
GA no. 671657

D4.3

READEX Tool Suite version 2

Document type: Report
Dissemination level: Public
Work package: WP4
Editor: Venkatesh Kannan (ICHEC-NUIG)
Contributing partners: TUM, NTNU, TUD, ICHEC-NUIG, Intel
Reviewers: IT4I, GNS, Intel
Version: 1.0

Ref. Ares(2018)1137291 - 28/02/2018

READEX D4.3 Deliverable Report

Document history

Version Date Author/Editor Description

0.1 08-Jan-2018 Venkatesh Kannan (ICHEC-NUIG), Structure

0.2 02-Feb-2018

Andreas Gocht, Umbreen Sabir Mian (TUD),
Venkatesh Kannan (ICHEC-NUIG),
Michael Gerndt, Anamika Chowdhury,
Madhura Kumaraswamy (TUM),
Per Gunnar Kjeldsberg, Nico Reissmann (NTNU)
Uldis Locans (Intel)

for 1st review

0.3 16-Feb-2018

Andreas Gocht, Umbreen Sabir Mian (TUD),
Venkatesh Kannan (ICHEC-NUIG),
Michael Gerndt, Anamika Chowdhury,
Madhura Kumaraswamy (TUM),
Per Gunnar Kjeldsberg, Nico Reissmann (NTNU)
Uldis Locans (Intel)

for 2nd review

1.0 28-Feb-2018

Andreas Gocht, Umbreen Sabir Mian (TUD),
Venkatesh Kannan (ICHEC-NUIG),
Michael Gerndt, Anamika Chowdhury,
Madhura Kumaraswamy (TUM),
Per Gunnar Kjeldsberg, Nico Reissmann (NTNU)
Uldis Locans (Intel)

for submission

H2020-FETHPC-2014 2

Contents

1 Introduction 4

2 Features of Beta Prototype 6

2.1 Added Features of Design-Time Analysis (DTA) 6

2.2 Features of Runtime Application Tuning (RAT) 9

3 Using the Beta Prototype 13

3.1 User Guide . 13

3.2 Pathway . 13

4 Summary 15

A User Guide 17

A.1 Modules on Taurus . 17

A.2 Application instrumentation . 18

A.3 Design-time Analysis (DTA) . 20

A.4 Runtime Application Tuning (RAT) . 27

A.5 Filtering and Manual Instrumentation . 33

A.6 Application Tuning Parameter (ATP) Library 36

A.7 Examples . 39

3

READEX D4.3 Deliverable Report

1 Introduction

The READEX project develops a tools-aided approach to analyse and tune HPC applications
for energy efficiency on Exascale systems. This is achieved using the READEX tool suite,
the architecture and workflow of which were presented in Deliverable D4.1 [8]. In M18,
the project delivered the alpha prototype of the READEX tool suite the features of which
were summarised in Deliverable D4.2 [5]. The alpha prototype detected intra-phase and
inter-phase dynamism in applications, and in response to intra-phase dynamism tuned three
tuning parameters – processor core frequency using DVFS (dynamic voltage and frequency
scaling), processor uncore frequency using UFS (uncore frequency scaling) and number of
OpenMP threads – to determine and set optimal tuning configurations for runtime situations
of significant regions.

The beta prototype of the READEX tool suite delivered in M30, which extends the alpha
prototype, implements the features as described below:

1. Design-Time Analysis (DTA) As a first step in DTA, the tuning potential of an
HPC application is quantified using two dynamism metrics: execution time and com-
pute intensity. If an application is determined to have significant tuning potential, then
experiments are performed during DTA to analyse the runtime situations (rts’s) of sig-
nificant regions in the application for intra-phase and inter-phase dynamism. These
experiments are used to identify the optimal configurations for hardware, system soft-
ware and application tuning parameters using multiple objectives. The results of the
DTA experiments are used to create a tuning model. The tuning model encapsulates
the results of the DTA in the form of scenarios, configurations, classifier and selec-
tor. While the classifier maps each instance of a significant region during its execution
into a scenario, the selector provides the best configuration determined for the tuning
parameters during DTA for a given scenario.

The major extensions to the beta prototype are the ability to tune application parame-
ters using the Domain-Knowledge Specification Interface (DKSI), the support for input
identifiers, and the extensions to the READEX plugin developed for evaluating the
tuning success.

