Energy Efficient High Performance Computing due to Application Dynamism

Lubomír Říha, Ondřej Vysocký, Martin Beseda, Jan Zapletal, Vojtěch Nikl and Tomáš Kozubek

IT4Innovations National Supercomputing Center, VSB Technical University of Ostrava, Ostrava, Czech Republic

READEX pitation of Appli tion Dvr Energy-efficient eXascale computing

OpenFOAM is an abbreviation for Open source Field Operation And Manipulation. It is an open source C++ toolbox for computational fluid dynamics (CFD).

For the OpenFOAM investigation we have selected the simpleFoam application.

ce modeling

Abstract

The energy consumption of supercomputers is one of the critical problems for the upcoming exascale supercomputing era. The awareness of energy consumption is required on both software and hardware side.

This poster presents the evaluation of selected applications and the potenti effect of static and dynamic tuning of the CPU core frequency (CF), CPU uncor frequency (UCF) and the number of active cores (threads) on energy consumption in the second sec of HPC cluster with nodes equipped with two Haswell Xeon 12-core CPUs and 64 or 128 GB of RAM.

We have evaluated basic kernels with various computational intensity, parallel I/O and two full fledge applications: ESPRESO FEM library with FETI based solvers and well known open-source CFD package OpenFOAM.

H2020 READEX Project

Several measures that influence the energy consumed when running a software Several measures that influence the energy consumed when running a software application on a HPC system are available to application developers, including hardware settings, system software parameters, and application characteristics. However, developers typically focus on implementing and optimizing algorithms for accuracy and performance and neglect possible improvements to the energy-efficiency of the application running on the HPC system.

The objective of the READEX project is to deliver the first stand-alone auto-tuning framework that has the capability to automatically and dynamically tune a large number of HPC applications at design- and run-time as we progress from deep-Petascale to Exascale computing. In developing such a tools-aided auto-tuning methodology the project aims to enable developers to achieve significant improvements in the energy-efficiency of current and future applications on extreme-scale systems, while at the same time significantly increasing productivity relative to manual tuning.

Tools for Manual Evaluation

Presently the MERIC tool is being developed and used in the READEX project to measure the dynamism metrics and energy consumption to evaluate applications. The measurements collected by this tools for an application are logged into a READEX Application Dynamism Analysis Report (RADAR).

Tools for Energy Measurements

Running Average Power Limit (RAPL) interface – only CPU and RAM High Definition Energy Efficiency Monitoring (HDEEM) system – CPU, RAM and blade/compute node

Application Dynamism

- The dynamism of following factors: mism observed in an application can be caused by a variation of the
- ating point computations variation in computational intensity Memory read/write access patterns - variation in the sparsity of matrices in sparse linear algebra
- Inter-process communication patterns
- I/O operations performed during the application's execution Different inputs to regions in the application.

Computational Intensity Investigation

Workload type	Default settings	Default values	Best static configuration	Static Savings
DGEMV	12 threads, 3.0 GHz UCF, 2.5 GHz CF	2085.47 J	12 threads, 2.5 GHz UCF, 1.8 GHz CF	117.17 J (5.62%)
DGEMM	12 threads, 3.0 GHz UCF, 2.5 GHz CF	1995.29 J	12 threads, 1.5 GHz UCF, 2.1 GHz CF	206.98 J (10.37%)
Compute only	12 threads, 3.0 GHz UCF, 2.5 GHz CF	1666.32 J	12 threads, 1.2 GHz UCF, 2.5 GHz CF	212.51 J (12.75%)

Parallel I/O Investigation

To evaluate the parallel I/O we have developed a benchmark which reads a sparse matrix from a file. The parallelization is done using OpenMP. The following results show the optimal setup for reading large amount of data from network file system on Taurus machine

Static tuning

s) uortoun Jx

7,500

	Default	Default	Best static	Static	Dynamic
	settings	values	configuration	Savings	Savings
Energy consumption	24 threads,		18 threads,	771 co I	499.2 J of
[J] ,	3.0 GHz UCF,	6265.18 J	1.8 GHz UCF,	(10.00%)	5493.6 J
Blade summary	$2.5 \mathrm{GHz} \mathrm{CF}$		$2.5 \mathrm{GHz} \mathrm{CF}$	(12.32%)	(9.09%)
Runtime of function	24 threads,		22 threads,	0.01 -	0.82 s of
[s],	3.0 GHz UCF,	29.55 s	3.0 GHz UCF,	(0.04%)	29.54 s
Job info beloom	25 CHa CE		25 CHa CE	(0.04%)	(9.76.97)

1

ESPRESO library is a combination of Element (FEM) and Boundary Element (BEM) tools and TFETI/HTFETI solvers. It supports FEM and BEM (uses BEM4I library – http://bem4i.it4i.cz) discretization for advection-diffusion equation atokes flow and structura

The ESPRESO library contains both FEM preprocessing tools and sparse solvers based on FETI iterative method.

