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Executive Summary

This deliverable specifies the READEX programming paradigm that allows the application
expert to provide domain-level knowledge about the application dynamism to enhance the
tuning process. READEX developed the Domain-level Knowledge Specification Interface
(DKSI) that provides means to express the expert’s domain knowledge related to the appli-
cation structure, the application characteristics, and specific application-level tuning param-
eters. The specification is based on Score-P annotations and a novel library for specifying
application-level tuning parameters.

The deliverable first presents the role of specification based on the formalization given in
D4.1. It then introduces the concepts provided in each of the three areas by giving a short
motivation, the way of specification and an example. The document closes with a description
of the workflow for introducing domain knowledge into the READEX approach.
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1 Introduction

While the READEX tool suite automates dynamic energy efficiency tuning, its result can be
improved by the specification of domain knowledge through the application expert.

This deliverable specifies the READEX programming paradigm that allows the application
expert to provide domain-level knowledge about the application dynamism to enhance the
tuning process. READEX developed the Domain-level Knowledge Specification Interface
(DKSI) that provides means to express the expert’s domain knowledge related to the appli-
cation structure, the application characteristics, and specific application-level tuning param-
eters.

The DKSI covers three aspects of domain knowledge:

1. Specification of application structure

2. Specification of application characteristics

3. Specification of application tuning parameters

Each of the three aspects will be introduced below in the context of the formalization given
in Deliverable D4.1.

1.1 Application structure

The READEX methodology dynamically tunes significant regions Rsig ⊆ Rinstr, a subset
of all instrumented regions. Significant regions have to be coarse granular to be suitable
for dynamic reconfiguration of tuning parameters. The structuring of the application into
regions according to the programming language, e.g., subroutines, might not match the view
of the developer of the application structure. Therefore, the DKSI offers means to specify
additional regions manually.

READEX exploits different types of dynamism in applications. We distinguish intra-phase
dynamism and inter-phase dynamism. In READEX we expect the application to have a
phase region, which is one of the instrumented program regions Rinstr and the major progress
loop of the application. Each execution of the phase region is called a phase. Inter-phase
dynamism means changes in the characteristics of the phases of the application. In contrast to
inter-phase dynamism, intra-phase dynamism identifies different characteristics of significant
regions within a single phase.

The application expert has to be involved in the identification of the phase region, since its
selection has to take the overall architecture of the application into account.
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1.2 Application characteristics

Optimal configurations for tuning parameters are not determined and switched for individual
regions with different characteristics but on the granularity of individual runtime situations
rts ∈ RTS . Each runtime situation is an execution of a significant region. Identifiers are
used to distinguish runtime situations with different characteristics in the Application Tuning
Model (ATM) generated by Design Time Analysis (DTA).

The ATM consists of a classification of rts’ into scenarios s ∈ S. The classifier cl : P(CR) −→
S maps each rts ∈ RTS onto a unique scenario s ∈ S based on the rts context. The rts
context allows to distinguish different rts’ of the same region based on identifiers and their
value. Identifiers considered in READEX include region name, region call path, and region
identifiers, phase identifiers, and input identifiers.

Region name and region call path are automatically detected identifiers for rts’. Additional
identifiers can be given by the application expert. Region identifiers are used to distinguish
rts’ with different characteristics based on the execution context. Phase identifiers classify
all rts’ of entire phases based on phase characteristics. Input identifiers classify all rts’ of an
execution with respect to characteristics induced by the application input.

1.3 Application tuning parameters

A tuning parameter tp ∈ TP is a parameter of the HPC stack (e.g. CPU frequency, acceler-
ator offloading switch, application parameter, etc.). READEX focuses on tuning parameters
that have the potential to influence the energy consumption of an application running on
an extreme-scale system and can be affected by the READEX Runtime Library (RRL) at
runtime.

A tuning parameter tp ∈ TP can take a value from VALtp. The set of all values of tuning
parameters is VAL = ∪tp∈TPVALtp.

A system configuration cfg ∈ CFG is a function that maps a tuning parameter tp ∈ TP onto
its value val ∈ VALtp and is defined as cfg : TP −→ VAL.

