Periscope User's Guide

July 19th, 2009

Introduction

Periscope is a scalable automatic performance analysis tool currently under development at Technische Universität München. It consists of a frontend and a hierarchy of communication and analysis agents. Each of the analysis agents, i.e., the nodes of the agent hierarchy, searches autonomously for inefficiencies in a subset of the application processes.

The application processes are linked with a monitoring system that provides the Monitoring Request Interface (MRI). The agents attach to the monitor via sockets. The MRI allows the agent to configure the measurements; to start, halt, and resume the execution; and to retrieve the performance data. The monitor currently only supports summary information.

The application and the agent network are started through the frontend process. It analyzes the set of processors available, determines the mapping of application and analysis agent processes, and then starts the application and the agent hierarchy. After startup, a command is propagated down to the analysis agents to start the search. The search is performed according to a search strategy selected when the frontend is started. At the end of the local search, the detected performance properties are reported back via the agent hierarchy to the frontend. Periscope starts its analysis from the formal specification of performance properties as C++ classes. The specification determines the condition, the confidence value, and the severity of performance properties.

Quick Start

Installation

Before you first use Periscope, you have to copy the configuration file .periscope to your home directory. It should look like (omit the comments):

MACHINE = hlrb2
SITE = LRZ
REGSERVICE_HOST = hlrb2 //host of registry
REGSERVICE_PORT = 50001 //port of the registry
AGENT_BASEPORT = 50002 //first port agent hierarchy

APPL_BASEPORT = 51000 //first port for application

Preparing an analysis run

Incremental analysis

Periscope performs an incremental analysis, i.e., it determines performance properties based on measurements, decides on possible new candidate properties and performs a new experiment to measure those data required to check whether the candidate properties hold. This incremental analysis thus requires execution of multiple experiments.

The experiments can be done during the same application run, if a repetitive region is specified as phase region. The application is suspended at the end of the phase region, new measurements are requested and the application is released. When the application encounters again the end of the region, it is suspended and the measured values are retrieved.

The experiments can also be done for entire executions of the application. If no phase region is specified, Periscope will automatically restart the application to perform new experiments, until no new candidate properties are found and the search terminates.

Specification of a phase region

The phase region can be specified as a user region via directives:

!$MON USER REGION

some code

!$MON END USER REGION

Modify your makefile for instrumentation

To enable performance measurement, the program has to be instrumented. This is done via a source instrumenter. Therefore, adopt your makefile in the following way:

Replace in the compilation of F90 files the compiler, e.g., mpif90 <args>, with psc_instrument -v mpif90 -c <args>. Replace also in the link step the compiler with psc_instrument -v mpif90 <args>. The "-c" argument will direct the script to instrument and compile instead of linking the application.

You also have to provide a list of those files to be instrumented and the instrumentation requests in psc_config_inst. Periscope currently supports only Fortran programs.

Example Makefile:

 FC = mpif90

Instrument with phase region for faster analysis
 IFC = psc_instrument -s cx.sir -t "user sub loop call" -v mpif90

Instrument without phase region for application restart
IFC = psc_instrument -s cx.sir -t "sub loop call" -v mpif90

cx: global.o init.o b_node.o csendxs.o main.o sindex.o velo.o bound.o curr.o maxv.o temp.o crecvxs.o konst.o n_node.o testin.o
 $(IFC) -autodouble -o $@ *.o

.f.o: global.o
 $(IFC) -autodouble -O3 -c $<

clean:
 rm -rf *.o cx cx.sir global.mod compmod inst instmod prep

Example psc_config_inst file:

#
which files are to be instrumented for periscope?
#
id filename [all sub loop call] # if any
#
 1 global.f
 2 init.f sub loop user call
 3 b_node.f sub loop user call
 4 csendxs.f sub call
 5 main.f sub user loop call
 6 sindex.f sub user loop call
 7 velo.f sub user loop call
 8 bound.f sub user loop call
 9 curr.f sub user loop call
 10 maxv.f sub user loop call
 11 temp.f sub user loop call
 12 crecvxs.f sub call
 13 konst.f sub user loop call
 14 n_node.f sub user loop call
 15 testin.f sub user loop call

Instrument, compile, and link the application

The instrumented application has to be linked with several libraries. Everything is done automatically after you modified your makefile.

