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Abstract. This paper introduces two tools for manual energy evalua-
tion and runtime tuning developed at IT4Innovations in the READEX
project. The MERIC library can be used for manual instrumentation and
analysis of any application from the energy and time consumption point
of view. Besides tracing, MERIC can also change environment and hard-
ware parameters during the application runtime, which leads to energy
savings.

MERIC stores large amounts of data, which are difficult to read by a
human. The RADAR generator analyses the MERIC output files to find
the best settings of evaluated parameters for each instrumented region. It
generates a LATEX report and a MERIC configuration file for application
production runs.
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1 Introduction

The Horizon 2020 project READEX (Runtime Exploitation of Application
Dynamism for Energy-efficient eXascale computing) [18] deals with manual and
also automatic tools that analyze High Performance Computing (HPC) appli-
cations, and searches for the best combination of tuned parameter settings to
use them optimally for application needs. This paper presents tools developed
in the READEX project for manual evaluation of the dynamic behavior of the
HPC applications - the MERIC and RADAR generator.

The MERIC library evaluates application behavior in terms of resource con-
sumption, and controls hardware and runtime parameters such as the Dynamic
Voltage and Frequency Scaling (DVFS), Uncore Frequency Scaling (UFS), and
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number of OpenMP threads through external libraries. User applications can be
instrumented using the MERIC manual instrumentation to analyze each part
of the code separately. The energy measurements are provided by the High Defi-
nition Energy Efficiency Monitoring (HDEEM) system [8], or by Running Aver-
age Power Limit (RAPL) counters [10].

The MERIC measurement outputs are analyzed using the RADAR generator,
which produces detailed reports, and also a MERIC configuration file, which
can be used to set the best parameter values for all evaluated regions in the
application.

There are several research activities in HPC application energy saving due
to applying power capping [6,11] to the whole application run instead of parsing
the application into regions and applying dynamic tuning. Other research is
dealing with scheduling system using dynamic power capping with negligible
time penalty based on previous application runs [16]. Dynamic application tuning
is the goal of the READEX project, which should deliver a tool-suite for fully
automatic application instrumentation, dynamism detection and analysis. The
analysis should find the configuration that provide the maximum energy savings
and can be used for the future production runs. The READEX tools are very
complex and may not be easy to apply. Our tools present the same approach with
focus on usage friendliness, albeit providing manual tuning only. Furthermore,
the READEX tools are focused on x86 platforms only, which is not the case for
MERIC.

2 Applications Dynamism

The READEX project expects that HPC applications have different needs in
separate parts of the code. To find these parts inside a user application, three
dynamism metrics are presently measured and used in the READEX project.
They include:

1. Execution time
2. Energy consumed
3. Computational intensity

Among these three metrics, the semantics of execution time and energy con-
sumed are straightforward. Variation in the execution time and energy consumed
by regions in an application during its execution is an indication of different
resource requirements. The computational intensity is a metric that is used to
model the behaviour of an application based on the workload imposed by it on
the CPU and the memory. Presently, computational intensity is calculated using
the following formula 1 and is analogous to the operational intensity used in the
roofline model [22].

Computational intensity =
Total number of instructions executed

Total number of L3 cache misses
(1)

Selected regions in the user application are called significant. To detect the
significant regions manually, profiling tools such as Allinea MAP [1] are used.



146 O. Vysocky et al.

The dynamism observed in an application can be due to variation of the
following factors:

– Floating point computations (for example, this may occur due to variation in
the density of matrices in dense linear algebra).

– Memory read/write access patterns (for example, this may occur due to vari-
ation in the sparsity of matrices in sparse linear algebra).

– Inter-process communication patterns (for example, this may occur due to
irregularity in a data structure leading to irregular exchange of messages for
operations such as global reductions).

– I/O operations performed during the application’s execution.
– Different inputs to regions in the application.