DTA is performed by the Periscope Tuning Framework (PTF) in conjunction with
Score-P that provides the instrumentation and measurement infrastructure. The abil-
ity to specify and tune application tuning parameters is provided through the newly
developed ATP library which implements the DKSI. To perform the tuning actions
when searching for the best configurations during experiments in DTA, PTF uses some
modules implemented in the READEX Runtime Library (RRL) implementing Runtime
Application Tuning (RAT).

2. Runtime Application Tuning (RAT) Following the completion of DTA and the
creation of a tuning model, the READEX tool suite can perform runtime tuning during
the production run of the application. The runtime tuning is performed by first classify-
ing each instance of a significant region into a scenario as specified in the tuning model.

H2020-FETHPC-2014 4

READEX D4.3 Deliverable Report

The scenario identification mechanism uses additional significant region identifiers, in
the form of Score-P user parameters, that are included in the tuning model. Following
this, the optimal configuration for the current scenario during the production run is
selected from the tuning model and applied in a step called switching.
A major extension to the beta prototype is the extension to update the tuning model
during RAT using a step called calibration, which uses machine learning to analyse
runtime situtations that were unseen during DTA and adds them to the tuning model
during RAT, and the implementation of advanced scenario classification and selection
mechanisms.
In the beta prototype, switching is performed for the processor core frequency, uncore
frequency, number of OpenMP threads and application parameters. The parameter
control plugins that have been implemented to support this also additionally support
energy performance bias (EPB) and number of MPI processes.
The RAT is performed by the RRL in conjunction with the Score-P tool.

H2020-FETHPC-2014 5

READEX D4.3 Deliverable Report

2 Features of Beta Prototype

DTA identifies the optimal configurations of tuning parameters for runtime situations (rts’s),
i.e., individual executions of program regions (see Deliverable D4.1 [8], page 10). These
optimal configurations are stored in a tuning model which is then passed to the RAT that
automatically switches to the identified configurations dynamically during the application’s
production run.

2.1 Added Features of Design-Time Analysis (DTA)

DTA forms the first stage in the READEX tool suite. The beta prototype of the tool suite
extends the alpha prototype by extending existing components and adding new components,
thereby achieving the following goals that are summarised in Sections 2.1.1 through 2.1.4:

• Extension of DTA for Application Tuning Parameters (ATP).

• Extension for input identifiers.

• Advanced tuning model generation.

• Extension for evaluating the tuning success.

This section describes the new features that were added to the DTA stage in the beta proto-
type. Newly added components (colored red), and modified components (colored green) are
illustrated in Figure 1.

2.1.1 Extensions for Application Tuning Parameters

The following components implement the support for ATPs, which is described in Deliver-
able D2.3:

ATP Library The ATP library implements the Domain-Knowledge Specification Interface
(DKSI) defined in Deliverable D4.5. It allows to specify tuning parameters with their
sets of values and their ATP domain. Variables in the same ATP domain can have
constraints defining valid settings.

During DTA, the ATP library generates the ATP Description File specifying ATP
domains, ATPs, and constraints in the first application phase. In subsequent application
phases, the ATP library receives the ATP settings configured by PTF through the online
access interface from the RRL and assigns the values to application variables influencing
the control flow.

ATP Server In contrast to the ATP library which is tied to the application itself, the ATP
server is launched by PTF, and reads the contents of the ATP description file. The

H2020-FETHPC-2014 6

READEX D4.3 Deliverable Report

Periscope Tuning Framework

RTS
Database

Tuning Model
Generation

READEX Tuning Plugin

TMTM

Tuning
Model
Merger

ATP
Server

ATP
Description

File

ATP
Library

Score-P

Input
Identifiers

Merged
ATM

…….

Online-access Interface

READEX Runtime
Library (RRL)

Application

Omega
Calculator

Figure 1: DTA support for input identifiers and application tuning parameters. Components
developed since the alpha prototype are colored red, modified components green.

primary task of the ATP server is to respond to PTF’s requests on ATPs. Some requests
are simple, such as querying the list of ATP parameters, and the server can get the
information by looking in the content of the ATP description file. Other requests are
more complex, such as the generation of a list of valid points for the parameters, which
requires the resolution of the constraints held between parameters. This requires the
server to query a third party constraint solver software called the Omega Calculator
[12].