Starting an Analysis Run

An analysis can be executed in interactive and batch mode at HLRB2.

In an interactive job the number of analysis agents is determined according to the frontend parameter maxcluster. The number of high level agents results from the maxfan specification.

In a batch job, the number of agents is again computed based on maxcluster. For each host (a01..a19) with processors allocated for the batch job one high-level agent is started. All the high-level agents are children of the master agent (the root of the agent hierarchy).

Starting the registry

The Periscope agents and the application processes register with a registry. The registry is started via:

regsrv.ia64 &

The port of the registry will be taken from the environment variable PSC_REGISTRY or from the REGSERVICE_PORT in the configuration file. It will run on the host where it was started.

Starting the Analysis via the Periscope Frontend

Periscope is started via the frontend. It will first contact the registry and then start the application. After all application processes registered with the registry, the agent hierarchy will be started, the analysis agents connect to the application processes and the search starts. The command is:

~/psc/frontend/frontend.ia64 --apprun=~/psctest/add/add --mpinumprocs=4 --strategy=MPI --debug=1

	--apprun=<command line>
	Specify the command line to start the application. It will be passed to the mpirun command.

	--mpinumprocs=<np>
	Specify number of MPI processes for the application.

	--strategy=<strategy>
	Specify one of the following strategies: MPI, StallCycleAnalysis, StallCycleAnalysisBreadthFirst.

	--debug=<level>
	Level of debug output.

Periscope will automatically restart the application for multiple experiments if no phase region is specified, i.e., either there is no user region or it is not instrumented.

Analyze found properties

The frontend will write the properties found into the file properties.psc. This file is in XML format and can be opened with Excel 2007 after it was renamed into properties.xml. A graphical user interface based on Eclipse will be provided soon.

Periscope and batch jobs

Periscope can be used in batch jobs. It is recommended to start a local registry in a batch job to ensure that the registry is running when the batch job is started.

Example batch script:

#!/bin/bash
#PBS -j oe
#PBS -S /bin/bash
#PBS -l select=80:ncpus=1
#PBS -l walltime=0:20:00
#PBS -N cx64
#PBS -M gerndt@in.tum.de
#PBS -m e
. /etc/profile
cd psc/test/cx_parallel/
regsrv.ia64 50004&
sleep 10
sudo /lrz/sys/lrz_perf/bin/lrz_perf_off_hlrb2
export PSC_REGISTRY=$HOSTNAME:50004
export PSC_APPL_BASEPORT=52300
 ~/psc/frontend/frontend.ia64 --registry=$HOSTNAME:50004 --apprun=cx --mpinumprocs=64 --maxcluster=16 --strategy=StallCycleAnalysis --debug=1

Examples

You can find two examples with the adapted makefile in ~/psc/test/add and ~/psc/test/cx_parallel. Both directories include a file makefile.psc_instrument.

Known Issues

include <mpif.h> with Altix MPI. If mpif.h is included in a file with a user region, the code for the instrumentation of the user region is inserted in the declaration part. The problem is a nested include for mpif_parameters.h in the Altix MPI environment. Solution: Replace include <mpif.h> with #include 'mpif_parameters.h'

Individual Periscope Components

Environment Variables

	PERISCOPE_ROOT
	Root directory of the Periscope installation. It includes Periscope’s configuration file.

	PSC_REGISTRY <hostname>:<port>
	Specifies the host and port of the registry service.

	PSC_APPNAME
	Specifies the name of the application. It is either set by the frontend if it starts the application or can be set by the programmer before starting the application. If it is not set, the default appl will be used.

	PERISCOPE_DEBUG
	0..6

0=quiet

1=startup, found properties in each search

2=candidate properties and found properties in each strategy step

3=details on refinement

4=

5=very detailed info including the values recieved by the agents from the application monitor.