To address these factors, a set of tuning parameters has been identified in the
READEX project to gain possible savings due to static and dynamic tuning.
The list of the parameters contains the following:

• hardware parameters of the CPU
– Core Frequency (CF)
– Uncore frequency (UCF)1

• system software parameters
– number of OpenMP threads, thread placement

• application-level parameters
– depends on the specific application

All parameters can be set before an application is executed (this is called
static tuning), in addition some of them can be tuned dynamically during the
application runtime. For instance core and uncore frequencies can be switched
without additional overhead, but switching the number of threads can affect
performance due to NUMA effects and data placement and must be handled
carefully. Static and dynamic tuning leads to static and dynamic savings, respec-
tively.

Presently the MERIC tool (Sect. 3) is being developed and used in the
READEX project to measure the above-mentioned dynamism metrics and eval-
uate applications. When using MERIC it is possible to dynamically switch CPU
core and uncore frequencies and the number of used OpenMP threads. The mea-
surements collected by these tools for an application are logged into a READEX
Application Dynamism Analysis Report (RADAR) as described in Sect. 4.

3 Manual Dynamism Evaluation with MERIC

MERIC2 is a C++ dynamic library (with an interface for Fortran applications)
that measures energy consumption and runtime of annotated regions inside
1 Uncore frequency refers to frequency of subsystems in the physical processor pack-

age that are shared by multiple processor cores, e.g., L3 cache and on-chip ring
interconnect.

2 MERIC repository: https://code.it4i.cz/vys0053/meric.

https://code.it4i.cz/vys0053/meric
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a user application. By running the code with different settings of the tuning
parameters, we analyze possibilities for energy savings. Subsequently, the opti-
mal configurations are applied by changing the tuning parameters (list of param-
eters mentioned in the previous Sect. 2) during the application runtime, which
can be also done by using MERIC. MERIC wraps a list of libraries that provide
access to different hardware knobs and registers, operating system and runtime
system variables, i.e. tuning parameters, in order to read or modify their values.
The main motivation for the development of this tool was to simplify the eval-
uation of various applications dynamic behavior from the energy consumption
point of view, which includes a large number of measurements.

The library is easy to use. After inserting the MERIC initialization func-
tion, it is possible to instrument the application through the so-called probes,
which wrap potentially significant regions of the analysed code. Besides storing
the measurement results, the user should not notice any changes in the behavior
of the application.

3.1 MERIC Features

MERIC has minimal influence on the application’s runtime despite providing
several analysis and tuning features. Its overhead depends on the energy mea-
surement mode as described in this section, the amount of hardware performance
counters read, as well as the number of instrumented regions.

Environment Settings
During the MERIC initialization and at each region start and end, the CPU
frequency, uncore frequency and number of OpenMP threads are set. To do so,
MERIC uses the OpenMP runtime API and the cpufreq [3] and x86 adapt [17]
libraries.

Energy Measurement
The key MERIC feature is energy measurement using the High Definition Energy
Efficiency Monitoring (HDEEM) system located directly on computational nodes
that records 100 power samples per second of the CPUs and memories, and 1000
samples of the node itself via the BMC (Baseboard Management Controller) and
an FPGA (Field Programmable Gate Array). Figure 1 shows the system diagram
and a picture a node with the HDEEM.

HDEEM provides energy consumption measurement in two different ways,
and in MERIC it is possible to choose which one the user wants to use by setting
the MERIC CONTINUAL parameter.

In one mode, the energy consumed from the point that HDEEM was initial-
ized is taken from the HDEEM Stats structure (a data structure used by the
HDEEM library to provide measurement information to the user application).
In this mode we read the structure at each region start and end. This solution is
straightforward, however, there is a delay of approximately 4 ms associated with
every read from the HDEEM API. To avoid the delay, we take advantage of
the fact that during measurement HDEEM stores power samples in its internal
memory. In the second mode MERIC only needs to record timestamps at the
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Fig. 1. A HDEEM system located on a node and the system diagram [2].

beginning and the end of each region instead of calling the HDEEM API. This
results in a very small overhead for MERIC instrumentation during the appli-
cation runtime because all samples are transferred from the HDEEM memory
at the end of the application runtime. The energy consumption is subsequently
calculated from the power samples based on the recorded timestamps.