Omega Calculator The Omega Calculator is an affine functions constraint solver, and is
used to generate valid values for each ATP for the recorded constraints by filtering the
tuning parameter values that do not satisfy the constraints. The Omega Calculator
software is composed of the so-called Omega Library, which constitutes the core of the
solver, as well as a text interpreter to query the library. The software is registered under
the BSD licence and the source code can be downloaded freely from Github [11]. One
big advantage of using the Omega Calculator is the small computational time needed
to solve the affine function based constraints, which makes it fit for use to solve the
constraints at runtime.

READEX Tuning Plugin PTF performs intra-phase analysis by executing the READEX
tuning plugin, which reads the objective(s) (Energy, CPU Energy, Execution Time or
Total Cost of Ownership), the tuning parameters (CPU frequency, uncore frequency and
the number of OpenMP threads), the search strategy (exhaustive, random, individual

H2020-FETHPC-2014 7

READEX D4.3 Deliverable Report

or genetic) and the significant regions from the READEX configuration file. It also
starts the ATP Server and retrieves the information about ATPs. PTF provides two
new search strategies for ATPs: exhaustive atp and individual atp. The strategies
retrieve the valid points for ATPs from the ATP Server. A new first tuning step
was added to the READEX plugin that tunes the ATPs with the help of the new
search strategies. At the end of the tuning step, the best configuration for the ATPs is
fixed and the system-level tuning parameters are explored in the second tuning step as
implemented in the alpha prototype.

2.1.2 Extensions for Input Identifiers

The following components implement the support for input identifiers as described in Deliv-
erable D2.3:

RTS Database The information about each rts, including its call path, region identifiers,
default objective values, and the best and the worst setting of the tuning parameters
for the READEX tuning plugin is stored in the RTS database. The RTS database was
extended for storing also the input identifiers that are read at the beginning of DTA
from a file accompanying the input data set. In addition, the number of processes and
threads is stored there as well and also handled as input identifiers.

READEX Tuning Plugin At the end of the READEX Tuning Plugin the input identifiers
are passed to Tuning Model generation.

Tuning Model Generation Finally, a tuning model is generated from the knowledge
stored in the RTS database. The tuning model generation was extended for supporting
input identifiers. These are written into the TM and guide tuning model merging.

Tuning Model Merger For each DTA run with an input specification file, a separate tun-
ing model is generated. These tuning models are merged by this new external tool into
a single generic tuning model. The Tuning Model Merger then merges all the tuning
models into one merged application tuning model file, which is then read at runtime to
perform dynamic switching.

2.1.3 Advanced Tuning Model Generation

The following components implement the advanced clustering mechanisms as described in
Deliverable D2.3:

Tuning Model Generation An advanced clustering mechanism was added to support clus-
tering of rts system configurations for the generation of scenarios. The clusterer uses
hierarchical clustering and proceeds in three phases: dendrogram generation, cluster
generation, and scenario creation. Dendrogram generation builds a tree of the indi-
vidual rts’s to conveniently express the distance betweens these rts’s in the tuning

H2020-FETHPC-2014 8

READEX D4.3 Deliverable Report

parameter space. Cluster generation finds the optimal number of clusters based on the
Calinski-Harabasz Index [3], and finally, scenario generation creates scenarios from the
found clusters.

2.1.4 Evaluation of the Tuning Success

The following components were extended to provide feedback on the tuning success:

READEX Tuning Plugin The READEX Tuning Plugin was extended for computing the
tuning success. In a very first tuning step, it determines the objective value for the
default configuration of the machine and the application tuning parameters. This is
the basis for the evaluation. Another added tuning step at the end of the tuning plugin
determines the static best configuration for the phase and the best configurations for
each significant region. It then configures the RRL with this determined best configu-
ration and performs three experiments to evaluate the stability of the results. During
the experiments the switching happens as during RAT. The experiments enable check-
ing for the stability of the results. Finally, the tuning plugin outputs the theoretical
achievements as the reduction due to static tuning and dynamic tuning. Details can be
found in Deliverable D2.3.

2.2 Features of Runtime Application Tuning (RAT)

The READEX Runtime Library (RRL) implements the second stage of the READEX tool-
suite; namely runtime application tuning (RAT). The RRL receives the tuning model gen-
erated during the DTA phase. Then, during the production run of the application, it au-
tomatically switches to the best configurations identified in the tuning model for different
application regions. Moreover, some parts of the RRL are also used during the DTA as
mentioned in Section 2.1.