6=individual measurements coming from the application monitoring.

	 PSC_APP_BASEPORT
	It is used by the application monitor and determines the first port used by MPI process with rank 0.

	 PSC_AGENT_BASEPORT

	It defines the port of the frontend and the analysis agents, if it is not specified as command line parameter.

Periscope Configuration File

The configuration of Periscope can be loaded from a configuration file. Its name is .periscope. It has to be located in your home directory. The precedence is: command line parameters, environment variables, specification in the configuration file, and finally defaults hardcoded in the program's sources.

	REGSERVICE_HOST
	Specifies the host of the registry. It is ignored by the registry itself. The host will be the one were the registry is started.

	REGSERVICE_PORT
	Specifies the port at which the registry is waiting for connections.

	APPL_BASEPORT
	Specifies the base port for the application monitor. The monitor linked to each process will listen at the baseport+rank.

	AGENT_BASEPORT
	Specifies the base port for the frontend and the agent hierarchy. The base port will be used by the frontend. The agents will increment the baseport to obtain unique ports.

Frontend

The frontend starts up the application and the agent hierarchy.

	--help
	Help information

	--registry=<Hostname>:<port>
	If registry is not specified on the command line, the information is taken from the Periscope configuration file. An error message is generated if it does not exist.

Default: Periscope configuration file

	--port=<port>
	The port to be used by the frontend. It is also used as base port for other analysis agents.

Default: 30000

	--maxfan=<n>

	Determines the fan-out of the tree of high-level agents in interactive mode.

Default: 4

	--maxcluster=<n>
	Maximum number of processors (MPI processes * OpenMP threads) analyzed by a single analysisagent.

Default: 4

	--phase=<fileid:rfl>

	Specifies the phase region via the fileid and the region first line number.

If no phase region is specified, a user region is selected if at least one is given in the code. If multiple are given, it is undefined which is selected. If no user region is given, the main program is the user region and the program will be restarted for each strategy step.

If you mark the phase region via a user region and would like to use user regions also to guide analysis, you have to give the fileid and rfl for the phase region.

	--appname=<name>
	It specifies the application to be searched for in the registry. If the value is defined, it will passed to the application processes via PSC_APPNAME and to the analysis agents via a command line parameter. This variable is set by the frontend.

Default: appl<pid> is constructed based on the pid of the frontend process

	--apprun=<appl cmdline>
	This is the command line used by pbsdsh to start an application process. It should be the same as in

mpirun –np procs <appl cmdline>.

	--ompnumthreads=<n>
	Number of OMP threads to be started per MPI process.

	--mpinumprocs=<n>
	Number of MPI processes to be started.

	--timeout=<secs>
	Timeout for startup of the agent hierarchy.
Default: varying depending on the number of processes

	--debug=level
	Level of debugging.
Default: PERISCOPE_DEBUG or 0

	--dontcluster
	Online clustering is currently not supported.

Passed to master agent.

	--strategy=<strategyname>
	Strategy used by analysisagent. Currently one of

MPI

StallCycleAnalysis

StallCycleAnalysisBreadthFirst

	--sir=<filename>
	SIR file of the application to be analyzed.

Default: The file name is composed of the executable's name and the extension .sir. If --apprun is omitted, the default is appl.sir.

	--propfile=<filename>
	Specify the file to use when exporting the properties.

Default: properties.psc

	--srcrev=<source revision>

	Specify the source code revision. It will be written in the output file.

	--delay=<n>

	Number of phase executions that are skipped before the search is started. This is useful for applications that have a different behavior at the beginning.

Registry

The registry collects information about the application processes and analysis agents. It is started via regsrv.ia64&

The default port is 31337.

Arguments

	<port>
	Specification of the port to be used. It can also be defined via the environment variable PSC_REGISTRY or via the specification of REGSERVICE_PORT in the PSC configuration file.

