfoam.com

READEX D5.3-Deliverable

3 Test System Description

In this section, we shortly describe the systems, which we used for the evaluation of the
READEX Tool Suite. To demonstrate that READEX is capable of supporting different ar-
chitectures and software stacks, we test it on the Intel Haswell and Intel Broadwell processors,
as well as on different sites, i.e., the TU Dresden Top500 system Taurus and the IT4I Top500
system Salomon.

Taurus is a heterogeneous cluster listed in the Top500 list since its first installation at
TU Dresden. It is regularly updated with new compute nodes and accelerators, and hosts
various architectures. In previous projects, TU Dresden analysed the Haswell architecture in
detail [3], and supported the development of a reliable power measurement infrastructure [2],
which was available on the Haswell partition during the project life time and continues to be
so. We used two different partitions for our tests, which host different processor architectures
and software stacks. More information on taurus can be found online1.

Salomon is a Top500 installation at IT4I. It hosts different architectures, including accel-
erator based systems. In this document, we use the ‘grafton‘ partition, which is equipped
with Intel Haswell based processors. Even though the processors are the same as in the
Taurus Haswell partition, the software stack is completely different. More information on the
Salomon test system can be found online2.

In Table 3, we provide an overview on the used hardware and software stack. Whenever
we describe energy savings in this document, we use measurements of the whole node. For
the Taurus Haswell partition, this mean that we use the HDEEM node counter. On the
other systems, we use the processor counters, add the package energy and the DRAM energy
and add a static offset that was determined in a separate evaluation. Whenever we describe
runtime measurements, we measure the runtime of the whole application. Our main test
platform was the Taurus Haswell partition , using the Intel Compiler Suite.

1https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
2https://docs.it4i.cz/salomon

H2020-FETHPC-2014 8

https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus

READEX D5.3-Deliverable

Table 3: Comparison of test system used for evaluation.
Test System Taurus (Haswell) Taurus (Broadwell) Salomon

Processor Xeon E5-2680 v3 Xeon E5-2680 v4 Xeon E5-2680 v3

Nr. of cores 12 14 12

Frequency range
(without turbo)

1.2-2.5 GHz 1.2-2.4 GHz 1.2-2.5 GHz

Uncore frequency
range

1.2-3.0 GHz 1.2-2.7 GHz 1.2-3.0 GHz

DRAM 64 GB 64 GB 128 GB

Operating system Bullx SCS4 Bullx SCS5 CentOS 6.9

Batch system SLURM 16.05.7
Bull.1.1-20170512-1252

SLURM 17.02.11 PBS Pro 13.1.1

Linux kernel base 2.6.32 3.10.0 2.6.32

Linux kernel minor 696.30.1.el6.x86 64 693.21.1.el7.x86 64 696.20.1.el6.x86 64

Compiler suite (Intel) 17.0.2 20170213 18.0.1 20171018 18.0.1 20171018

MPI suite (Intel) 2017 Update 2
Build 20170125

2018 Update 1
Build 20171011

2018 Update 1
Build 20171011

Compiler suite (GCC) 6.3.0 7.3.0 7.1.0

MPI suite (GCC) bullxmpi1.2.8.4 OpenMPI 3.1.0 OpenMPI/1.10.7

Power
measurement
infrastructure

Bull HDEEM
Intel RAPL +
static offset

Intel RAPL +
static offset

H2020-FETHPC-2014 9

READEX D5.3-Deliverable

4 Productivity Evaluation

One of the objectives described in the project proposal targets evaluation of the tuning effort
needed for READEX. To quantify the time needed to tune a software with READEX, we
record the time spent with the instrumentation and tuning procedure.

4.1 Manual Tuning Effort

The first tasks for IT4I were dynamism analysis and manual evaluation of HPC applications.
After initial work on the evaluation of the ESPRESO application, which is developed at IT4I
and therefore well known to us, we realized that:

Pure manual tuning of complex applications, which contain tens of significant
regions is significantly more time consuming than anticipated in the proposal.

To stick with the project plan, we have developed support routines, which make the manual
approach feasible. While these helped us with the manual tuning evaluation, they cannot be
compared with the extensive READEX tool suite for multiple reasons:

• They rely on manual instrumentation and do not provide the capabilities of Score-P.

• They do not support Runtime Calibration mechanisms.

• The number of supported systems is significantly lower since they support less interfaces
for energy measurement and hardware parameter tuning.