Contemporary Intel processors support energy consumption measurements
via the Running Average Power Limit (RAPL) interface. MERIC uses the
RAPL counters with 1 kHz sampling frequency to allow energy measurements on
machines without the HDEEM infrastructure as well as to compare them with
the HDEEM measurements.

The main disadvantage of using RAPL is that it measures CPUs and mem-
ories power consumption only, without providing information about the power
consumption of the blade itself. In the case of nodes with two Intel(R) Xeon(R)
CPU E5-E5-2680 v3 (2×12 cores) processors the power baseline is approximately
70 W. To overcome this handicap we statically add this 70 W to our measure-
ments when using RAPL counters. MERIC uses the x86 adapt library to read
the RAPL counters.

The minimum runtime of each evaluated region has been set in the READEX
project to 100 ms when using HDEEM or RAPL, to have enough samples per
region to evaluate the region optimum configuration correctly.

Hardware Performance Counters
To provide more information about the instrumented regions of the application,
we use the perf event and PAPI libraries, which provide access to hardware
performance counters. Values from the counters are transferred into cache-miss
rates, FLOPs/s3 and also the computational intensity that is a key metric for
dynamism detection as described in Sect. 2.

3 The Intel Haswell processors do not support floating-point instructions counters.
MERIC approximates FLOPs/s based on the counter of Advanced Vector Exten-
sions (AVX) calculation operations. For more information visit https://github.com/
RRZE-HPC/likwid/wiki/FlopsHaswell.

https://github.com/RRZE-HPC/likwid/wiki/FlopsHaswell
https://github.com/RRZE-HPC/likwid/wiki/FlopsHaswell
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Shared Interface for Score-P
The Score-P software system, as well as the MERIC library, allows users to
manually (and also automatically) instrument an application for tracing analysis.
Score-P instrumentation is also used in the READEX tool suite [13].

A user that has already instrumented an application using Score-P instru-
mentation or would want to use it in the future may use the readex.h header file
that is provided in the MERIC repository. This allows the user to only insert
the user instrumentation once, but for both MERIC and Score-P simultaneously.
When a user application is compiled, one has to define the preprocessor vari-
ables USE MERIC, USE SCOREP (Score-P phase region only) or alternatively
USE SCOREP MANUAL to select which instrumentation should be used.

Table 1 shows the list of functions defined in the header file, with their
MERIC and Score-P equivalents. Brief description of the mentioned MERIC
functions is provided in Sect. 3.2, description of the Score-P functions can be
found in its user manual [20].

Table 1. Function names defined in the readex.h header file, that can be used
for MERIC and Score-P instrumentation.

Shared interface MERIC function Score-P function

READEX INIT MERIC INIT –

READEX CLOSE MERIC CLOSE –

READEX REGION DEFINE – SCOREP USER REGION DEFINE

READEX REGION START MERIC MeasureStart SCOREP USER REGION BEGIN

READEX REGION STOP MERIC MeasureStop SCOREP USER REGION END

READEX PHASE START MERIC MeasureStart SCOREP USER OA PHASE BEGIN

READEX PHASE STOP MERIC MeasureStop SCOREP USER OA PHASE END

MERIC Requirements
MERIC currently adds synchronization MPI and OpenMP barriers into the
application code to ensure that all processes/threads under one node are syn-
chronized in a single region when measuring consumed resources or changing
hardware or runtime parameters. We realize that this approach inserts extra
overhead into application runtime and may discriminate a group of asynchronous
applications. In future the library will allow the user to turn these barriers off.