The results show that static savings are 12.3% and dynamic saving: 9.1%. The highest total savings for ESPRESO are 21.4%.

processes. The simpleFoam was set to use GAMG solver and PBiCG solvers. The results were written twice during the runtime into a binary uncompressed format file.

of the OpenFOAM

application a simpleFoam solver

application a simpleFoam solver was used on the motorBike benchmark, that is part of the OpenFOAM repository. The experiments were performed on a single node with 24 MPI

case

Since the most time consuming regions, the GAMG and PBiCG solvers, perform similar sparse BLAS operations, the optimal configuration for these regions is either identical or very similar

Due to this reason the most of the savings, 15.9%, can be achieved savings, 15.3%, can be achieved by static tuning while only the remaining regions provide some potential for dynamic savings. Since the runtime of remaining regions is only 14.5% the overall dynamic subrance are apple 1.7% dynamic savings are only 1.7%.

Dynamic	tuning :					
Region	% of 1 phase	Best static configuration	Value	Best dynamic configuration	Value	Dynamic savings
init- createTime	0.03	2.0 GHz UCF, 1.6 GHz CF	3.35 J	1.4 GHz UCF, 1.4 GHz CF	2.64 J	0.71 J (21.06%)
init- createFields	4.28	2.0 GHz UCF, 1.6 GHz CF	506.91 J	2.4 GHz UCF, 2.0 GHz CF	474.80 J	32.11 J (6.33%)
init- createMesh	2.26	2.0 GHz UCF, 1.6 GHz CF	$267.33~\mathrm{J}$	1.4 GHz UCF, 1.4 GHz CF	194.38 J	72.96 J (27.29%)
UEqn	40.71	2.0 GHz UCF, 1.6 GHz CF	4820.82 J	2.2 GHz UCF, 1.6 GHz CF	4810.03 J	10.80 J (0.22%)
pEqn	19.15	2.0 GHz UCF, 1.6 GHz CF	$2268.19~\mathrm{J}$	2.0 GHz UCF, 1.6 GHz CF	$2268.19~\mathrm{J}$	0.00 J (0.00%)
trans- portAnd- Turbulence	25.70	$\begin{array}{l} 2.0\mathrm{GHz}\;\mathrm{UCF},\\ 1.6\mathrm{GHz}\;\mathrm{CF} \end{array}$	3042.91 J	$\begin{array}{l} 2.0\mathrm{GHz}\;\mathrm{UCF},\\ 1.6\mathrm{GHz}\;\mathrm{CF} \end{array}$	3042.91 J	0.00 J (0.00%)
write	7.88	2.0 GHz UCF, 1.6 GHz CF	932.59 J	1.2 GHz UCF, 1.4 GHz CF	$841.62~\mathrm{J}$	90.97 J (9.75%)
Total value tuning for sig gions	for static gnificant re-		3.35 + 506 + 932.59 =	5.91 + 267.33 + 48 = 11842.12 J	820.82 + 2268	8.19 + 3042.91
Total saving namic tuning icant regions	gs for dy- g for signif-		0.71 + 32. 207.54 J of	11 + 72.96 + 10.8 11842.12 J (1.75 9	(0 + 0.00 + 0)	0.00 + 90.97 =
Dynamic sav plication run	ings for ap- time		207.54 J of	11966.36 J (1.73 %	%)	
Total value a	fter savings		11758.82 J	(82.63 % of 14231	.30 J)	

Conclusions

This poster introduces the READEX project and its main idea of dynamic This poster introduces the READEX project and its main idea of dynamic application behavior. The main attention is paid to the manual applications evaluation from the energy consumption optimization point of view. This is the key step in exploring the possible gains of the runtime dynamic tuning. The evaluation of two real-world applications ESPRESO and OpenFOAM shows that energy savings are 21.3% and 17.7%, respectively, as combination of static and

dynamic tuning.

Acknowledgement

The research leading to these results has received funding from the European Union's Horizon 2020 Programme under grant agreement number 671657.