• They do not scale well with threads due to OpenMP barriers in the code.

We can summarize the manual tuning effort requires following steps:

1. Develop support routines: These must be able to change CPU core and CPU uncore
frequency, the number of OpenMP threads, and to measure energy consumption for each
of the annotated regions on our test systems.

2. Find significant regions: To do so, we used a profiler to find significantly long regions
in the application and annotate them.

3. Run analysis: for this report we have execute the applications for all combinations of
Core Frequency (CF), Uncore Frequency (UCF) and number of threads (our support
tools can only perform brute force search of the parameter space).

4. Evaluate the measurements: To do so, we had to find the best configuration for
each region and write it into a configuration file

5. Run the application: Here, we used the support routines to perform the dynamic
switching of the tuning parameters based on the previous measurements.

H2020-FETHPC-2014 10

READEX D5.3-Deliverable

4.2 READEX Tuning Effort

The automatic instrumentation effort demonstrates how much time it takes to successfully
apply the READEX Tool Suite to applications we have worked with. The steps that are
considered for automatic instrumentation are as follows:

1. Compile application with Score-P

2. Run all steps of the READEX Tool Suite

Table 4 presents an effort needed to apply READEX approach on advanced and complex HPC
applications. While some are part of the READEX Test Suite, others have been evaluated
under collaboration with external users (ELMER from CSC, Finland: Alya from Barcelona
Supercomputing Centre, Spain; and FLEXI from HLRS, Stuttgart).

Table 4: Effort spent in applying automatic tuning using the READEX Tool Suite for complex
HPC applications.

Application
compile

with
Score-P

run
analysis

HW
params.

total
time

ESPRESO 1 D 2 H approx. 2 D

BEM4I 1 D 18 H approx. 3 D

OpenFOAM 7 D 2 H approx. 7 D

INDEED 3 D 2 D approx. 5 D

ELMER 6 D 6 H approx. 7 D

ALYA 7 D 1 D approx. 8 D

FLEXI 2 H 2 H approx. 4 H
Note 1: D - day, H - hour

Table 4 shows that applying the READEX tool suite to the test applications takes
between two and eight days. Most of the time is spent with compilation of the application
with Score-P. This can be explained with the high complexity of the application’s source
codes.

As we stated in the beginning of this section, we skipped a pure manual approach for being
too time consuming to finish Task 5.1 and 5.2 in time. Therefore, we had to implement
support routines to find the manual tuning optima and to be able to compare READEX
against these results. The development, which makes parameters accessible and enables
energy measurements took a multiple of the 10 weeks that would relate to a 90 % lower
effort as anticipated in the project proposal. This does not count the effort for analysing
the runtimes and detect significant regions of the application, which is done automatically
in READEX by the application of scorep autofilter and readex dyn detect. Furthermore,

H2020-FETHPC-2014 11

READEX D5.3-Deliverable

the manual approach took way longer for the analysis of parameters, since it could not
benefit from advanced search strategies. Even more, the manual approach was focused on a
specific software and hardware stack, which means that it would have to be re-implemented
for new architectures. For a domain developer, who is not an expert in processor hardware
capabilities, energy measurement frameworks, and tuning strategies, the effort for a manual
approach would certainly at least double over what we have seen

Based on this experience the READEX Tool Suite brings the key advantage to any application
developer who is unaware of the concepts introduced by READEX and who want to reduce
energy efficiency of his application and potentially even increase its performance.

H2020-FETHPC-2014 12

READEX D5.3-Deliverable

5 Hardware and runtime parameters tuning

Results for most codes have been gathered using both Intel and GCC compilers. The ex-
ception to this is INDEED that has only been tested in combination with the Intel compiler
because of its use of nonstandard language constructs that are not supported by GCC.

Tables 5 to 10 presents all the results and their respective columns mean:

• Application - name of the application,

• HW parameters - HW parameters that have been tuned for this application,

• Static tuning savings - energy and time savings achieved by static tuning only with
respect to default settings,

• Manual dynamic tuning - energy and time savings achieved by manual dynamic tuning
with respect to default settings,

• READEX tuning savings - energy and time savings achieved by READEX tuning (HW
parameters only).

5.1 TU Dresden, Haswell Partition

Table 5: Hardware parameter tuning on TUD Taurus system - Haswell partition. Applica-
tions and READEX Tool Suite compiled with Intel compiler.