Beyond the inserted synchronization the MERIC library requires several
libraries to provide all previously mentioned features:

– Machine with HDEEM or x86 adapt library for accessing RAPL counters
– Cpufreq or x86 adapt library to change CPU frequencies
– PAPI and perf event for accessing hardware counters

ARM Jetson TX1
The MERIC library was originally developed to support resource consump-
tion measurement and DVFS on Intel Haswell processors [9], however it has
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been extended to also provide support for the Jestson/TX1 ARM system [12]
located at the Barcelona Supercomputing Center [14] (ARM Cortex-A57, 4 cores,
1.3 GHz) which supports energy measurements.

ARM systems are an interesting platform because they allow the setting of
much lower frequencies [7] and save energy accordingly. In the case that sys-
tem CPU uncore frequency is not possible to set, however, one can change the
frequency of the RAM. Minimum CPU core frequency is 0.5 GHz and the max-
imum is 1.3 GHz. The minimum and maximum RAM frequency is 40 MHz and
1.6 GHz, respectively. To change frequencies on Jetson, no third-party libraries
are necessary.

To gather power data, the Texas Instrument INA3221 chip is featured on
the board [4]. It measures the per-node energy consumption and stores samples
values in a file. It is possible to gather hundreds of samples per second, however
the measurement effects the CPU. The following Table 2 shows the impact of
sampling frequency on the CPU workload evaluated using htop4.

Table 2. The Jetson/TX1 energy measurement interface and its effect on the CPU
workload when reading 10 up to 1000 power samples per second. The load was evaluated
using htop when running the power sampling only.

Sampling
frequency [Hz]

CPU workload

10 2%

50 4%

100 8%

200 14%

500 23%

1000 30%

3.2 Workflow

First, the user has to analyze their application using a profiler tool (such as
Allinea MAP) and find the significant regions in order to cover the most con-
suming functions in terms of time, MPI communication, and I/O, and insert
MERIC instrumentation into code to wrap the selected sections of the code. A
region start function takes a parameter with the name of the region, but the
stop function does not have any input parameters, because it ends the region
that has been started most recently (last in, first out).

The instrumented application should be run as usual. To control MERIC
behaviour it is possible to export appropriate environment variables or define a
MERIC configuration file that allows the user to specify the settings not only
for the whole application run (as in the case of environment variables), but also
control the behavior for separate regions, computation nodes, or their sockets.
4 htop repository: https://github.com/hishamhm/htop.

https://github.com/hishamhm/htop
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The user can define hardware and runtime settings (CPU frequencies and number
of threads) as well as select energy measurement mode, hardware counters to
read and more.

4 RADAR: Measurement Data Analysis

RADAR presents a brief summary of the measurement results obtained with
MERIC. This is a merged form of automatically generated dynamism report by
both the RADAR generator (by IT4Innovations), described in detail in Sect. 4.1
and the readex-dyn-detect (by the Technical University of Munich), described
in [19]. The report depicts diagrams of energy consumption with respect to a set
of tuning parameters. It also contains different sets of graphical comparisons of
static and dynamic significant energy savings across phases for different hardware
tuning parameter configurations. In each perspective, the measured dynamism
metrics are presented for the default configurations that are used for the tuning
parameters.

4.1 The RADAR Generator

The RADAR generator5 allows users to evaluate the data measured by the
MERIC tool automatically, and to get an uncluttered summary of the results in
the form of a LATEX file. Moreover, it is possible to include the report generated
by the readex-dyn-detect tool, as mentioned above.

Table 3. Heat map generated by the RADAR generator comparing impact of using
different CPU core and uncore frequencies at application runtime in seconds.

Uncore freq [GHz (uncore)]
Frequency [GHz (core)]

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.2 12.256 11.071 10.633 10.084 9.407 8.937 9.284 8.581 8.513 8.296
1.4 11.829 10.57 10.152 9.178 8.682 8.684 8.094 8.192 7.966 7.666
1.6 11.723 10.178 9.438 8.706 8.373 8.008 7.821 7.471 7.552 7.212
1.8 10.996 9.969 8.952 8.57 7.929 7.779 7.477 7.138 7.085 6.93
2 10.607 9.516 8.925 8.203 7.79 7.356 7.096 6.908 6.802 6.744
2.2 10.23 9.734 9.02 7.977 7.5 7.23 7.129 6.778 6.827 6.361
2.4 10.775 9.438 8.416 7.919 7.367 7.208 6.772 6.577 6.436 6.356
2.5 10.798 9.086 8.366 7.856 7.555 7.072 6.66 6.605 6.257 6.107

The report itself contains information about both static and dynamic savings,
represented not only by tables, but also plots and heat-maps. Examples can be
seen in Fig. 3 and Table 3.