Commands

	List
	Show the entries

	Clean
	Removes all entries

	Help
	Shows list of commands

	Liststr <id>
	Shows strings attached with entry id.

	quit
	Disconnect

High-level Agents

The root agent and all intermediate agents in the hierarchy are high-level agents. In interactive mode the hierarchy is determined via maxfan and maxcluster. In batch mode for each node a separate high-level agent is allocated.

Arguments

	--help
	Help information

	--registry=<Hostname>:<port>
	If registry is not specified on the command line, the information is taken from the Periscope configuration file. An error message is generated if it does not exist.

Default: Periscope configuration file

	--port=<port>
	The port to be used by the agent.

Default: 30000

	--tag =<tag>
	All debug messages and the registry entry are marked by tag.

	--parent=<Hostname>:<port>
	Port of the parent agent in the agent hierarchy.

	--dontcluster
	Properties reported to agent are not clustered.

	--timeout=<secs>
	Timeout for startup of agent hierarchy.

Default: 20

	--debug=level
	Level of debugging.

Default: PERISCOPE_DEBUG or 0

	--dontcluster
	Passed to master agent.

Analysis Agent

The Periscope analysis agent is searching for performance bottlenecks in a subset of the application’s MPI processes. It can be started from the hierarchy of agents but also be run as a standalone tool.

If used as a standalone tool, the application has to be running already and the processes have to be registered in the Periscope registry. The tool searches for entries tagged with the application name. It then attaches to those application processes and starts the bottleneck search. The agent itself does not have the ability to restart the application. Therefore a user region has to mark an iterative phase of the program.

If the analysis agent is started within the hierarchy, the ids of the processes are passed via a program argument to the agent. It connects to the processes and starts the analysis. If a restart of the application is required to continue the search, a request is propagated to the fronend, the frontend restarts the application and informs the agent of the ids of the same MPI processes. Thus the agent will be responsible for the processes with the same ranks.

Arguments

	--help
	Help information

	--registry=<Hostname>:<port>
	If registry is not specified on the command line, the information is taken from the environment variable PSC_REGISTRY or from Periscope's configuration file. If registration is required, i.e., dontregister is not specified, an error message is generated if it does not exist.

	--dontregister
	Suppresses registration of the agent in the Periscope registry.

	--port=<port>
	The port to be used by the agent. If it is not specified, the port is taken from PSC_AGENT_BASEPORT or from the configuration file.

Default: 30000

	--appname=<name>
	It specifies the application to be searched for in the registry.

Default: appl

	--parent=<Hostname>:<port>
	High level agent which is the parent of this analysis agent.

	--tag=<string>
	Tag to be used in debug or error messages.

Default: local

	--debug=level
	Level of debugging.

Default: PERISCOPE_DEBUG or 0

	--strategy=<strategyname>
	Strategy used by the analysis agent.

Default: RegionNestingStrategy

	--phase=<fileid:rfl>
	Specifies the phase region. A detailed description can be found for the frontend.

	--sir=<filename>
	SIR file of the application to be analyzed. Required.

	--threads=<n>
	Number of threads for application startup. In standalone mode it is used to instruct the agent to search in this number of threads.

	--id=<id1>, <id2>…
	List of MPI process ids from the registry. If missing, the agent searches for processes in the registry tagged with the application name.

	--searches=<n>
	Analysis agent performs this number of successive searches. The results of the searches are compared and additional and missing properties are highlighted.

	--propfile=<filename>
	Specify the file to use when exporting the properties.

Default: properties.psc

	--srcrev=<source revision>

	Specify the source code revision. It will be written in the output file.

	--delay=<n>

	<n> instances of the phase will be skipped.

Start Analysis Run with a Single Analysis Agent

The analysis can also be done by simply starting a single analysis agent. This is helpful for debugging purposes. The application will have to be started separately via mpirun. The entries of the application processes are either passed to the analysis agent or the application name is used to search the registry. The application name is by default appl or can be set for the application processes via the environment variable PSC_APPNAME. The analysis agent takes the application name from a program argument, from PSC_APPNAME, or uses the default appl.

export PSC_APPNAME=add

mpirun -np 4 add

analysisagent.ia64 --appname=add --sir=add.sir --strategy=MPI --debug=0

or

analysisagent.ia64 --sir=add.sir --strategy=MPI --id=1,2,3,4

Periscope Instrumenter F90inst

F90inst is the source instrumenter. It allows selective instrumentation of OpenMP F90 programs. The instrumentation can be done separately for each source file.