Application HW parameters

Static tuning
savings

(node energy/
time)

Manual dynamic
tuning savings
(node energy/

time)

READEX
tuning savings
(node energy/

time)

AMG2013 CF, UCF, threads 12.5% / −0.9% N/A 7.0% / −14.0%

Blasbench CF, UCF, threads 7.4% / −0.9% 15.3% / −18.1% 9.9% / −9.2%

Kripke CF, UCF 11.5% / −28.3% 18.8% / − 18.7% 10.5% / −28.9%

Lulesh CF, UCF, threads 17.6% / −8.9% 18.7% / −11.7% 18.2% / −25.7%

NPB3.3-BT-MZ CF, UCF, threads 11% / −11.3% N/A 10.8% / −12%

BEM4I CF, UCF, threads 15.7% / −6.2% 34.1% / 10.9% 34.0% / 10.9%

INDEED CF, UCF, threads 17.6% / −12.8% 19.5% / −14.2% 19.1% / −17.3%
Note: We were unable to obtain results for ESPRESO and OpenFOAM due to bug in Score-P when Intel

compiler is used. Issue submitted.

H2020-FETHPC-2014 13

READEX D5.3-Deliverable

Table 6: Hardware parameter tuning on TUD Taurus system - Haswell partition. Applica-
tions and READEX Tool Suite compiled with GCC compiler.

Application HW parameters

Static tuning
savings

(node energy/
time)

Manual dynamic
tuning savings
(node energy/

time)

READEX
tuning savings
(node energy/

time)

AMG2013 CF, UCF, threads 7.8% / −7.8% N/A 3.5% / −17.5%

Blasbench CF, UCF, threads 6.5% / −1.7% 14.3% / −11.4% 15.4% / −21.2%

Kripke CF, UCF 11.5% / −28.3% 12.9% / -1.9% 8.7% / −14.0%

Lulesh CF, UCF, threads 1.3% / −0.5% 7.2% / −8.5% 5.5% / −8.3%

NPB3.3-BT-MZ CF, UCF, threads 9.8% / −23% N/A 9.5% / −23%

BEM4I CF, UCF, threads 8.2% / −1.7% 20.6% / 4.7% 1.1% / −8.2% 1

ESPRESO CF, UCF, threads 4.3% / −8.9% 8.2% / −10.1% 7.1% / −12.3%

OpenFOAM CF, UCF 15.9% / −10.5% 20.1% / 11.5% 9.8% / −9.8%
1 The outlier here is a result of the Score-P GNU compiler plugin, which does not allow for an

instrumentation of header files. Unfortunately, BEM4I is based on using such files.

5.1.1 TU Dresden, Broadwell Partition

Table 7: Hardware parameter tuning on TUD Taurus system - Broadwell partition. Appli-
cations and READEX Tool Suite compiled with Intel compiler.

Application HW parameters

Static tuning
savings

(node energy/
time)

Manual dynamic
tuning savings
(node energy/

time)

READEX
tuning savings
(node energy/

time)

AMG2013 CF, UCF, threads 6.8% / −6.2% 10.3% / −8.2% 7.5% / −10.5%

Blasbench CF, UCF, threads 5.6% / −2.5% 12.8% / −9.6% 12.0% / −19.0%

Kripke CF, UCF 11.8% / −12.0% 18.0% / −10.0% 4.3% / −10.3%

Lulesh CF, UCF, threads 6.7% / −9.0% 9.0% / −8.5% 10.0% / −9.2%

NPB3.3-BT-MZ CF, UCF, threads 9.3% / −10.9% N/A 8.9% / −11.3%

BEM4I CF, UCF, threads 5.9% / −5.8% 26.0% / 3.4% 23.0% / −1.1%

INDEED CF, UCF, threads 12.2% / −14.1% 14.6% / −16.2% 14.0% / −18.0%
Note: We were unable to obtain results for ESPRESO and OpenFOAM due to bug in Score-P when Intel

compiler is used. Issue submitted.

H2020-FETHPC-2014 14

READEX D5.3-Deliverable

Table 8: Hardware parameter tuning on TUD Taurus system - Broadwell partition. Appli-
cations and READEX Tool Suite compiled with GCC compiler.

