
GA no. 671657

D5.2

Extended READEX Test-Suite with
Manually Tuned Applications

Document type: Report

Dissemination level: Other
Work package: WP5

Editor: Lubomı́r Ř́ıha (IT4I-VSB)
Contributing partners: IT4I-VSB, ICHEC-NUIG
Reviewer: Venkatesh Kannan (ICHEC-NUIG)
Version: 1.0

Ref. Ares(2018)1137339 - 28/02/2018

READEX D5.2-Deliverable

Document history

Version Date Author/Editor Description

0.1 27/01/18 Lubomı́r Ř́ıha, Jan Zapletal, Ondřej Vysocký (IT4I-VSB) 1st Draft

0.2 08/02/18 Lubomı́r Ř́ıha, Jan Zapletal, Ondřej Vysocký (IT4I-VSB) 2nd Draft

1.0 26/02/18 Lubomı́r Ř́ıha, Jan Zapletal, Ondřej Vysocký (IT4I-VSB) Final version

H2020-FETHPC-2014 2

READEX D5.2-Deliverable

Executive Summary

The objective of WP5 is to evaluate READEX in comparison to a default execution and a
manual tuning of applications. To do so, READEX defines a test-suite of proto applications.

In the previous deliverable D5.1, we demonstrated the tuning potential of the applications.
In D5.2, we extended the list of benchmarks and provide scripts for manual tuning as well
as an initial version for the automated tuning with READEX. This document accompanies
D5.2 and describes the current state of the test suite.

It is assumed that the reader of this document has already a good understanding of the
READEX concepts from reading previous deliverables such as D4.1 [2] and D4.2 [1].

H2020-FETHPC-2014 3

Contents

1 Introduction 5

2 The readex-apps Repository 5

3 Benchmarks description 6

3.1 AMG2013 . 6

3.2 Blasbench . 6

3.3 Kripke . 7

3.4 Lulesh . 7

3.5 MCBenchmark . 7

3.6 NPB3.3 . 8

3.7 BEM4I . 8

3.8 ESPRESO . 8

3.9 INDEED . 8

3.10 OpenFOAM . 8

4 Example Analysis for AMG2013 9

5 Summary 10

4

READEX D5.2-Deliverable

1 Introduction

This documents accompanies Deliverable D5.2 Extended READEX test-suite with manually
tuned applications. The actual deliverable, the extended READEX test suite, is available in
a git repository and can be downloaded and used. This document is structured as follows.
Section 2 describes the structure of the repository and the usage of the benchmarks and
scripts that are part of it. Section 3 briefly describes each analysed application. Section 4
shows an example analysis of AMG2013 application from the apps repository. Section 5 closes
the document.

2 The readex-apps Repository

The repository of test applications is located at git@acratus.ichec.ie:readex-apps.git.
Currently, the repository holds several benchmark and production applications listed in Ta-
ble 1.

Apart from the source files, each application’s directory contains bash scripts to compile the
application in several configurations. Namely, this includes the compilation of the uninstru-
mented (plain) version used as a reference and compilation for every tool in the READEX
tool suite (scorep-autofilter, readex-dyn-detect, PTF, and RRL). The compilation scripts
have been prepared both for manual and automatic instrumentation by Score-P (All the
applications are manually instrumented, which is inserted in to the code on demand during
compilation.). While the former approach serves for the evaluation of possible savings, the
latter can be used to evaluate the automated READEX tool suite in comparison to the man-
ual effort. In addition to the compilation scripts the repository contains scripts to launch the
individual READEX tools and a brief READEX_README.txt help file that describes the usage.

application path maintained by

AMG2013 benchmark apps/amg2013 IT4I
Blasbench benchmark apps/blasbench IT4I
Kripke benchmark apps/kripke IT4I
Lulesh benchmark apps/lulesh ICHEC,TUM
MCBenchmark benchmark apps/mcbenchmark IT4I
NPB3.3 benchmark apps/NPB3.3-MZ-MPI TUD

BEM4I production apps/BEM4I IT4I
ESPRESO production apps/ESPRESO/espreso readex new IT4I
INDEED production apps/Indeed for READEX GNS
OpenFOAM production apps/OPENFOAM IT4I

Table 1: List of applications in the readex-apps repository.