READEX explores different types of tuning parameters, namely hardware parameters, system
software parameters, and application parameters. While the first two are given by the execu-
tion environment, the application tuning parameters (ATP) are specific for the application.
They can select different code paths or, for example, be special parameters to algorithms.
The DKSI provides means for the expert to define such tuning parameters in the application
code.

1.4 Structure of the deliverable

The deliverable presents the specification features of DKSI for the three areas. Section 2
covers the specification of regions and phase region, Section 3 presents the specification of
identifiers, and Section 4 defines the DKSI features for ATPs. Section 5 explains the workflow
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for an application expert in using the DKSI to include domain knowledge into the analysis
and tuning done by the READEX Tool Suite.

1.5 Example

Listing 1: Multigrid code structure

1 do it = 1, max_iter

2 ...

3 call VCycle(...)

4 ...

5 enddo

6

7

8 subroutine VCycle(...)

9 //Proceed from finest to coarsest grid

10 do k = max_level, min_level+1

11 ...

12 call restrict(...)

13 enddo

14 ...

15 //Propagate correction from coarsest to finest grid

16 do k = min_level+1, max_level

17 call interpolate(...)

18 call resid(...)

19 call psinv(...)

20 enddo

21 ...

22 end subroutine VCycle

In this document we use a multigrid solver as a running example. Listing 1 shows a high-level
view of the MG (MultiGrid) benchmark of the NAS parallel benchmark suite [2]. MG uses a
V-cycle to solve a discrete Poisson equation on a 3D grid. It is based on a hierarchy of grid
levels, where the maximum level is the finest grid with the highest resolution.

During each iteration, an entire V-cycle is executed starting from the highest grid level. First,
the result on the current grid level k is projected to the next coarser grid level k−1. When the
coarsest grid is reached, an approximate solution is computed. The result is then interpolated
from the coarser to the finer grid, where the residual is calculated and a smoother is applied
to correct the result. The result is then propagated further upwards.
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2 Specification of Application Structure

2.1 User regions

The decomposition of the program into program regions is typically defined by the syntax of
the programming language. Common types of regions are subroutines, loops, and structured
blocks. Besides standard regions, the application expert might be able to identify additional
regions that are not represented as a standard region.

Typical usecases for user regions are:

• User regions can combine several calls to different functions which belong together and
are too fine granular for switching the configuration individually.

• They can identify certain parts of an algorithm that would otherwise not be a tar-
get of tuning because this part is not represented by a standard region type of the
programming language.

• If instrumentation is too fine granular and leads to a lot of overhead, automatic instru-
mentation can be switched off and significant regions can be manually instrumented.

2.1.1 Specification

User regions are defined in READEX with Score-P macros. These macros can enclose arbi-
trary code and are instrumented automatically. As a result, the regions can be handled by
the READEX Tool Suite like any other region.

1 #include "SCOREP_User.inc"

2

3 SCOREP_USER_REGION_DEFINE(R1)

4

5 SCOREP_USER_REGION_BEGIN(R1, "name", SCOREP_USER_REGION_TYPE_COMMON)

6 ...

7 SCOREP_USER_REGION_END(R1)

First the user region handle is defined with the macro SCOREP USER REGION DEFINE. Then
the start and end of the region are marked with the macros SCOREP USER REGION BEGIN and
SCOREP USER REGION END. Both use the region handle, and the begin macro also specifies a
name and a type, here the default region type. Details can be found in the Score-P User
Guide [4].

2.1.2 Example

Listing 2 shows the multigrid example where all three function invocations used when the
solution is propagated from the coarser to the finer grid are combined into a user region
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MGStep. This enables DTA to tune this coarser region and avoids the overhead that would
be introduced if each of the three subroutines were tuned individually.

Listing 2: The three functions executed on a given grid are combined into a coarse granular
region called MGstep.

1 #include "SCOREP_User.inc"

2

3 SCOREP_USER_REGION_DEFINE(R1)

4

5 ...