Application HW parameters

Static tuning
savings

(node energy/
time)

Manual dynamic
tuning savings
(node energy/

time)

READEX
tuning savings
(node energy/

time)

AMG2013 CF, UCF, threads 5.5% / −1.1 7.6% / −9.7% 9.0% / −8.0%

Blasbench CF, UCF, threads 7.4% / −5.6% 13.6% / −4.3% 14.0% / −4.0%

Kripke CF, UCF 13.6% / −0.9% 17.8% / −10.1% 8.2% / −14.0%

Lulesh CF, UCF, threads 1.6% / −1.0% 8.3% / −5.9% 6.2% / −8.1%

NPB3.3-BT-MZ CF, UCF, threads 11.1% / −10.2% N/A 10.4% / −10.8%

BEM4I CF, UCF, threads 4.0% / −7.1% 19.8% / 6.5% 3.2% / 1.7%1

OpenFOAM CF, UCF 17.2% / -10.1% 19.4% / −4.3% 7.5% / −7.6
1 The outlier here is a result of the Score-P GNU compiler plugin, which does not allow for an

instrumentation of header files. Unfortunately, BEM4I is based on using such files.

5.2 IT4I Salomon

Table 9: Hardware parameter tuning on IT4I Salomon system. Applications and READEX
Tool Suite compiled with Intel compiler.

Application HW parameters

Static tuning
savings

(node energy/
time)

Manual dynamic
tuning savings
(node energy/

time)

READEX
tuning savings
(node energy/

time)

AMG2013 CF, UCF, threads 4.9% / −4.3% N/A 3.4% / −23.2%

Blasbench CF, UCF, threads 7.0% / −38.8% 13.5% / −20.5% 10.9% / −19.8%

Kripke CF, UCF 8.9% / −8.3% 16.2% / −16.1% 10.3% / −22.2%

Lulesh CF, UCF, threads 14.5% / −9.0% N/A 7.3% / −20.6%

NPB3.3-BT-MZ CF, UCF, threads 2.7% / −3.5% N/A 3.1% / −2.8%

BEM4I CF, UCF, threads 6.5% / −13.0% 29.8% / 4.8% 24.3% / 8.2%

Note: We were unable to obtain results for ESPRESO and OpenFOAM due to bug in Score-P
when Intel compiler is used. Issue submitted.

H2020-FETHPC-2014 15

READEX D5.3-Deliverable

Table 10: Hardware parameter tuning on IT4I Salomon system. Applications and READEX
Tool Suite compiled with GCC compiler.

Application HW parameters

Static tuning
savings

(node energy/
time)

Manual dynamic
tuning savings
(node energy/

time)

READEX
tuning savings
(node energy/

time)

AMG2013 CF, UCF, threads 2.7% / −5.5% 4.1% / −5.4% 1.8% / −9.3%

Blasbench CF, UCF, threads 5.9% / −5.4% 9.9% / −24.4% 11.5% / −20.4%

Kripke CF, UCF 10.3% / −2.0% 12.8% / −12.5% 4.8% / −15.4%

NPB3.3-BT-MZ CF, UCF, threads 4% / −2.6% N/A 4% / −2.5%

BEM4I CF, UCF, threads 6.2% / −4.9% 13.5% / −2.1% −0.3% / −0.2% 1

ESPRESO CF, UCF, threads 4.8% / −9.5% 9.4% / −8.4% 8.1 −7.0%

OpenFOAM CF, UCF 4.2% / 2.1% 5.5% 9.3% 18.4% / −7.5%
1 The outlier here is a result of the Score-P GNU compiler plugin, which does not allow for an

instrumentation of header files. Unfortunately, BEM4I is based on using such files.

H2020-FETHPC-2014 16

READEX D5.3-Deliverable

6 Application Parameters Tuning

During the development of the READEX tool suite and in collaboration with application
designers, we learned that most of the application parameters are (1) static and (2) defined
outside of the existing source code, i.e., in configuration files. To support this common
pattern, we implemented a PTF plugin for tuning the application parameters by modifying
such configuration files (using Application Configuration Parameters plugin for PTF) of the
particular application. This is in line with the reviewers comment on application specific
parameters, which have a higher saving potential, which arose during the first project review.
Out of the selected applications in this section, ESPRESO uses the ATP library directly, the
other applications use Application Configuration Parameters. ESPRESO can also use by this
approach to increase the number of tuning knobs.

In case of application parameter tuning we do not perform the hardware parameter tuning
and default hardware settings are used for all tests.