The beta prototype extends and adds to the modules that were already present in the alpha
prototype. This version of RRL also includes the implementation of the calibration mecha-
nism. Figure 2 shows the current design of the RRL. Modules that have been added or have
undergone major changes are marked green. Red marks the modules that are developed as
part of the READEX tool suite.

This section summarises the changes made to the RRL for the beta prototype since the alpha
prototype, while details about the unchanged modules are available in the report about the
alpha prototype in Deliverable D4.2 [5].

Control Center Being the central component of RRL, Control Center manages the com-
munication of RRL with Score-P and also the communication among the components of
the RRL. Information coming from Score-P is accumulated in the Control Center, from
where this information is redirected to the respective components of RRL responsible
for processing that particular information. The information coming from the Online

H2020-FETHPC-2014 9

READEX D4.3 Deliverable Report

Periscope
Tuning

Framework

Application
Tuning Model

Score-P

Online
Access

Interface

Substrate
Plugin

Interface

Instrumen-
tation

Metric
Plugin

Interface

Energy
Measurements

(HDEEM)

READEX Runtime Library

Parameter
Controller

Selector

Calibration
RTS

Handler

Control
Center

Classifier

OA Event
Receiver

Parameter
Control Plugin

ATP Library

Switching
Visualisation

Figure 2: Current architecture of the READEX Runtime Library (RRL). Red: Implementa-
tion is part of the extensions made for the READEX tool suite. Green: Implementation has
changed since the alpha prototype

Access interface of Score-P is forwarded to the OA Event Receiver and the information
related to the runtime situations (rts’s) is propagated to the RTS Handler. In the alpha
prototype, the Control Center received the enter region, exit region and user parameter
events for each rts which was then passed to the RTS Handler. In the beta prototype,
the Control Center has been extended to receive the information for the thread creation
and deletion in case of OpenMP applications. This information further goes down to
the RTS Handler. The different enter region, exit region, and user parameter events
are also now forwarded to the Calibration module.

RTS Handler The RTS Handler is extended to receive the thread creation and deletion
information from the Control Center for OpenMP applications and passes it down to

H2020-FETHPC-2014 10

READEX D4.3 Deliverable Report

the Parameter Controller. Furthermore, the RTS Handler is enhanced to accomodate
the Calibration mechanism.

Upon receiving an enter region notification from Score-P via the Control Center during
the application run, the RTS Handler checks with the Tuning Model Manager (TMM)
whether the current region is a significant or an unknown region. If it is an unknown
region, the calibration mechanism is called, and nothing else is done.

Tuning Model Manager (TMM) A Tuning Model is generated as a result of DTA and
is required in RAT for running the application with the best configuration identified.
The Tuning Model Manager holds the Tuning Model.

Advanced scenario classification and selection has been implemented in RAT TMM.
During the application execution, the RTS Handler communicates with the TMM and
passes the different rts’s to the RAT TMM. The RAT TMM checks if the given rts
is present in the Tuning Model. If yes, then it gets the scenario associated with the
given rts. To each scenario a certain configuration is associated. This configuration
is then handed back to the RTS Handler. Together with the calibration mechanism,
the RAT TMM can now add new configurations to the TM. For details regarding the
implementation of advanced scenario classification and configuration selection, please
refer to the Deliverable D3.2 [6].

Parameter Controller As the name suggests, it controls the configuration switching of
tuning parameters mentioned in Deliverable D1.1 [4]. The purpose of this component
is to provide an interface between the RRL and the Parameter Control Plugins which
are described below. This interface has been updated to pass the information for the
creation and deletion of threads in case of OpenMP applications from the RTS Handler
to the Parameter Controller.

Furthermore, the Parameter Controller is also extended to add the application tuning
parameter (ATP) support. Two new subroutines for declaring a new ATP and to pass
the configuration of the ATP stored in the Tuning Model to the application are added.
The routine for declaring an ATP is invoked when an API call for ATP PARAM DECLARE

from the DKSI is encounterd. Similarly the routine for getting the ATP optimal config-
uration is invoked when the program approaches the API call for ATP PARAM GET from
the DKSI. The detailed syntax of the ATP related API calls from the DKSI is provided
in the Deliverable D1.2 [9].

Parameter Control Plugins Switching of parameter settings is performed via the Param-
eter Control Plugins. For the beta prototype, the following parameter control plugins
are available.