6

7 do k = min_level+1, max_level

8 SCOREP_USER_REGION_BEGIN(R1, "MGstep", SCOREP_USER_REGION_TYPE_COMMON)

9 call interpolate(...)

10 call resid(...)

11 call psinv(...)

12 SCOREP_USER_REGION_END(R1)

13 enddo

2.2 Phase region

Central to the tuning approach of READEX is the concept of the phase region. Applications
typically have a central progress loop that iteratively performs the computation. This loop
can be implemented by a standard loop construct of the programming language, but it does
not have to be implemented in this way. Even if it is a standard loop, it is not obvious
how to figure out the phase region automatically. The code expert can easily provide this
information. Therefore, READEX offers the user to specify the phase region as shown below.

Score-P offers the concept of an online access phase region to enable external tools to configure
Score-P dynamically when a phase is started. This configuration mechanism is used in DTA
to perform experiments for evaluating different system configurations. Both the start and the
end of the phase region entail a barrier synchronisation of all participating processes when
an online tool like PTF is connected to Score-P.

2.2.1 Specification

The specification of the phase region is very similar to a user region. The only
difference is that names of the Score-P macros are SCOREP USER OA PHASE BEGIN and
SCOREP USER OA PHASE END.
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1 #include "SCOREP_User.inc"

2

3 SCOREP_USER_REGION_DEFINE(R1)

4

5 SCOREP_USER_OA_PHASE_BEGIN(R1, "name", SCOREP_USER_REGION_TYPE_COMMON)

6 ...

7 SCOREP_USER_OA_PHASE_END(R1)

2.2.2 Example

Listing 3 shows the specification of the phase region for the MG benchmark. Several V-cycles
are executed to solve the equation. Each cycle is marked as a phase and thus can be used to,
for example, assess different candidate configurations during DTA.

Listing 3: The body of the iteration loop is marked as the phase region. Each iteration is a
phase of the program.

1 #include "SCOREP_User.inc"

2

3 SCOREP_USER_REGION_DEFINE(R1)

4

5 do it = 1, max_iter

6 ! phase region begins

7 SCOREP_OA_PHASE_BEGIN(R1, "VCycle", SCOREP_USER_REGION_TYPE_COMMON)

8 ...

9 call VCycle(...)

10 ...

11 SCOREP_OA_PHASE_END(R1)

12 ! phase region ends

13 enddo

H2020-FETHPC-2014 10
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3 Identification of Application Characteristics

3.1 Region identifiers

As well as the region name and the call path, additional region identifiers can be used to
distinguish runtime situations with different characteristics. Without being able to identify
and distinguish those runtime situations, the ATM cannot specify different configurations.

3.1.1 Specification

Region identifiers are specified as Score-P parameters for parameter-based profiling and can
be of type integer and string as shown in the following listing. The parameters determine
region identifiers for the compiler-instrumented region foo.

1 subroutine foo(integer myint, integer myuint)

2 SCOREP_USER_PARAMETER_INT64("myint",myint)

3 SCOREP_USER_PARAMETER_UINT64("myuint",myuint)

4 // do something

5

6 end subroutine

3.1.2 Example

Listing 4: Specification of the grid level as region identifier.

1

2 subroutine VCycle(...)

3 ...

4 !--- level k-1 to level k ---!

5 do k = min_level+1, max_level

6 call interpolate(..., k)

7 call resid(...)

8 call psinv(...)

9 enddo

10 end subroutine VCycle

11

12 !Interpolate to level k region

13 subroutine interpolate(..., k)

14 SCOREP_USER_PARAMETER("level",k)

15 ...

16 end subroutine interpolate

In the MG benchmark, the size of the grid processed in interpolate(..., k) in Listing 4
gets higher when going from the minimum grid level to the maximum. At a certain grid level,
the computation switches from being compute bound to memory bound. To enable DTA to

H2020-FETHPC-2014 11
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determine special system configurations for compute and memory bound runtime situations,
the application expert can add a region identifier for the grid level inside the interpolate

region (Line 14 of Listing 4). In contrast to the calling context tree (CCT) without region
identifiers in Figure 1, the grid level can be used as an identifier to distinguish the runtime
situations of the region interpolate [3], as shown in Figure 2. The tool suite cannot detect
and distinguish the runtime situations of interpolate automatically, and hence, it is the
responsibility of the application expert to provide hints to do so.