H2020-FETHPC-2014 5

READEX D5.2-Deliverable

To set up the environment source script files from the readex_env directory via source.
On the READEX test system taurus, readex_env is a symbolic link to a directory in
readex-apps/readex-repository/env and allows for easy switching among different com-
pilation environments (Intel, GNU). This approach ensures that the application uses the
current state of the continuously integrated READEX tool suite and in addition provides a
rather easy way for porting the test suite for other clusters equipped with the tool suite: User
only have to adapt the sourced files, update the symbolic link to a preferred location, and use
the provided compilation and run scripts without significant changes (the run scripts expect
to be launched by the SLURM scheduler).

To summarize, the repository contains the files listed in Tables 2, 3.

file description

set_env_cxx.source general environment for the compiler
set_env_plain.source environment for the uninstrumented version
set_env_saf.source environment for scorep-autofilter
set_env_rdd.source environment for readex-dyn-detect
set_env_ptf_hdeem.source environment for PTF with HDEEM
set_env_ptf_rapl.source environment for PTF with RAPL
set_env_rrl.source environment for RRL

Table 2: Summary of environment files available in readex-apps/readex-repository/env.

3 Benchmarks description

3.1 AMG2013

AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on
unstructured grids. It has been derived directly from the BoomerAMG solver in the hypre
library, a large linear solver library that is being developed in the Center for Applied Scientific
Computing (CASC) at LLNL. The driver provided in the benchmark can build various test
problems. FOr our tests the Laplace type problem on an unstructured domain with various
jumps and an anisotropy in one part is used.

3.2 Blasbench

Blasbench is a simple artificial benchmark designed to simulate different workloads including
compute, memory, I/O, or communication bound regions. The users can define their own
mixture of such regions to obtain a highly dynamic code. The benchmark thus can serve as
a best scenario for the tuning by the READEX tool suite.

H2020-FETHPC-2014 6

https://codesign.llnl.gov/amg2013.php

READEX D5.2-Deliverable

file description

READEX_README.txt a help file

set_env_XXX.source application specific environment

compile_for_plain.sh compilation of the uninstrumented version
compile_for_saf.sh compilation for scorep-autofilter
compile_for_rdd.sh compilation for readex-dyn-detect, automatic instr.
compile_for_rdd_manual.sh compilation for readex-dyn-detect, manual instr.
compile_for_ptf.sh compilation for PTF and RRL, automatic instr.
compile_for_ptf_manual.sh compilation for PTF and RRL, manual instr.

run_plain.sh runs the uninstrumented version
run_saf.sh runs scorep-autofilter
run_rdd.sh runs readex-dyn-detect
extend_readex_config.sh extends readex config.xml produced by readex-dyn-detect
run_ptf.sh runs PTF
run_rrl.sh runs the application with RRL

Table 3: Summary of files specific for each application.

3.3 Kripke

Kripke is a simple, scalable, 3D Sn deterministic particle transport code. Its primary pur-
pose is to research how data layout, programming paradigms and architectures effect the
implementation and performance of Sn transport. A main goal of Kripke is investigating
how different data-layouts affects instruction, thread and task level parallelism, and what the
implications are on overall solver performance.

3.4 Lulesh

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) is part of
the ALE3D Software Infrastructure. According to the documentation, it is “one of five
challenge problems in the DARPA UHPC program and has since become a widely studied
proxy application in DOE co-design efforts for exascale.” It is implemented in C++ and uses
OpenMP and MPI for parallelization.