6.1 Effort Evaluation for Application Parameter Tuning

As mentioned in the previous section there are two approaches: (1) using the ATP library and
(2) using Application Configuration Parameters (ACP). The integration of the ATP library
requires developer knowledge of the application and therefore, IT4I implemented this support
into the ESPRESO library. The effort greatly depends on the parameter and how its runtime
tuning affects entire application workflow. For instance, for ESPRESO we have experienced
following:

• Runtime tuning of FETI METHOD, PRECONDITIONERS, ITERATIVE SOLVERS,
HFETI type, SCALING, BO TYPE was relatively easy. A developer needed approx-
imately 1 hour per parameter from the list.

• Runtime tuning of domain decomposition was quite difficult. A developer needed
5 days to implement the support for this parameter, since ESPRESO performs domain
decomposition only during startup. For the READEX project, we developed enhanced
ESPRESO to redo the decomposition after each time-step of a transient simulation.

Alternatively, static tuning of application configuration parameters is very simple and straight
forward. Based on our results it is one of the most valuable plugins in terms of runtime and
energy savings. However, since this is performed using modification of configuration files, one
can also do this manually. The effort comparison between manual and READEX approach
can described as follows.

• Both approaches start with reading the user manual to find all parameters that the
user wants to test and identify all potential values of these parameters.

H2020-FETHPC-2014 17

READEX D5.3-Deliverable

• Manual approach

– Manually prepare set of configuration files for all configuration the user wants to
test

∗ For a small number of parameters this can be done purely manually by copying
and editing configuration files.

∗ For a high number of parameters, the researcher must write a script - this takes
approximately 3 hours (tested on ESPRESO with 9 different parameters)

– Run application for each configuration file and manually measure energy consump-
tion (for instance from job scheduler or other technique available on cluster, even
runtime in this case is reasonable indicator)

∗ For a small number of jobs, this can be done purely manually

∗ For a large number of jobs, developers can modify the script from the previous
step to run the application - this takes approximately 1 hour

– Manually analyze finished jobs and find one with optimal energy consumption

∗ For a small number of jobs, can be done purely manually

∗ For a large number of jobs, developers can modify the script from previous
step to write configuration ID and energy consumption into single file - this
takes approximately 2 hours

• With READEX using ACP, the effort is assembled as follows:

– Prepare a single configuration file and for each parameter: annotate it with all
values that should be tested - this takes approximately 0.5 hour (tested on all
applications)

– Run the READEX Tool Suite to find the optimal configuration and get a final
configuration file

Following either of these approaches will provide the same set of results because identical
configurations are executed.

Note: The manual approach as described will use brute-force search of the parameter space
which for high number of parameters becomes impossible to search. READEX can use
different advanced algorithms implemented in PTF which significantly reduce the time needed
to search the parameter space.

Note: The reasonable settings are settings prepared by experienced user that uses the ap-
plication for its work.

6.2 Test Applications

In this section, we shortly describe the tuned parameters for each application. We furthermore
present the detailed results.

H2020-FETHPC-2014 18

READEX D5.3-Deliverable

6.2.1 ESPRESO

The ESPRESO library is developed by one of the partners (IT4I) in the READEX project.
It was updated during the project to support more advanced dynamic application param-
eter tuning using ATP library. However, it also supports static application configuration
parameters tuning.

The key features for application parameter tuning are:

• List of application parameters that were evaluated:

– FETI METHOD (2 options)

– PRECONDITIONER (5 options)

– ITERATIVE SOLVER TYPE (2 options)

– HFETI type (2 options)

– NON-UNIFORM PARTS (6 options)

– REDUNDANT LAGRANGE (2 options)

– SCALING (2 options)

– B0 TYPE (2 options)

– ADAPTIVE PRECISION (2 options)

– DOMAIN DECOMPOSITION (10 options)

• total number of possible combinations: 3840

• support for static application configuration parameter tuning using config. file: yes

• support for dynamic application parameter tuning: yes

Savings:

• the worst case scenario: runtime 1320 seconds, energy consumption 230 kJ

• the best case scenario: runtime 189 seconds, energy consumption 32.5 kJ

• savings between the worst and the best case: 86%

• savings between default and the best case: N/A (see notes bellow)

• savings between reasonable settings and best case: 50-66%

Notes: There is no default configuration in ESPRESO. Based on the problem that is being
solved, a user has to setup the FETI solver in ESPRESO based on his knowledge of the
problem he wants to solve.