References

"The READEX formalism for auto- matic tuning for energy effic [1] J. Schuchar. ISSN 1436- 5057

15N 1436-5057.
121 Y. Oleynik, M. Gerndt, J. Schuchart, P.G. Kjeldsberg, W.E. Nagel, "Rum-Time Exploitation of Application Dynamine for Energy-Efficient Eascale Computer Ing (READEX)", Computational Science and Engineering (CSR), 2015 IEEE 18th International Conference on, 2015.
(3) D. Hackenberg, T. Lische, J. Schuchart, R. Schne, W. Nagel, M. Simon, Y. Georgiou, "HDEEM: High Definition Energy Efficiency Monitoring", in Energy Efficient Specenosurgung Workshop (ESG), 2014.
(4) L. Ritz, F. Brobolaty, A. Markopoulos, O. Meea, T. Kotubek, "Massively Parallel Hydrid Total FETI (HTFETI) Sober", in Proceedings of the Polytom Indvanced Science Topolation, Neuroiman, Neuron (Neuron, Neuro), 2016, 201

Horizon 2020 European Union fun for Research & Inno

%)	6,500	
18 J	6,000	
7%)	5,500	
il J	1.	2 1.4
	Characteria (Cilla CCP) 11 Total Elia (1998) 23,275 1.2 2,054 1.4 2,054	1.4 1. 38 7,571.13 7,62 36 7,006.61 6,56
ensity (CI) is s to evaluate	1.6 6.0 1.8 6.0 2 6.0 2.2 6.0 2.4 6.25	43 6.585.3 6.49 41 6.296.4 6.19 46 6.177.23 5.87 40 5.086.82 5.71 49 5.586.82 5.71
oplication has	Dynam	nic tur
Matrix-Vector	Region	% o
and high CPU tilized as the	Assembler-	iffMat

one of the key metric the dynamism. If an a a low CI, the applicati bound (such as Multiplication - GEMV) frequency cannot be data in caches cannot be reused. Or the other hand, for high arithmetical intensity (such as Matrix-Matrix vector multiplication - GEMM) the memory traffic is significantly lower and a CPU running at high frequency can be fully utilized.

One can observe that with increasing CI the effect of the uncore frequency becomes less important and the optimal setting is decreased from 2.5 GHz to 1.2 GHz. On the other hand the optimal core frequency should be high (2.5 GHz) for applications with high CI and the core frequency should be lower with low CI. It can be also observed that core frequency tuning is most efficient for kernels with high Cl.

The highest static energy savings 12.5%, have been achieved by compute bound codes while memory bounded code achieved only 5.6%