• Dynamic Voltage and Frequency Scaling (DVFS)

• Uncore Frequency Scaling (UFS)

• Energy Performance Bias (EPB)

• MPI

H2020-FETHPC-2014 11

READEX D4.3 Deliverable Report

• OpenMP

A detailed description of all the above listed Parameter Control Plugins is available in
Deliverable D1.1 [4].

Calibration The goal of the calibration is to handle unseen rts’s during the production run
of an HPC application. These unseen rts’s may consist of already known regions which
have some unknown parameters. Alternatively, these rts’s may consist of completely
new regions which have totally unknown characteristics.

A machine learning based approach is implemented which uses hardware performance
events as feature vector for learning. Neural Networks (NN) is the algorithm of choice.

Feature vector (selected hardware performance events) for a given configuration of the
processor core frequency normalized by the runtime of the region that results in the
lowest energy consumption is given as input to the NN. The optimal processor core
frequency for each region is the output of the NN.

For details regarding the concept and detailed implementation of the Calibration mod-
ule, refer to the Deliverable D3.2 [6].

H2020-FETHPC-2014 12

READEX D4.3 Deliverable Report

3 Using the Beta Prototype

3.1 User Guide

Associated with the beta prototype, we have created a detailed user guide with step-by-
step instructions on using the tool suite on a given application. The detailed user guide is
presented in Appendix A and it includes an example application to describe the steps to
apply the tools, along with pointers to the example available on the Taurus cluster at TU
Dresden which are accessible to the end-users.

3.2 Pathway

Pathway [10] is a high-level tool that supports an HPC user in managing application perfor-
mance tuning with a formal workflow definition, workflow execution and workflow protocoling
based on the standard Business Process Model and Notation (BPMN) format. By integrat-
ing all optimisation steps in a single workflow, Pathway allows structured and methodical
performance engineering. Once defined, a Pathway workflow can then be executed by auto-
matically triggering individual activities which may be execution of arbitrary tools or human
tasks.

In the READEX project, Pathway is used to integrate the methodologies required to apply
the tool suite and to simplify user interaction with the HPC system and the READEX tool
suite. This was achieved by extending existing work items and creating new READEX-specific
work items to achieve the steps required for the READEX workflow shown in Figure 3.

This workflow allows selecting the HPC system and the configuration (number of MPI
processes and OpenMP threads) with which to execute the application in conjunction
with the READEX tool suite. It is composed of tuning potential analysis using the
readex-dyn-detect tool, design-time analysis using PTF and runtime application tuning
using the RRL. The workflow allows the user to specify multiple inputs to the application
for tuning potential and design-time analysis, and automatically prepares the READEX con-
figuration file generated by readex-dyn-detect for use by PTF using inputs for the tuning
parameters, objectives and other necessary inputs specified by the user in the Pathway ap-
plication interface.

The results from different stages of the application’s execution are summarised in the
READEX browser that was newly created, an example of which is presented in Figure 4.
The results that are summarised in the READEX browser include the list of applications
that have been executed with the READEX tool suite, the summary of applying DTA each
time to the application, dynamism information produced by the readex-dyn-detect tool
obtained from the READEX configuration file, and the input used for the application to
run the DTA experiments. Underneath the summary of results from DTA are three sections
that provide details of the inter-phase and intra-phase dynamism that were identified and
the tuning model file that was generated as a result of DTA.

H2020-FETHPC-2014 13

READEX D4.3 Deliverable Report

Figure 3: READEX workflow in Pathway

Figure 4: Pathway READEX browser sample

The READEX workflow can be loaded as a pre-existing workflow available in Pathway. A
detailed documentation of the extensions to Pathway for the READEX project and a user
guide will be produced after M30.

H2020-FETHPC-2014 14

READEX D4.3 Deliverable Report

4 Summary

The features of the beta prototype of the READEX tool-suite summarised in this report
cover the features that were targeted by M30 as outlined in the Deliverable D4.1 [8]. This
prototype is currently being used to evaluate the benchmark applications selected for the
READEX project as described in Deliverable D4.1 [8].

Continuing beyond M30, the READEX tool suite will be evaluated against the benchmark
and production applications in the READEX test suite described in Deliverable D5.2. The
beta prototype will also be made available to external users on the Taurus test-bed cluster
at TU Dresden and for installation through RPM/DEB installation packages. Using the
READEX tool-suite on a HPC cluster requires an energy measurement infrastructure such
as HDEEM, RAPL or msr-safe.