H2020-FETHPC-2014 19

READEX D5.3-Deliverable

6.2.2 OpenFOAM

OpenFOAM tool is controlled by a text configuration file. Therefore, only application
configuration parameters can be tuned.

The key features for application parameter tuning are:

• List of application parameters that were evaluated:

– PHYSICAL SOLVER PROPERTY (2 options)

– LINEAR SOLVER (6 options)

• total number of possible combinations: 12

• support for static application configuration parameter tuning using config. file: yes

• support for dynamic application parameter tuning: no

Savings:

• the worst case scenario: runtime 60.4 s seconds, energy consumption 77.5 kJ

• default scenario: runtime 50.1 seconds, energy consumption 63.8.7 kJ

• the best case scenario: runtime 46.1 seconds, energy consumption 58.7 kJ

• savings between the worst and the best case: 24%

• savings between default and the best case: 8%

Notes: For this test, we used the MotorBike benchmark that is part of the OpenFOAM
download. Therefore, we used the default settings. These settings are hand tuned by the
OpenFOAM developers with high level of knowledge of the OpenFOAM behaviour. Even in
this case, we have found setting that provide 8% savings.

6.2.3 INDEED

The INDEED tool is developed by GNS and it is controlled by a text configuration file.
Therefore, we could only tune for application configuration parameters.

The key features for application parameter tuning are:

• List of application parameters that were evaluated:

– SOLVER (2 options)

– PCG METHOD (2 options)

– STIFFNESS MATRIX ACCESS (3 options)

H2020-FETHPC-2014 20

READEX D5.3-Deliverable

• total number of possible combinations: 12

• support for static application configuration parameter tuning using config. file: yes

• support for dynamic application parameter tuning: no

Savings:

• the worst case scenario: runtime 114.4 seconds, energy consumption 30.9 kJ

• the best case scenario: runtime 74.8 seconds, energy consumption 20.1 kJ

• savings between the worst and the best case: 35.1%

• savings between reasonable settings and best case: 24.5%.

Notes: The optimal settings require the linking of INDEED against a special solver for linear
systems. This solver is part of a proprietary library from an external vendor and hence not
necessarily available on all platforms. Our definition of reasonable settings assumes that this
library is not available.

6.3 Summary of the Application Parameters Tuning

Table 11 summarizes the savings of all evaluated applications. INDEED evaluation was done
on Taurus HSW partition with Intel compiler. All remaining applications have been tested
on Salomon machine with GGC compiler.

Table 11: Summary table of the application parameter tuning with energy savings. The
details for each application are described in the following subsections of this chapter.

Application
of parameters

tested / total # of options

energy savings
compared to
worst setting

energy savings
compared to

default/reasonable settings

ESPRESO 9/3840 86% 50-66%

ELMER 1/40 97% 50-75%

OpenFOAM 2/12 24% 8% 1

INDEED 3/12 35% 25%
1 For OpenFOAM we have used the official MotorBike benchmark and therefore we have the default settings

and these are used in this case instead of reasonable settings. Because the benchmark is prepared by

developers the default settings are near optimal ones.

H2020-FETHPC-2014 21

READEX D5.3-Deliverable

7 Collaboration with External Users

In addition to the tests performed using the READEX Test Suite, we also collaborated with
external users and have supported them with applying our tool suite on their applications.
We use this kind of collaboration to demonstrate the potential of the READEX software for
general applications. In parallel to that, we discussed with the external users, which interfaces
for energy measurement and hardware parameter access are present on their system. We used
this information to extend our tool suite to support more interfaces then we anticipated in
the proposal of the project. The results of these extension will be used in further experiments
on HPC system of the external sites.

H2020-FETHPC-2014 22

READEX D5.3-Deliverable

7.1 CSC Finland - ELMER Application

In this section we present the results of applying the READEX Tool Suite on a real application
from CSC Finland HPC center named as ELMER.

7.1.1 ELMER

ELMER is an open source multiphysical simulation software mainly developed by CSC - IT
Center for Science (CSC). Elmer development was started 1995 in collaboration with Finnish
Universities, research institutes and industry. After it’s open source publication in 2005, the
use and development of Elmer has become international.

Elmer includes physical models of fluid dynamics, structural mechanics, electromagnetics,
heat transfer and acoustics, for example. These are described by partial differential equations
which Elmer solves by the Finite Element Method (FEM).

