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Abstract

The energy consumption of supercomputers is one of the critical problems for the
upcoming exascale supercomputing era. The awareness of energy consumption is
required on both software and hardware side.

This poster presents the evaluation of selected applications and the potential
effect of static and dynamic tuning of the CPU core frequency (CF), CPU uncore
frequency (UCF) and the number of active cores (threads) on energy consumption
of HPC cluster with nodes equipped with two Haswell Xeon 12-core CPUs and 64
or 128 GB of RAM.

We have evaluated basic kernels with various computational intensity, parallel I/0
and two full fledge applications: ESPRESO FEM library with FETI based solvers and
well known open-source CFD package OpenFOAM.

H2020 READEX Project

Several measures that influence the energy consumed when running a software
application on an HPC system are available to application developers, including
hardware settings, system software parameters, and application characteristics.
However, developers typically focus on implementing and optimizing algorithms
for accuracy and performance and neglect possible improvements to the energy-
efficiency of the application running on the HPC system.

The objective of the READEX project is to deliver the first stand-alone auto-tuning
framework that has the capability to automatically and dynamically tune a large
number of HPC applications at design- and run-time as we progress from deep-
Petascale to Exascale computing. In developing such a tools-aided auto-tuning
methodology the project aims to enable developers to achieve significant
improvements in the energy-efficiency of current and future applications on
extreme-scale systems, while at the same time significantly increasing productivity
relative to manual tuning.

Tools for Manual Evaluation

Presently the MERIC tool is being developed and used in the READEX project to
measure the dynamism metrics and energy consumption to evaluate applications.
The measurements collected by this tools for an application are logged into a
READEX Application Dynamism Analysis Report (RADAR).

Tools for Energy Measurements

* Running Average Power Limit (RAPL) interface — only CPU and RAM

+ High Definition Energy Efficiency Monitoring (HDEEM) system — CPU, RAM and
blade/compute node

Application Dynamism

The dynamism observed in an application can be caused by a variation of the
following factors:

*  Floating point ions — variation in ional intensity

+ Memory read/write access patterns - variation in the sparsity of matrices in
sparse linear algebra

Inter-process communication patterns

+ 1/0 operations performed during the application's execution

Different inputs to regions in the application.
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Runtime Exploitation of Application Dynamism

for Energy-efficient eXascale computing

OpenFOAM Analy:
OpenFOAM is an abbreviation for Open source Field Operation And Manipulation.
It is an open source C++ toolbox for computational fluid dynamics (CFD).

For the OpenFOAM investigation we have selected the simpleFoam application,
the steady-state solver for incompressible flows with turbulence modeling.
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In case of the OpenFOAM
application a simpleFoam solver
was used on the motorBike
benchmark, that is part of the
OpenFOAM repository.  The
experiments were performed on a
- single node with 24 MPI
processes.

The simpleFoam was set to use
GAMG solver and PBiCG solvers.
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during the runtime into a binary
uncompressed format file.

Since the most time consuming
regions, the GAMG and PBiCG
solvers, perform similar sparse
BLAS operations, the optimal
configuration for these regions is
either identical or very similar.

Due to this reason the most of the
savings, 15.9%, can be achieved
by static tuning while only the
remaining regions provide some
potential for dynamic savings.
Since the runtime of remaining
regions is only 14.5% the overall
dynamic savings are only 1.7%.
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a sparse matrix from a file.
The parallelization is done using
OpenMP. The following results show
the optimal setup for reading large
amount of data from network file
system on Taurus machine.
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