References

[1] H. Brunst, D. Hackenberg, G. Juckeland, and H. Rohling. Comprehensive performance
tracking with Vampir 7. In M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel,
editors, Tools for High Performance Computing, pages 17–30, Berlin, 2010. Springer.

[2] Holger Brunst and Bernd Mohr. Performance analysis of large-scale OpenMP and hybrid
MPI/OpenMP applications with VampirNG. In Proceedings of the First International
Workshop on OpenMP (IWOMP 2005), Eugene, Oregon, USA, May 2005.

[3] T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications
in Statistics, 3(1):1–27, 1974.

[4] Andreas Gocht, Zakaria Bendifallah, Umbreen Sabir Mian, and Othman Bouizi. D1.1:
Hardware and system-software tuning plugins. Technical report, TUD, Intel, 2016.

[5] Andreas Gocht, Umbreen Sabir Mian, Michael Lysaght, Venkatesh Kannan, Michael
Gerndt, Anamika Chowdhury, Madhura Kumaraswamy, Per Gunnar Kjeldsberg, Mo-
hammed Sourouri, and Nico Reissmann. D4.2: Prototype READEX tool suite. Technical
report, ICHEC, TUD, TUM, NTNU, IT4I, Intel, GNS, 2017.

[6] Per Gunnar Kjeldsberg. D3.2: Final mechanisms for run-time detection, switching and
calibration. Technical report, TUD, Intel, 2018.

[7] Per Gunnar Kjeldsberg, Michael Gerndt, Mohammed Sourouri, and Anamika Chowd-
hury. D2.1 analysis of tuning potential and scenario identification. Technical report,
NTNU, TUM, 2016.

[8] Michael Lysaght, Kashif Iqbal, Joseph Schuchart, Andreas Gocht, Michael Gerndt,
Anamika Chowdhury, Madhura Kumaraswamy, Per Gunnar Kjeldsberg, Magnus Jahre,
Mohammed Sourouri, David Horak, Lubomir Riha, Radim Sojka, Jakub Kruzik, Kai

H2020-FETHPC-2014 15

READEX D4.3 Deliverable Report

Diethelm, and Othman Bouizi. D4.1: Concepts for the READEX tool suite. Technical
report, ICHEC, TUD, TUM, NTNU, IT4I, Intel, gns, 2016.

[9] Umbreen Sabir Mian and Zakaria Bendifallah. D1.2 final tuning plugins. Technical
report, TUD, Intel, 2017.

[10] Ventsislav Petkov, Michael Gerndt, and Michael Firbach. Pathway: Performance analy-
sis and tuning using workflows. In Proceedings of the IEEE 10th International Conference
HPCC EUC 2013, pages 792–799, Nov 2013.

[11] Evan Rosser, Wayne Kelly, Bill Pugh, Dave Wonnacott, Tatiana Shpeisman, and
Vadim Maslov. The Omega calculator. https://github.com/davewathaverford/

the-omega-project.

[12] Evan Rosser, Wayne Kelly, Bill Pugh, Dave Wonnacott, Tatiana Shpeisman, and Vadim
Maslov. The Omega project. http://www.cs.umd.edu/projects/omega/.

[13] P. Saviankou, M. Knobloch, A. Visser, and B. Mohr. Cube v4: From performance report
explorer to performance analysis tool. Procedia Computer Science, 51:1343–1352, 2015.

H2020-FETHPC-2014 16

https://github.com/davewathaverford/the-omega-project
https://github.com/davewathaverford/the-omega-project
http://www.cs.umd.edu/projects/omega/

READEX D4.3 Deliverable Report

A User Guide

This section describes how to use the READEX tool suite according a simple workflow:

1. Instrument the application with Score-P. (Section A.2)

2. Perform design-time analysis of application to create tuning model. (Section A.3)

3. Use the tuning model during the production run of the application for runtime tuning.
(Section A.4)

A.1 Modules on Taurus

The tools in the READEX tool suite are accessible through modules created either by the
continuous integration process or the beta release of the tool suite. Users in the p readex

group may use either, while those in p readextest can only use the beta release.

Depending on the choice of compilers used for the application (GCC or Intel), load one of
these modules to use the READEX tools that are required to analyse and tune an application
at the different steps in the workflow from Section 1.