7.1.2 Hardware Parameter Tuning

Table 12: Hardware parameter tuning on TUD Taurus system - Haswell partition. Applica-
tions and READEX Tool Suite compiled with GCC compiler.

Application HW parameters
READEX

tuning savings
(node energy/time)

ELMER (4 nodes) CF, UCF 7.8% / -26.5%

7.1.3 Application Parameter Tuning

ELMER is controlled by a text configuration file. Therefore application configuration param-
eters can be tuned.

The key features for application parameter tuning are:

• List of application parameters that were evaluated:

– LINEAR SOLVERS (40 options) + each linear solver has its own set of parameters

• total number of possible combinations: 40 linear solvers

• support for static application configuration parameter tuning using config. file: yes

• support for dynamic application parameter tuning: no

Savings:

• the worst case scenario: runtime 919 seconds, energy consumption 1522 kJ 5 nodes

H2020-FETHPC-2014 23

https://www.csc.fi/web/elmer

READEX D5.3-Deliverable

• the best case scenario: runtime 24 seconds, energy consumption 35 kJ - 5 nodes

• savings between the worst and the best case: 43x / 97%

• savings between default and the best case: N/A (see notes bellow)

• savings between reasonable settings and best case: 2-4x / 50-75%

In ELMER there is no default configuration. Based on the problem that is being solved, the
user has to pick and setup appropriate linear solver based on his knowledge of the problem
he wants to solve with ELMER. We have created 40 configuration files (one per linear solver)
with the help of ELMER developers and tested these configurations. Please note that linear
solver configuration is included in the problem configuration file and can be tuned using ACP.

H2020-FETHPC-2014 24

READEX D5.3-Deliverable

7.2 PRACE - Alya Application

This section is based on an ongoing collaborative work between the READEX project and
EoCoE (Energy oriented Centre of Excellence) as a part of PRACE 5IP Task 7.2. We present
the currently available results of applying the READEX Tool Suite on a production-scale
application from Barcelona Supercomputing Centre (BSC) called Alya.

Alya is a simulation code for high performance computational mechanics. Alya solves cou-
pled multiphysics problems using high performance computing techniques for distributed and
shared memory supercomputers, together with vectorization and optimization at the node
level.

Presently, READEX has been appled on Alya to tune hardware (processor core and uncore
frequencies) and system software (number of active OpenMP threads) parameters. As a part
of the ongoing PRACE task, we are in the process of deploying the READEX tool suite on
the MareNostrum4 supercomputer at the Barcelona Supercomputing Centre (BSC) and will
continue beyond the READEX project to include application parameter tuning using the
ATP library.

The following subsections present the efforts and results for tuning Alya availble when prepar-
ing this deliverable.

7.2.1 Hardware and System Software Parameter Tuning

Application Parameters tuned
READEX

tuning savings
(node energy/time)

Alya CF, UCF, threads 9.8% / -13.4%

Table 13: Hardware parameter tuning on TUD Taurus system - Haswell partition. Applica-
tions and READEX Tool Suite compiled with Intel compiler.

H2020-FETHPC-2014 25

https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational

READEX D5.3-Deliverable

7.3 HLRS - FLEXI Application

In this section we present the results of applying the READEX Tool Suite on a real application
from High Performance Computing Centre Stuutgart (HLRS) named as FLEXI.

7.3.1 FLEXI

FLEXI is an open source framework that offers a complete CFD solution. Flexi is developed
by the team of the Numerics Research Group hosted at the Institute of Aero- and Gasdy-
namics at the University of Stuttgart. It is used in READEX as part of the collaboration
with High Performance Computing Center Stuttgart(HLRS).

FLEXI is a high-order numerical framework for solving PDEs, with a focus on Computa-
tional Fluid Dynamics. FLEXI is based on the Discontinuous Galerkin Spectral Element
Method (DGSEM), which allows for high-order of accuracy and fully unstructured hexahe-
dral meshes. it consists of the high-order mesh generator and preprocessor HOPR, the solver
Flexi and a converter to the Paraview format for visualization and postprocessing. The solver
is parallelized very efficiently and scales up to hundreds of thousand cores.

7.3.2 Hardware Parameter Tuning

The FLEXI experiments are performed on the Haswell partition with HDEEM energy mea-
surement system on TUD Taurus cluster using the Intel compiler suite. The hardware pa-
rameters used to tune the application are CPU core frequency.