3.5 MCBenchmark

The Monte Carlo Benchmark (MCB) is intended for use in exploring the computational
performance of Monte Carlo algorithms on parallel architectures. It models the solution of a
simple heuristic transport equation using a Monte Carlo technique.

H2020-FETHPC-2014 7

https://codesign.llnl.gov/kripke.php
https://codesign.llnl.gov/lulesh.php
https://codesign.llnl.gov/mcb.php

READEX D5.2-Deliverable

3.6 NPB3.3

The NAS Parallel Benchmarks are a set of micro benchmarks that mimic real applications
used in HPC. In our test suite, we use the hybrid parallel benchmarks written in FORTRAN
and parallelized with MPI and OpenMP.

3.7 BEM4I

BEM4I is a solver for partial differential equations based on the boundary element method
and is under development at IT4Innovations. Contrary to alternative finite element solvers,
BEM4I produces dense matrices and due to the nature of boundary integral equations the
assembly of system matrices is more or less compute bound. This is in contrast to the iterative
solver used for the solution of the resulting system of linear equations which is usually memory
bound due to matrix vector multiplications. BEM4I is thus a suitable library to be involved
in the test apps repository.

3.8 ESPRESO

The ESPRESO library is a combination of Finite Element (FEM) and Boundary Element
(BEM) tools and TFETI/HTFETI solvers. It supports FEM and BEM (uses BEM4I library)
discretization for Advection-diffusion equation, Stokes flow and Structural mechanics. The
ESPRESO solver is a parallel linear solver, which includes a highly efficient MPI communi-
cation layer designed for massively parallel machines with thousands of compute nodes. The
parallelization inside a node is done using OpenMP.

3.9 INDEED

INDEED is a sheet metal forming simulation software that combines ease of use with high
quality simulation. Since it is a commercial tool, we do not provide the sources in the
repository, but only the diff that has to be applied for manual instrumentation.

3.10 OpenFOAM

OpenFOAM is an open source C++ toolbox for computational fluid dynamics (CFD). Open-
FOAM does not have a generic solver applicable to all cases, but there is a long list of solvers
each for specific class of problems e.g. compressible and incompressible flow, multiphase flow,
combustion, particle-tracking flows heat transfer and many more.

H2020-FETHPC-2014 8

https://www.nas.nasa.gov/publications/npb.html
http://bem4i.it4i.cz/
http://espreso.it4i.cz/
http://gns-mbh.com/products/indeed/
https://www.openfoam.com

READEX D5.2-Deliverable

4 Example Analysis for AMG2013

In this section, we describe how one benchmark from the repository is tuned with READEX
by using the script described in the previous section.

The AMG2013 benchmark is located at

readex-apps/readex-repository/benchmark_apps/amg2013

To apply the READEX tool suite on AMG2013 follow the steps listed below.

1. Update the symbolic link readex_env to point to the environment of your choice.
The current options on Taurus are

• ln -sfnv ../../env/bullxmpi1.2.8.4_gcc6.3.0/ readex_env

• ln -sfnv ../../env/intelmpi2017.2.174_intel2017.2.174/ readex_env

2. Compile the uninstrumented version and perform a testing run by

• ./compile_for_plain.sh (the executable created is ./test/amg2013_plain),

• sbatch ./run_plain.sh

3. Compile the code for scorep-autofilter and run the filtering by

• ./compile_for_saf.sh (the executable created is ./test/amg2013_saf),

• sbatch ./run_saf.sh (output in scorep.filt).

Note that this step is only relevant for automatic instrumentation. In case of man-
ual instrumentation only the manually inserted regions are taken into account and no
filtering is necessary.

4. Compile the code for readex-dyn-detect and run the dynamism detection tool by

• ./compile_for_rdd.sh for automatic instrumentation by Score-P taking into ac-
count the filter file produced above or ./compile_for_rdd_manual.sh for a man-
ually instrumented version (the executable created is ./test/amg2013_rdd),

• sbatch ./run_rdd.sh (output in readex_config.xml).