A.1.1 Continuous integration

Load the continuous integration modules on Taurus as follows:

• For gcc/6.3.0 and bullxmpi/1.2.8.4:

module use /projects/p_readex/modules

module load readex/ci_readex_bullxmpi1.2.8.4_gcc6.3.0

• For intel/2017.2.174 and intelmpi/2017.2.174:

module use /projects/p_readex/modules

module load readex/ci_readex_intelmpi2017.2.174_intel2017.2.174

A.1.2 Beta release

Load the beta release modules on Taurus as follows:

• For gcc/6.3.0 and bullxmpi/1.2.8.4:

module load readex/beta_gcc6.3.0

• For intel/2017.2.174 and intelmpi/2017.2.174:

module load readex/beta_intel2017.2.174_intelmpi2017.2.174

H2020-FETHPC-2014 17

READEX D4.3 Deliverable Report

A.2 Application instrumentation

A.2.1 Build application with Score-P

The READEX tool suite is based on instrumenting an application with Score-P. Instrumen-
tation inserts measurement probes into the source code of the application. This can be done
by the compiler, other software tools, or manually. Detailed documentation on Score-P and
the instrumentation features can be found at www.score-p.org.

1. Modify the application’s makefile for instrumentation with Score-P. Prepend the compi-
lation with the scorep command. For example,

Replace MPICXX = mpic++ -fopenmp

by MPICXX = scorep -mpp=mpi mpic++ -fopenmp

The scorep command switches on compiler instrumentation of program functions as well
as instrumentation of MPI routines and OpenMP regions.

Use -mpp=mpi for MPI applications and -mpp=none for non-MPI applications.

2. Build the application. Note that Score-P and the application have to be built with the
same compiler.

3. Run the application as like the uninstrumented version.

Outcome: Compiler instrumentation of the application is performed; upon application exe-
cution, Score-P creates a profile (profile.cubex) file in the scorep-<xyz> directory at the
execution location.

A.2.2 Filtering

The probes inserted in the application through instrumentation add overhead to the ap-
plication execution and thus can make any measurements and tuning efforts wasted time.
Therefore, it is essential to make sure that the instrumentation overhead is below a certain
limit. Therefore, this section focuses on giving you advice on the support in Score-P for
reducing the measurement overheads. To measure the overhead, first measure the execution
without instrumentation and then measure it with instrumentation.

To reduce the overhead from instrumentation to an acceptable level,

1. First try to reduce the overhead with runtime and compile time filtering as described
in Sections A.5.1 and A.5.2, respectively.

2. You may also remove MPI and OpenMP region instrumentation overhead as described
in Section A.5.3.

H2020-FETHPC-2014 18

http://www.score-p.org

READEX D4.3 Deliverable Report

3. Then switch on the energy measurements with HDEEM since it has a much higher
overhead than just time measurements as described in Section A.5.4. Verify the over-
head again.
As an alternative, RAPL can be used for energy measurement, which has lesser over-
head than HDEEM. Note that the energy measurements from RAPL may not be precise
enough. For instance, a reading time less than 40 ms (that is 40 ms function execution
time and 1 ms sampling rate) may result in approximately 2.5% error.

4. If the overhead is still too high, consider manual instrumentation of those regions that
are relevant for the READEX tool suite as described in Section A.5.5.

Do not proceed to energy tuning if the overhead is too high.

A.2.3 Phase region instrumentation

Specify the phase region: Manually annotate the phase region of the application as
shown below:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

// loop starts

SCOREP_USER_OA_PHASE_BEGIN(REGION_HANDLE, "PHASE_REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)

// loop body (phase region)

SCOREP_USER_OA_PHASE_END(REGION_HANDLE)

// loop ends

A phase region is a repetitive, single-entry and exit region, typically the body of the main
progress loop of the application. If the phase region is not known beforehand, it may be
useful to look at the profile.cubex file generated after running the scorep-autofilter

tool with a performance analysis tool like CUBE [13].

Example The for-loop body in Integrate::run() is annotated as a phase region as
shown in the example in Section A.7.2.

A.2.4 Application tuning parameter instrumentation

Specify the application tuning parameters: It is also possible to optionally exploit
application level tuning using the READEX tool suite. This requires some additional manual
code annotation and instrumentation to pinpoint the parts of the code that can be exploited
as application tuning parameters and annotate them with certain API functions.

This is enabled in READEX using the ATP (Application Tuning Parameter) library and the
procedure for this is described in Section A.6.1.