Syntax:

f90inst <options>* <file> <file-id> [<region-specifier>]*

Arguments

	-f
	Source file is in fixed format.

	-I <path>
	Search path for include files and module files.

	-M <path>
	Location where modeule files are placed.

	-S
	Generate SIR file with static program information

	-P <string>
	Postfix to the file name of the generated file. The default is _inst.

	-d <n>
	n=1: Switch on debug information.

	-h
	This information.

	-i <n>
	Switch on information about the instrumentation process. n is the sum of the requested information according to the following table:

1: command line arguments

2: NAGf90 syntax tree

4: NAGf90 symbol and scope table

8: current node number

16: current region

32: Jump addresses and references

64: exception handling

128:OMP and instrumentation directive handling

256: region tree

	<file>
	File to be instrumented.

	<file-id>
	file number used to identify the region's position.

	<region-specifier>
	Specifies the region type to be instrumented.

all: all regions

call: call statements

forall: forall statements

io: IO statements

loop: outermost loops only

nestedloop: non-perfectly nested loops

sub: subroutines

vect: vector statements

par: OMP parallel and worksharing constructs

sync: OMP synchronization statements

user: user regions

Instrumentation of User-defined Regions

Single entry and exit program regions can be defined by the user via the monitoring directives.

!$MON USER REGION

 S1

 S2

 ...

!$MON END USER REGION

User regions are instrumented via the region specifier user. Multiple user regions can be specified in the code. If a user region is the phase region, you can omit the specification for the frontend if this is the only user region in the code.

psc_instrument

This command allows to prepare applications for analysis with Periscope. In the existing makefile, the compilation step generating the object files has to be modified such that the compiler is replaced with psc_instrument. The script will preprocess the file, instrument it, and finally call the compiler for generation of the instrumented object file. In addition, the compiler has to be replaced in the link step by psc_instrument. Here psc_instrument will link also the monitoring library to the executable as well as generate the SIR file with the program's static information.

The instrumentation is controlled by a file called psc_inst_config in which the file id and the region types to be instrumented can be determined for each file individually.

psc_instrument [-t <regions>] [-s <sir>] [-n] [-v] <compiler> [<options>] <file> [<libs>]

psc_instrument will instrument and compile the given file if "-c" is specified in the options list. Otherwise it will link the application.

Arguments:

	-t <regions>

	List of region types to be instrumented. This overwrites the specification in psc_inst_config.

all: all regions

call: call statements

forall: forall statements

io: IO statements

loop: outermost loops only

nestedloop: non-perfectly nested loops

sub: subroutines

vect: vector statements

par: OMP parallel and worksharing constructs

sync: OMP synchronization statements

user: user regions

	-n

	Dryrun: run the makefile without executing the commands

	-v

	verbose

	<compiler>

	compiler for final compilation of the instrumented files, e.g., mpif90

	-s <SIR file>

	This file name will be used for the static program information. It is recommended to name the sir file according to the executable with an extension .sir.

Default: appl.sir

	<options>

	List of compiler options used in the original call to the compiler. These are passed to the compiler.

	<file>

	Name of the file to be instrumented. File extensions .f90 and .F90 determined free source format while .f determines fixed source format.

	<libs>

	Libraries for linking.

psc_clean.sh

When an analysis is not properly terminated, some agents might continue working and so using system resources and possibly interfering with the toolkit. Moreover, some application entries might be left in the registry. These old entries will prevent the next execution of Periscope.
As a workaround, a shell script called psc_clean.sh was created. It will terminate all periscope agents, connect to all monitored applications and request their immediate termination, and finally clean the registry. This script is available in the bin folder of Periscope and currently does not support any arguments. It reads the user's configuration directly from the ~/.periscope file.