5. The output readex_config.xml contains the description of significant regions for PTF.
It is up to the user to specify the tuning parameters, the tuning strategy and further
details described in how_to_use_readex_toolsuite.pdf. A script for automatic ex-
tension of the configuration file is provided for each app in the test suite and can be
called by

• ./extend_readex_config.sh (output in readex_config_ptf.xml).

H2020-FETHPC-2014 9

READEX D5.2-Deliverable

6. Compile the code for PTF and run the analysis by

• ./compile_for_ptf.sh for automatic instrumentation by Score-P taking into ac-
count the filter file produced above or ./compile_for_ptf_manual.sh for a man-
ually instrumented version (the executable created is ./test/amg2013_ptf),

• sbatch ./run_ptf.sh (output in tuning_model.json).

7. Since the compilation for RRL is the same as for PTF, the binary ./test/amg2013_ptf

can be reused to test dynamic switching according to tuning_model.json by RRL. To
run the tuned application and compare the energy consumption to the uninstrumented
version (./test/amg2013_plain) use

• sbatch ./run_rrl.sh (output of uninstrumented and RRL tuned versions mea-
sured by HDEEM in amg2013_rrl_plain_hdeem.out and amg2013_rrl_rrl_-

hdeem.out, respectively).

amg2013 rrl 1 4 8 2 12 109429 22456.414
amg2013 rrl 2 4 8 2 12 107916 22354.112
amg2013 rrl 3 4 8 2 12 107463 22471.416

Table 4: Energy measurements stored in amg2013 rrl plain hdeem.out.

amg2013 rrl 1 4 8 2 12 126788 20952.191
amg2013 rrl 2 4 8 2 12 126162 20926.660
amg2013 rrl 3 4 8 2 12 126297 20907.157

Table 5: Energy measurements stored in amg2013 rrl rrl hdeem.out.

The format of the files amg2013_rrl_XXX_hdeem.out follow Tables 4, 5. The respective
columns contain the name of the test, test number, number of nodes employed, total number
of MPI processes, number of MPI processes per node, number of OpenMP threads per MPI
process, runtime of the app in milliseconds, and energy consumption in Joules. It can be
seen from the two tables that while the runtime increases for the tuned version (second-last
column), the energy consumed decreases (last column).

5 Summary

This document shortly described how the READEX test application repository is structured
and how it can be used. The actual deliverable is available for download in a git repository.

H2020-FETHPC-2014 10

READEX D5.2-Deliverable

References

[1] Andreas Gocht, Umbreen Sabir Mian, Michael Lysaght, Venkatesh Kannan, Michael
Gerndt, Anamika Chowdhury, Madhura Kumaraswamy, Per Gunnar Kjeldsberg, Mo-
hammed Sourouri, and Nico Reissmann. D4.2: Prototype READEX tool suite. Technical
report, ICHEC, TUD, TUM, NTNU, IT4I, Intel, GNS, 2017.

[2] Michael Lysaght, Kashif Iqbal, Joseph Schuchart, Andreas Gocht, Michael Gerndt,
Anamika Chowdhury, Madhura Kumaraswamy, Per Gunnar Kjeldsberg, Magnus Jahre,
Mohammed Sourouri, David Horak, Lubomir Riha, Radim Sojka, Jakub Kruzik, Kai Di-
ethelm, and Othman Bouizi. D4.1: Concepts for the READEX tool suite. Technical
report, ICHEC, TUD, TUM, NTNU, IT4I, Intel, gns, 2016.

H2020-FETHPC-2014 11

	Introduction
	The readex-apps Repository
	Benchmarks description
	AMG2013
	Blasbench
	Kripke
	Lulesh
	MCBenchmark
	NPB3.3
	BEM4I
	ESPRESO
	INDEED
	OpenFOAM

	Example Analysis for AMG2013
	Summary