PhaseRegion

mg3P

rprj3 psinvinterp

Figure 1: Calling Context Tree
(CCT) of MG without region iden-
tifiers.

PhaseRegion

mg3P

rprj3 psinvinterp

level=2 level=8

Figure 2: CCT of MG with region
identifiers.

3.2 Phase identifiers

Phase identifiers identify phases with different characteristics. They can be used in the ATM
to distinguish rts’ based on the different behavior of the phase. Thus, different configurations
can be given for rts’ in these different phases.

3.2.1 Specification

Phase identifiers are provided in the same way as region identifiers via Score-P parameters
that are attached to the phase region. Phase identifiers, such as the degree of sparsity of the
matrix or the arithmetic intensity of the phase region, must enable the prediction or selection
of different best configurations for phases that have varying characteristics or behavior.

3.2.2 Example

INDEED [1] is a sheet metal forming simulation software with an implicit time integration.
It uses an adaptive mesh refinement, and the number of finite element nodes that it uses
increases with every time step, resulting in an increasing computational cost. Figure 3 shows
the workflow of the INDEED application. There are three loops, i.e., the time loop, the
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Table 1: Best configurations for INDEED clusters

Cluster
Tuning Parameters

Normalized Energy Energy
CPU FREQ UNCORE FREQ

1 1.5 GHz 1.8 GHz 0.00342527 1872 J

2 2.4 GHz 1.4 GHz 0.00246028 3145 J

3 1.8 GHz 1.2 GHz 0.00146470 6074 J

contact loop and the equilibrium loop, that have varying levels of dynamism. The application
expert may annotate any of these loops as the phase region.

In this example, the time loop was used as the phase region. Figure 4 indicates that the
first phases are computationally very cheap. This is due to the fact that there is no contact
between tools and workpiece yet. On initial contact, a lot of computational work is required,
and we obtain a peak in the graph. The following peaks then arise due to more refined regions
of the tool making contact with the workpiece.

The phase identifiers Compute Intensity and Branch Instructions enable the DTA to cluster
the phases having different behavior into different groups, as shown in Figure 5. To group the
phases having similar characteristics, the phase identifiers are normalized. In this example,
three clusters are obtained, and the unclustered data points are labeled as noise. The best
configuration for each cluster is obtained for the least value of energy normalized by the total
number of instructions. Table 1 shows the best configuration for each cluster.

3.3 Input identifiers

The READEX tool suite will not only tune the application for a single input but will learn
from running the application for different inputs. Input identifiers allow to characterize the
variations among executions with different sets of application inputs. As a result, DTA will
be able to identify more rts’s with different characteristics which will eventually improve the
tuning model. Input identifiers may be simple, such as the grid size of the application domain
and the number of processors, or complex, like the number of contact points in metal forming
simulations.

3.3.1 Specification

The DKSI allows to provide input identifiers in an accompanying input specification file in
the form of key-value pairs as given in Listing 5.

H2020-FETHPC-2014 13
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Start of computation

New tools?

Initial movements

Assembly of
equation system

Solution of
equation system

Recovery computation

Equilibrium
reached?

Change of
contact?

End of
process?

yes

no

yes

no

yes

End of computation

no

yes

no

E
q

u
ili

b
ri

u
m

 lo
o

p

C
o

n
ta

ct
 lo

o
p

T
im

e
 lo

o
p

Figure 3: Loops in INDEED that are candidates for the phase region.
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Figure 4: Execution time vs. phases of the time loop in INDEED.