The generator is able to evaluate all chosen quantities at once, i.e. users do
not have to generate reports for energy consumption, and compute intensity and
execution time separately, because they can be contained in one report together.

5 RADAR generator repository: https://code.it4i.cz/bes0030/readex-radar.

https://code.it4i.cz/bes0030/readex-radar
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This provides the advantage of direct visual comparison of all optimal settings,
so users can achieve a greater understanding of the application behavior quickly.
The execution time change for energy-optimal settings is also included in the
report, as can be seen in Table 4.

Table 4. Summary table generated by the RADAR generator presenting possible
energy or runtime saving that can be reached if the best static and also best dynamic
settings for each region would be set.

Overall application evaluation

Default
settings

Default
values

Best static
config.

Static
savings

Dynamic
savings

Energy
consumption
[J] (Samples),
Blade
summary

24 threads,
3.0 GHz
UCF,
2.5 GHz CF

2473.63 J 12 threads,
3.0 GHz
UCF,
2.5 GHz CF

371.80 J
(15.03%)

4.87 J of
2101.83 J
(0.23%)

Runtime of
function [s],
Job info -
hdeem

24 threads,
3.0 GHz
UCF,
2.5 GHz CF

6.37 s 18 threads,
3.0 GHz
UCF,
2.5 GHz CF

0.26 s
(4.10%)

0.0073 s of
6.11 s
(0.12%)

Run-time change with the energy optimal settings: −0.01 s (98.19% of default time)

This evaluation is performed not only for the main region (usually the whole
application), but for its nested regions too. Users can also specify an iterative
region which contains all the nested ones and which is called directly in the
main region. In this way certain iterative schemes (e.g., iterative solvers of linear
systems) are understood in detail, because every iteration (or phase) is evaluated
separately.

With this feature users have information about the best static optima just for
the main region (which serves as the best starting settings), information about
optimal settings of nested regions in an average phase, and the above-mentioned
information about optimal settings of nested regions in every individual phase.
If we wanted to process multiple regions like one, we can group them under one
role, as can be seen in Fig. 2, where Projector l and Projector l 2 are different
regions comprising the region Projector. If multiple runs of the program are
measured, then both the average run and separate runs are evaluated.

Solver
Solve RegCG singular

F operator
apply A

Preconditioner
apply prec

Projector
Projector l

Projector l 2

Fig. 2. Example of multiple regions on one role
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For some programs such a report could be impractically long and so the
generator offers the possibility to create a shorter version containing only the
overall summary and the average phase evaluation.

The generator also supports evaluation in multiples of the original unit used
in the measurement. Both the static and dynamic baseline for the energy con-
sumption, i.e. the constant baseline and the baseline dependent on settings, are
supported too.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

20

30

40

50

( 1.2GHz uncore freq., 2.50GHz core freq.: 2.03 J )

CF [GHz]

E
ne

rg
y
co
ns
um

pt
io
n
(S
am

pl
es
)[
J]

Region Build,
Settings: taurusi4094, 1 th - average call per phase

UCF [GHz]
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Fig. 3. Plot example generated by the RADAR generator showing the effect of using
different CPU core and uncore frequencies from the energy consumption point of view.

Finally, the optimal settings for all regions and every measured quantity can
be exported into the separated files, which can be used as an input for the
MERIC tool, as described in Sect. 3.2.

All the above-mentioned settings are listed in the external configuration file,
which is set by the generator’s flag, so users can easily change several different
settings for their reports.