Region	% of 1 phase	Best static configuration	Value	Best dynamic configuration	Value	Dynamic savings
Assembler– AssembleStiffMa	14.32 ut	18 threads, 1.8 GHz UCF, 2.5 GHz CF	733.73 J	20 threads, 2.0 GHz UCF, 2.5 GHz CF	731.22 J	2.51 J (0.34%)
Assembler– Assemble-B1	2.23	18 threads, 1.8 GHz UCF, 2.5 GHz CF	114.30 J	2 threads, 2.2 GHz UCF, 2.5 GHz CF	94.15 J	20.15 J (17.63%)
Cluster– CreateF0– FactF0	0.17	18 threads, 1.8 GHz UCF, 2.5 GHz CF	8.71 J	6 threads, 1.6 GHz UCF, 2.5 GHz CF	6.90 J	1.80 J (20.73%)
Assembler– SaveResults	3.10	18 threads, 1.8 GHz UCF, 2.5 GHz CF	158.81 J	2 threads, 1.2 GHz UCF, 2.5 GHz CF	147.66 J	11.16 J (7.03%)
Assembler- K_Regular- ization	5.43	18 threads, 1.8 GHz UCF, 2.5 GHz CF	278.39 J	2 threads, 1.8 GHz UCF, 2.5 GHz CF	231.38 J	47.01 J (16.89%)
Cluster– CreateSa- SolveF0vG0	2.22	18 threads, 1.8 GHz UCF, 2.5 GHz CF	113.87 J	6 threads, 2.0 GHz UCF, 2.5 GHz CF	97.46 J	16.41 J (14.41%)
Create GGT_Inv	0.28	18 threads, 1.8 GHz UCF, 2.5 GHz CF	14.23 J	2 threads, 1.2 GHz UCF, 2.5 GHz CF	8.92 J	5.31 J (37.34%)
Cluster– Kfactorization	12.84	18 threads, 1.8 GHz UCF, 2.5 GHz CF	658.07 J	24 threads, 2.0 GHz UCF, 2.4 GHz CF	629.62 J	28.45 J (4.32%)
Assembler– SaveMeshtoVTF	6.36	18 threads, 1.8 GHz UCF, 2.5 GHz CF	325.69 J	2 threads, 1.2 GHz UCF, 2.5 GHz CF	296.66 J	29.03 J (8.91%)
Cluster– CreateSa- SaFactorization	1.95	18 threads, 1.8 GHz UCF, 2.5 GHz CF	99.93 J	4 threads, 2.2 GHz UCF, 2.5 GHz CF	80.85 J	19.08 J (19.09%)
Cluster– SetClusterPC	1.46	18 threads, 1.8 GHz UCF, 2.5 GHz CF	74.70 J	20 threads, 2.0 GHz UCF, 2.5 GHz CF	74.54 J	0.16 J (0.22%)
Assembler– PrepareMesh	12.53	18 threads, 1.8 GHz UCF, 2.5 GHz CF	641.88 J	22 threads, 1.8 GHz UCF, 2.5 GHz CF	639.39 J	2.49 J (0.39%)
Assembler– SolverSolve	30.79	18 threads, 1.8 GHz UCF, 2.5 GHz CF	1578.06 J	10 threads, 2.2 GHz UCF, 2.5 GHz CF	1289.85 J	288.21 J (18.26%)
Assembler– Assemble-B0	0.26	18 threads, 1.8 GHz UCF, 2.5 GHz CF	13.28 J	24 threads, 2.0 GHz UCF, 2.5 GHz CF	12.51 J	0.77 J (5.81%)
Cluster– CreateG1- perCluster	0.47	18 threads, 1.8 GHz UCF, 2.5 GHz CF	24.20 J	14 threads, 2.2 GHz UCF, 2.5 GHz CF	22.32 J	1.88 J (7.76%)
Cluster– CreateF0- AssembleF0	5.43	18 threads, 1.8 GHz UCF, 2.5 GHz CF	278.22 J	24 threads, 2.2 GHz UCF, 2.2 GHz CF	254.98 J	23.24 J (8.35%)
Cluster– CreateSa- SaReg	0.17	18 threads, 1.8 GHz UCF, 2.5 GHz CF	8.59 J	8 threads, 2.0 GHz UCF, 2.5 GHz CF	7.03 J	1.56 J (18.15%)
Total value tuning for sigr gions Total savings namic tuning	for static ificant re- for dy- for signif-		733.73 + 314.23 + 61578.06 + 2.51 + 20.28.45 + 291000000000000000000000000000000000000	$\begin{array}{r} 114.30 + 8.71 + 18\\ 58.07 + 325.69 + \\ 13.28 + 24.20 + 2\\ 15 + 1.80 + 11.16\\ 0.03 + 19.08 + 0.16\\ \end{array}$	58.81 + 278.3 99.93 + 74.7 878.22 + 8.59 + 47.01 + 1 5 + 2.49 + 28	39 + 113.87 + 30 + 641.88 + 30 + 641.88 + 30 + 5124.66 J 6.41 + 5.31 + 30.21 + 0.77 + 30.21
Dynamic savir	ngs for ap-		1.88 + 23. 499.22 J of	.24 + 1.56 = 499.2 f 5493.55 J (9.09 %)	2 J of 5124.60)	ou (9.74%)

the steady-state solver for incompressible flows with turbule

OpenFOAM Analysis

Static tuning

	Default settings	Default values	Best static configuration	Static Savings	Dynamic Savings
Energy consumption [J], Blade summary	3.0 GHz UCF, 2.5 GHz CF	14231.30 J	2.0 GHz UCF, 1.6 GHz CF	2264.94 J (15.92%)	207.54 J of 11966.36 J (1.73 %)
Runtime of function [s], Job info - hdeem	$\begin{array}{l} 3.0~\mathrm{GHz}~\mathrm{UCF},\\ 2.5~\mathrm{GHz}~\mathrm{CF} \end{array}$	56.45 s	$\begin{array}{l} 2.6\mathrm{GHz}\mathrm{UCF},\\ 2.4\mathrm{GHz}\mathrm{CF} \end{array}$	0.37 s (0.66%)	2.36 s of 56.08 s (4.20 %)

(3.0GHz UCF, 2.50GHz CF: 29.54s) 9.00 8,500

1.8GHz UCF, 2.50GHz CF: 5493.55J) 1.6 1.8 2 2.2 2.4 2.6