Cluster 1
Cluster 2
Cluster 3
Noise

Figure 5: Clusters obtained for normalized compute intensity vs. normalized branch instruc-
tions in INDEED.
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1 identifier name : <value>
2 ContactPoints : <simple, complex>

3 ProblemSize : <256 256 256>

Listing 5: Input identifier specification file IID SPEC

1 export INPUT_IDENTIFIER_SPEC_FILE="IID_SPEC"

Listing 6: Specify input identifier file in RRL

Input identifier specification files are used by both PTF and the RRL. They are passed to
PTF via the command line using the flag --input-desc="IID SPEC", and to the RRL via
an environment variable, INPUT IDENTIFIER SPEC FILE shown in Listing 6.

It is not necessary to pass the same input identifier specification file to both PTF and the
RRL. If input identifiers given for one input file are missing for another input file, the missing
identifiers are handled in DTA with a default value.

3.3.2 Example

In the MG benchmark, the size of the finest grid determines at which grid level the application
switches from memory bound to compute bound. Thus, the region identifier giving the grid
level for the rts’ of the functions applied on a grid level is not sufficient for a general tuning
model covering varying input sizes. The optimal configuration is also dependent on the size
of the finest grid and thus this grid size has to be taken into account when selecting the
configuration for a certain grid level at runtime. In addition to the size of the finest grid
also the number of processes is important. The more processes are used, the better the data
distribute over the caches and the earlier, in terms of grid level, the application switches
between memory and compute bound. The numbers of processes and threads are considered
as standard input identifiers and need not be given in the specification file.
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4 Application Tuning Parameters

In addition to hardware and system-software tuning parameters, READEX also targets ap-
plication level parameters, that is, parts of the code itself which could be used as tuning
parameters. The simplest example of this is the case where different implementations of the
same algorithm are available, each having its own impact on performance and energy. The
aim of using application level parameters is to exploit the possibility to switch between the
different implementations or, in a more general term, the possibility for READEX to choose
between code level alternatives.

The three main steps that drive the handling of ATP are: 1) source code annotation, 2)
generation of an ATP description file and tuning in the DTA via the READEX plugin, and
3) use of the DTA results during RAT.

The annotation step (Figure 6) is primarily done by the application developer and consists
of first, instrumenting the program code to prepare control variables, these are the program
variables used to tweak programs semantics, such as choosing between different code paths
or defining different blocking factors, at second, comes the annotation part where API calls
mark the control variables and describe their types, ranges and possible dependences between
them, thus providing a READEX tuning system with the necessary information to tune the
variables. READEX provides the necessary API through the ATP library (ATPlib). Once
the annotation is finished the application is compiled to produce the executable which will
be used in the DTA phase.

Figure 6: ATP declaration through application instrumentation and annotation.

In DTA (Figure 7), the first phase of the application execution is reserved to the discovery
of the details about the ATPs, their ranges, constraints and location. The information found
is recorded into an ATP description file. READEX then uses the remaining phases of the
application to trigger tuning actions which modify ATPs as it is done for hardware and
system-software tuning parameters. The best found configurations for ATPs are stored in
the same tuning model file as for the other parameters.

The third step of the READEX methodology uses the previously produced Tuning Model to
dynamically tune the application by setting control variables with the best found values in the
DTA (Figure 8). However, since the handling of ATPs involves manual code instrumentation
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Figure 7: ATP handling during DTA.

by the developer, some of the API calls inserted and used in the DTA phase, such as parameter
declaration functions, will be deactivated in the RAT phase.

Figure 8: ATP handling during RAT.

The correct declaration and description of ATPs by the user is key to the success of the
process. This goes by defining mainly the types of variables accepted by the tuning system,
their ranges and the dependences between them if any. These are detailed in the following
sections.

H2020-FETHPC-2014 18
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4.1 ATP declaration and retrieval

The control variables used for ATPs can be of diverse types. This includes simple data
structures such as integers, booleans or floats as well as complex types such as arrays or
structures.

The current version of the READEX tool suite is set to handle integer data types, as exploring
integer ranges and solving constraints between them requires a relatively reasonable amount
of compute power compared to floats and complex structures.

In the cases where a tuning parameter is a complex structure, the user may, when possible,
simplify it by mapping its possible values to integer variables.