5 Test Case

The ESPRESO library6 was selected to present MERIC and RADAR generator
usage. The library is a combination of Finite Element (FEM) and Boundary Ele-
ment (BEM) tools and TFETI/HTFETI [5,15] domain decomposition solvers.
The ESPRESO solver is a parallel linear solver, which includes a highly effi-
cient MPI communication layer designed for massively parallel machines with
thousands of compute nodes. The parallelization inside a node is done using
OpenMP. Inside the application we have identified several regions of the code,
that may have different optimal configuration see Fig. 4.
6 ESPRESO library website: http://espreso.it4i.cz/.

http://espreso.it4i.cz/
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Fig. 4. Graph of significant regions in the ESPRESO library. The green boxes depict
multiply called regions in an iterative solver, the orange ones are only called once during
the application runtime. (Color figure online)

Table 5. Table of resultant static and dynamic savings of the ESPRESO library test.
Rows respectively focus on possible savings from the energy and runtime points of
view.

Overall application evaluation

Default
settings

Default values Best static
configuration

Static
savings

Dynamic
savings

Energy [J]
RAPL
counters

12 threads,
3.0 GHz
UCF,
2.5 GHz CF

4549.13 J 12 threads,
2.2 GHz
UCF,
2.4 GHz CF

181.76 J
(4.00%)

325.89 J of
4367.37 J
(7.46%)

Runtime [s] 12 threads,
3.0 GHz
UCF,
2.5 GHz CF

15.90 s 12 threads,
3.0 GHz
UCF,
2.5 GHz CF

0.00 s
(0.00%)

0.39 s of
15.90 s
(2.43%)

The following test was performed on the IT4Innovations Salomon cluster
powered by two Intel Xeon E5-2680v3 (Haswell-EP) processors per node using a
RAPL counter with a 70 W baseline for the energy consumption measurement.
The processor is equipped with 12 cores and allows for CPU core and uncore
frequency scaling within the range of 1.2–2.5 GHz and 1.2–3.0 GHz, respectively.
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We evaluated ESPRESO on a heat transfer problem with 2.7 million unknowns
using one MPI process per socket.

Table 5 shows the possible savings made by using different numbers
of OpenMP threads during the runtime, and by switching CPU core and uncore
frequencies. This table shows that it is possible to save 4% of the overall energy
just by statically setting different CPU core and uncore frequencies that can
be applied even without instrumenting the application at all. Table 6 shows the
impact of using different CPU frequencies in this test case, from the energy
consumption point of view.

Another 7.46% of energy can be saved through dynamic switching of the
tuned parameters to apply the best configuration for each significant region.
Overall energy savings in this test case were 11.16%. Table 7 in the appendix of
this paper contains the regions’ best settings.

Table 6. An ESPRESO library energy consumption heat-map showing the impact of
different CPU core and uncore frequencies when using 12 OpenMP threads.

UnCF [GHz]
CF [GHz]

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.2 5,971 5,825 5,764 5,725 5,698 5,783 5,859 5,962 6,127 6,232
1.4 5,519 5,350 5,238 5,220 5,208 5,219 5,357 5,432 5,513 5,639
1.6 5,226 5,029 4,902 4,840 4,829 4,819 4,890 4,986 5,093 5,185
1.8 5,080 4,897 4,739 4,711 4,649 4,656 4,720 4,760 4,859 4,956
2 5,054 4,852 4,707 4,587 4,565 4,528 4,585 4,636 4,736 4,817
2.2 4,985 4,774 4,605 4,520 4,464 4,442 4,469 4,540 4,632 4,653
2.4 4,984 4,783 4,593 4,442 4,391 4,367 4,408 4,438 4,503 4,578
2.5 5,211 4,858 4,675 4,547 4,479 4,422 4,445 4,439 4,482 4,549

6 Conclusion

The paper presented two tools that allow easy analysis of HPC applications’
behavior, with the goal to tune hardware and runtime parameters to minimize
the given objective (e.g., the energy consumption and runtime).