The SLURM accounting tool sacct is used to gather the energy values gathered with HDEEM
and the elapsed time. Due to the structure of the batch systems, the runtimes can vary for
overhead reasons.

Application Parameters tuned
READEX

tuning savings
(node energy/time)

Flexi (2 nodes) CFS 11.0 %/-29 %

Flexi (4 nodes) CFS 11.7 %/-17.3 %

Table 14: Hardware parameter tuning on TUD Taurus system - Haswell partition. Applica-
tions and READEX Tool Suite compiled with Intel compiler.

Table 14 shows the results of FLEXI runs. Here, we can see a saving in energy consumption
of 11% with an added execution time overhead of 29%.

When using the same tuning model and scaling up to 4 nodes4 shows almost the same amount
of savings in energy. The energy savings in this case is 11.72% (183.28kJ in comparison to
207.63kJ) with a runtime overhead of 21.5%.

4We could not measure higher scale-ups due to a bug in hopr

H2020-FETHPC-2014 26

https://www.flexi-project.org/
https://github.com/flexi-framework/hopr/issues/5

READEX D5.3-Deliverable

7.4 AkerBP - OptEWE Application

In this section we present the results of applying the READEX Tool Suite to an application
from the oil exploration company Aker BP ASA called OptEWE.

7.4.1 OptEWE

OptEWE models the computationally expensive step of an imaging process which recovers
3D images of the Earth’s subsurface from recordings of seismic waves. OptEWE solves
the elastodynamic wave equation by an explicit finite difference method on a Cartesian 3D
volume.

The workflow it is integrated in analyzes a numbers of seismic sources independently at the
inter-node level, while the computation at the intra-node level utilizes OpenMP threads. The
time integration step utilizes a combination of 25 numerical kernels which exhibit variable
arithmetic intensity. READEX has been applied to tune hardware parameters in accord with
these variations.

7.4.2 Hardware and System Software Parameter Tuning

Application Parameters tuned
READEX

tuning savings
(node energy/time)

OptEWE CF, UCF 9.7% / -7.0%

Table 15: Hardware parameter tuning on TUD Taurus system - Haswell partition. Applica-
tion and READEX Tool Suite compiled with GNU compiler.

Table 15 shows energy savings and run time impact obtained by comparing tuning results
to a baseline of running the application with all hardware parameters at maximal settings.
The time integration step of the application contains a number of compute-bound kernels
interspersed with some that exhibit more memory-intensive behavior. The READEX tool
chain identified that this stage can conserve total energy by maximizing core frequencies and
minimizing uncore frequencies, at the expense of increases in application run time.

H2020-FETHPC-2014 27

READEX D5.3-Deliverable

References

[1] Michael Gerndt, Madhura Kumaraswamy, and Zakaria Bendifalla. D4.5: Final description
of the READEX programming paradigm. Technical report, TUM, Intel, 2018.

[2] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W.E. Nagel, M. Simon, and Y. Geor-
giou. HDEEM: High Definition Energy Efficiency Monitoring. In Energy Efficient Super-
computing Workshop (E2SC), Nov 2014. DOI: 10.1109/E2SC.2014.13.

[3] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer. An en-
ergy efficiency feature survey of the Intel Haswell processor. In Parallel and Distributed
Processing Symposium Workshop, May 2015. DOI: 10.1109/E2SC.2014.13.

[4] Lubomir Riha, Jan Zapletal, Ondřej Vysocký, and Vojtěch Nikl. D5.2 extended readex
test-suite with manually tuned applications. Technical report, IT4I-VSB, 2018.

H2020-FETHPC-2014 28

http://dx.doi.org/10.1109/E2SC.2014.13
http://dx.doi.org/10.1109/E2SC.2014.13

	Introduction
	The READEX Test Suite
	Benchmark description

	Test System Description
	Productivity Evaluation
	Manual Tuning Effort
	READEX Tuning Effort

	Hardware and runtime parameters tuning
	TU Dresden, Haswell Partition
	IT4I Salomon

	Application Parameters Tuning
	Effort Evaluation for Application Parameter Tuning
	Test Applications
	Summary of the Application Parameters Tuning

	Collaboration with External Users
	CSC Finland - ELMER Application
	PRACE - Alya Application
	HLRS - FLEXI Application
	AkerBP - OptEWE Application