Two ways of expressing ATP values are made possible. These are: 1) in the form of a range of
values by giving an array of three values (minimum value, maximum value and an increment),
and 2) in the form of an enumeration of values by giving an array of all the possible values
the parameter may take.

Also, application tuning parameters differ a little from other hardware and runtime param-
eters in that they cannot be controlled at each region entry and exit. Their values can only
be taken into account when the corresponding part of code is being executed.

4.1.1 Specification

Two API functions are used for the declaration of a new application tuning parameter. The
first is used to declare parameter name, type, default value and domain. The second allows
to supply the possible values of the parameter. These are provided in Listing 7.

The overall handling of ATP values follows the same process as any other tuning parameter
in READEX. The tuning process is driven by PTF, and parameter values are extracted by
the RRL; the latter sends values to control plugins. However, the difference lies in the last
layer, where ATPs do not have a control plugin, instead an API call assigns the value to a
code variable. At the API level, this is translated through the third API call.

1 ATP_PARAM_DECLARE(const char *param_name, const char param_type, int

default_value, const char *domain_name)

2 ATP_PARAM_ADD_VALUES(const char *param_name, void *vArray, int array_size,

const char *domain_name)

3 ATP_PARAM_GET(const char *param_name, void *tp_address, const char *domain_name)

Listing 7: API function calls for ATP declaration.

The other concept introduced with the current specification is the notion of domain. The
concept will be detailed further in Section 4.2.

H2020-FETHPC-2014 19



READEX D4.5-Deliverable

4.1.2 Example

In Listing 8, API calls are used to declare the atp cv variable to READEX as an application
tuning parameter and also to extract its values from the tuning system. In DTA, READEX
explores different values and assesses their performance, and in RAT only the best found
values are assigned.

1 void foo(){

2 int atp_cv;

3

4 ...

5 ATP_PARAM_DECLARE("solver", RANGE, 1, "DOM1");

6 ATP_ADD_VALUES("solver", {1,5,1}, 3, "DOM1");

7 ATP_PARAM_GET("solver", &atp_cv, "DOM1");

8

9 switch (atp_cv){

10 case 1:

11 // choose algorithm 1

12 break;

13 case 2:

14 // choose algorithm 2

15 break;

16 ...

17 }

Listing 8: Example of ATP declaration and value retrieval into the control variable atp cv

through ATPlib API functions.

4.2 Domains

An application source code may contain several application level parameters. Ideally, these
would be independent from each other. In practice, this is not necessarily the case; the
values of a parameter may depend on those of another one. This would translate into the
notion of constraints between parameters (detailed in Section 4.3). Therefore, the application
developer may indicate to READEX that a number of parameters have constraints between
them by putting them in the same domain.

4.2.1 Specification

In the API, domains are declared within the declaration of a parameter in the same call,
where both parameter name and domain name need to be supplied. Also, if no domain is
declared at a parameter declaration then the “default” domain is assigned to it. Listing 9
recalls the API call to declare a tuning parameter and illustrates that this same call also
serves as the domain declaration.
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1 ATP_PARAM_DECLARE(const char *param_name, const char param_type, int

default_value, const char *domain_name)

Listing 9: API function calls for ATP declaration.

4.2.2 Example

Listing 8 provides an example of domain assignment where the declared variable solver is
set to belong to the DOM1 domain.

4.3 Constraints

As mentioned earlier, in the case where two or more ATPs have constraints between them,
it is necessary to express the constraints to READEX, as this would allow to generate only
valid values for the tuple of parameters.

In order to take dependencies between ATPs into account, the ATP description formalism
allows these dependencies to be expressed mathematically in the form of constraints. An
example of such constraints is:

Let mesh, solver be integers

solver ranges in [1,5] with an increment of 1

mesh ranges in [0,80] with an increment of 10

constraints:

1. if solver equals one them mesh must be between 0 and 40.

2. if solver equals two them mesh must be between 40 and 80.

3. if solver is above two them mesh must be equal to 120.