Resource consumption measurement and dynamic parameter changes are
provided by the MERIC library. The currently supported parameters that can
be switched dynamically include the CPU core and uncore frequencies, as well
as the number of active OpenMP threads.

The RADAR generator analyses the MERIC measurement outputs and pro-
vides detailed LATEX reports describing the behavior of the instrumented regions.
These reports also contain information about the settings that should be applied
for each region to reach maximum savings. The RADAR generator produces the
MERIC configuration files that should be used for production runs of the user
application to apply the best settings dynamically during the runtime.

Possible savings that can be reached when using MERIC and the RADAR
generator are presented in [21], where we show that the energy savings can reach
up to 10–30%.
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Appendix

Table 7. Table of the regions analysis from the energy point of view for the test
case presented in the Sect. 5. For every region, this table contains the percentage of
energy the region consumed compared to the entire application, and each regions’
best configuration and energy savings if the configuration were applied during the
application runtime in its the best static configuration.

Significant regions energy summary and its best dynamic configuration

Region % of 1 phase Best dynamic
configuration

Dynamic savings

Assemble Stiffness
Matrices

16.77 12 threads, 2.0 GHz
UCF, 2.4 GHz CF

6.51 J from 685.54 J
(0.95%)

Assembler–
Assemble-B0

0.2 12 threads, 2.0 GHz
UCF, 2.5 GHz CF

0.10 J from 8.07 J
(1.24%)

Assembler–
Assemble-B1

4.12 12 threads, 2.0 GHz
UCF, 2.5 GHz CF

6.61 J from 168.36 J
(3.93%)

Assembler-
K Regularization

5.00 2 threads, 2.2 GHz
UCF, 2.5 GHz CF

47.64 J from 204.24
J (23.32%)

Assembler–
PrepareMesh

12.66 2 threads, 1.8 GHz
UCF, 2.5 GHz CF

77.70 J from 517.68
J (15.01%)

Assembler–
SaveMeshtoVTK

6.89 2 threads, 1.2 GHz
UCF, 2.5 GHz CF

39.80 J from 281.63
J (14.13%)

Assembler–
SaveResults

3.38 2 threads, 1.2 GHz
UCF, 2.5 GHz CF

24.67 J from 138.34
J (17.83%)

Assembler–
SolverSolve

27.92 12 threads, 2.2 GHz
UCF, 1.6 GHz CF

114.50 J from
1141.58 J (10.03%)

Cluster–CreateF0-
AssembleF0

5.67 12 threads, 2.2 GHz
UCF, 2.4 GHz CF

0.00 J from 231.68 J
(0.00%)

(continued)
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Table 7. (continued)

Significant regions energy summary and its best dynamic configuration

Region % of 1 phase Best dynamic
configuration

Dynamic savings

Cluster–CreateG1-
perCluster

0.43 12 threads, 2.2 GHz
UCF, 2.0 GHz CF

0.64 J from 17.47 J
(3.69%)

Create GGT Inv 0.21 2 threads, 2.2 GHz
UCF, 2.5 GHz CF

2.01 J from 8.56 J
(23.46%)

Cluster–CreateF0-
FactF0

0.08 12 threads, 2.8 GHz
UCF, 2.5 GHz CF

0.21 J from 3.26 J
(6.36%)

Cluster–
Kfactorization

14.47 12 threads, 2.2 GHz
UCF, 2.4 GHz CF

0.00 J from 591.46 J
(0.00%)

Cluster–CreateSa-
SaFactorization

0.51 6 threads, 2.8 GHz
UCF, 2.5 GHz CF

2.31 J from 20.70 J
(11.30%)

Cluster–CreateSa-
SolveF0vG0

0.86 6 threads, 2.8 GHz
UCF, 2.5 GHz CF

3.02 J from 35.20 J
(8.58%)

Cluster–
SetClusterPC

0.85 12 threads, 2.4 GHz
UCF, 2.4 GHz CF

0.18 J from 34.95 J
(0.52%)
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