As the listing shows ATPs solver and mesh are tied by the constraints 1,2 and 3. The logical
expression form that READEX accepts is:

(solver = 1 && 0 <= mesh <= 40)|| (solver = 2 && 40 <= mesh <= 80)||

(solver > 2 && mesh = 120)

In a nutshell the logical expressions accepted to describe constraints are those built using the
following rules and operators:

1. Addition, Subtraction, Multiplication and Division (+ , - , * , /) are accepted to form
affine functions.

2. The following operators are accepted to connect affine functions and construct logical
expressions: <,>,=, <=, >=, ! =.

3. The following operators to connect logical expressions are accepted: &&, ||.
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4. It is also possible to use parenthesis to override the base operators precedence : (, ).

In order to avoid increased complexity in constraint solving, READEX accepts affine function
based constraints only. These are sufficient to handle a wide range of constraints.

4.3.1 Specification

Constraint declaration goes through a single API function call as illustrated in Listing 10,
where the constraint is given in the form of a logical expression.

1 ATP_CONSTRAINT_DECLARE(const char *constraint_name, const char

*constraint_expr, const char *domain_name)

Listing 10: API call for constraint declaration through ATPlib API functions.

4.3.2 Example

An example of the declaration of a constraint between two ATPs is illustrated in Listing 11,
the concerned variables in the example are solver and mesh.

1 void bar(){

2 int atp_ms;

3

4 ...

5 ATP_PARAM_DECLARE("mesh", RANGE, 40, "DOM1");

6 ATP_ADD_VALUES("mesh", {0,80,10}, 3, "DOM1");

7 ATP_CONSTRAINT_DECLARE("const1", "(solver = 1 && 0 <= mesh <= 40)||

8 (solver = 2 && 40 <= mesh <= 80)||

9 (solver > 2 && mesh = 120)", "DOM1");

10 ATP_PARAM_GET("mesh", &atp_ms, "DOM1");

11

12 if(atp_ms > 1 && atp_ms <= 40)

13 {

14 ...

15 }

16 if(atp_ms > 40 && atp_ms <= 80)

17 {

18 ...

19 }

20 if(atp_ms == 120)

21 {

22 ...

23 }

24 ...

25 }
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Listing 11: Example of ATP constraint declaration through ATPlib API functions.

4.4 Exploration

Tuning parameters may have a big number of possible values, which can present a difficulty
during the tuning phase to explore all the values. Therefore, the tuning system makes use of
heuristics to guide the exploration and minimize its time cost. However, as the user can be
knowledgeable of the details of the tuning parameters he declared, he can give hints to the
tuning system about what heuristics would be better to use in the exploration.

4.4.1 Specification

The ATP library API provides a function call for the programmer to give hints to the
READEX tuning system about what heuristics to use. The call allows to give an ordered list
of exploration heuristics to the READEX system. It should be noted that the hints are tied
to a domain which means that all the parameters included in the domain would be subject
to the same hints. Listing 12 illustrates the exploration hints functions call.

1 ATP_EXPLORATION_DECLARE(const char *explorations_list, const char *domain_name)

Listing 12: API function calls for ATP declaration.

4.4.2 Example

An example of use of the exploration API call is given in Listing 13.

4.5 API code organization

The ATP library API offers a bit of flexibility regarding where to declare the parameters.
However, for good readability and proper functioning of the tuning system, some rules and
subtleties need to be taken into account. These are:

• The API call for declaring a tuning variable must be called before declaring its values
which also need to be called before the call of value retrieval. This means that the
functions for parameter declaration, value declaration and value retrieval must be all
called before the variable to which the parameter is tied is used to make the decision.

• Constraint API calls can be put anywhere, even if the tuning variables referenced in its
logical expression have not been declared yet.

• Exploration API calls can be put anywhere in the code.
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• The common condition for all API calls is that the calls must be reached by the execu-
tion flow during the first phase of the application.

• For the readability of the code it is better to have:

– Tuning variable declaration close to the corresponding control variable declaration.

– Tuning variable value retrieval call just before the decision statement involving the
corresponding control variable.

– Constraint declaration when all tuning variables involved in its expression have
been declared.

4.6 API Example

Listing 13 illustrates how ATPlib API functions can be used to declare variables from the
code as tuning parameters. It also shows how constraints between these variables can be
declared as well.

1 void foo(){

2 int atp_cv;

3

4 ...

5 ATP_PARAM_DECLARE("solver", RANGE, 1, "DOM1");

6 ATP_ADD_VALUES("solver", {1,5,1}, 3, "DOM1");

7 ATP_PARAM_GET("solver", &atp_cv, "DOM1");

8

9 switch (atp_cv){{

10 case 1:

11 // choose algorithm 1

12 break;

13 case 2:

14 // choose algorithm 2

15 break;

16 ...

17 }

18

19 int32_t hint_array = {GENETIC, RANDOM};

20 ATP_EXPLORATION_DECLARE(hint_array, "DOM1");

21 }

22

23 void bar(){

24 int atp_ms;

25

26 ...

27 ATP_PARAM_DECLARE("mesh", RANGE, 40, "DOM1");

28 ATP_ADD_VALUES("mesh", {0,80,10}, 3, "DOM1");

29 ATP_CONSTRAINT_DECLARE("const1", "(solver = 1 && 0 <= mesh <= 40)||
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30 (solver = 2 && 40 <= mesh <= 80)||

31 (solver > 2 && mesh = 120)", "DOM1");

32 ATP_PARAM_GET("mesh", &atp_ms, "DOM1");

33

34 if(atp_ms > 1 && atp_ms <= 40)

35 {

36 ...

37 }

38 if(atp_ms > 40 && atp_ms <= 80)

39 {

40 ...

41 }

42 if(atp_ms == 120)

43 {

44 ...

45 }

46 ...

47

48 }

Listing 13: Example of ATP exploitation through the ATPlib API functions.
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5 Domain Knowledge Specification Workflow

Figure 5 presents the integration of the specification of domain knowledge into the overall
DTA workflow.

Enough 
Dynamism

Region Specification

Identifier Specification

Dynamism Detection

Select next input

Run Periscope

Merge result into ATM

Further 
inputs

Final ATM

yes

nono

yes

no
Stop

ATP Specification

Figure 5: Integration of domain knowl-
edge specification into the DTA workflow.

Before application dynamism is detected with the
help of readex-dyn-detect, the application expert
specifies the phase region and may specify addi-
tional program regions.

Based on the result of dynamism detection, either
READEX tuning is stopped in case of no available
dynamism, or the application expert may add addi-
tional identifiers to support DTA. These identifiers
are region identifiers, phase identifiers, and input
identifiers. The identifiers will allow DTA to gen-
erate a more sophisticated ATM. While region and
phase identifiers are specified in the source code via
Score-P parameters, input identifiers are added in
files accompanying the original input file.

The final step in preparing DTA is to specify ATPs
in the application source files via calls to the ATP li-
brary. When the application is executed, the ATPs
are written to the ATP description file which is then
read by Periscope at the start of the analysis.

DTA then proceeds analyzing all the given inputs.
For each input an ATM is generated and merged
into the final ATM that is then given to RAT. DTA
terminates after all inputs were processed.

The application expert might add some additional
manual loops to the basic control flow. The gener-
ated tuning results and the ATM might allow the
expert to add additional DKSI specifications in or-
der to further enhance the tuning result. Depend-
ing on the type of additional specification, the steps
following the specification step in the control flow
will have to be executed again.
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6 Summary

This deliverable presented the specification means of DKSI that allow the application expert
to guide DTA to improve the result beyond the automatic version. It is the implementation
of the new READEX programming paradigm.

User regions can be used to aggregate too fine granular regions to enable their tuning. The
specification of the phase region allows to explore inter-phase dynamism in addition to the
intra-phase dynamism of the application. Region identifiers name different characteristics
of a computation and can be used to enhance the tuning model by distinguishing runtime
situations. Input identifiers characterize different input behavior and enable DTA to generate
a more global tuning model. DKSI also enables new tuning parameters specified via the
ATP library. DTA then takes these tuning parameters into account via a more extensive
search space for energy tuning. The implementation support for DKSI is presented in further
deliverables.
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