H2020-FETHPC-2014 19

READEX D4.3 Deliverable Report

A.3 Design-time Analysis (DTA)

A.3.1 Tuning Potential Analysis

The first step in the DTA is to detect and analyze the dynamism of the application using
readex-dyn-detect. The tool automatically identifies the significant regions that are subject
to the READEX tuning methodology and generates a report on the potentially exploitable
dynamism in these regions.

The readex-dyn-detect tool requires a single phase region, which is to be instrumented as
described earlier in Section A.2.3.

Perform the following steps to use readex-dyn-detect:

1. Build the application with scorep --online-access --user --thread=none for the
manually annotated phase region and add --nocompiler if the application is manually
instrumented.

2. Run the application with the following environment variables set:

export SCOREP_PROFILING_FORMAT=cube_tuple

export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_L3_TCM

export SCOREP_FILTERING_FILE=<filter_file_name_with_extension>

This will create a tupled profile.cubex file in the scorep-<xyz> directory at the execu-
tion location.

3. Apply the readex-dyn-detect tool on the profile.cubex file as follows:

readex-dyn-detect -t <region_granularity_threshold_in_sec>

-p <phase_region_name>

-c <compute_intensity_variation_threshold>

-v <execution_time_variation_threshold_in_percent>

-w <region_execution_time_weight_wrt_phase_execution_time_in_percent>

-r <Configuration file name without extension>

-f <RADAR_report_file_name>

<path_to_cubex_file>/profile.cubex

The command line options have the following meaning:

-t This threshold specifies the minimal mean execution time of regions that are to be
considered as significant regions. Use a value larger than 0.1 (100 ms).

-p Name of the phase region as given in the instrumentation.

-c This is the required minimal standard deviation of the compute intensities of significant
regions with a weight above the given threshold, such that intra-phase dynamism due
to compute intensity variation is reported.

H2020-FETHPC-2014 20

READEX D4.3 Deliverable Report

-v This is the required minimal standard deviation of the execution time of instances of
significant regions in percent of the mean region’s execution time, such that intra-
phase dynamism is reported. It is also used to decide whether inter-phase dynamism
exists. Only if the standard variation of the phase time in percent of the mean phase
time is greater, inter-phase dynamism is reported.

-w This threshold specifies the minimal weight of a region such that any dynamism due
to time variation or compute intensity variation is reported.

-r This is the desired name for the READEX configuration file to be created by
readex-dyn-detect without the file name extension.

-f If a file name is given, the report is generated in LATEX form to include it into the
RADAR report.

4. The results of readex-dyn-detect are summarized in readex config.xml in the execu-
tion directory, which is used as an input to PTF. An example of readex config.xml is
available in <PTF installation path>/templates/readex config.xml.default.

Alternatively, the readex config.xml file may be manually created from this template
and used as input for PTF without applying readex-dyn-detect if the significant regions
are already known.

Note: readex-dyn-detect currently ignores MPI and shared memory regions in the
significant regions analysis.

Outcome: The readex config.xml file containing the tuning potential summary, the list
of significant regions, and the intra-phase and inter-phase dynamism due to variation in the
execution time and compute intensity.

Section A.7.5 presents an example.

A.3.2 Specify Criteria for DTA

The next step of the DTA is to update the readex config.xml file generated by the
readex-dyn-detect tool with additional criteria for the design-time analysis experi-
ments performed by the Periscope Tuning Framework (PTF). The steps to update the
readex config.xml file are as follows:

1. Specify the tuning parameters: The READEX tuning plugin supports three tuning param-
eters – processor core frequency, uncore frequency and the number of OpenMP threads.
A minimum of one tuning parameter must be specified. Specify the ranges (minimum,
maximum and the step size) for the processor core frequency in kHz and for the uncore
frequency in 100 million Hz. For OpenMP threads, specify the lower bound and the step
size to increment to the next value.

H2020-FETHPC-2014 21

READEX D4.3 Deliverable Report

Example

<tuningParameter>

<frequency>

<min_freq>1200000</min_freq>

<max_freq>2400000</max_freq>

<freq_step>500000</freq_step>

</frequency>

<uncore>

<min_freq>10</min_freq>

<max_freq>30</max_freq>

<freq_step>2</freq_step>

</uncore>

<openMPThreads>

<lower_value>1</lower_value>

<step>2</step>

</openMPThreads>

</tuningParameter>

2. Specify the objectives: Specify at least one objective from Energy, Execution Time, CPU
Energy, Energy Delay Product, Energy Delay Product Squared, CPUEnergy, Total Cost of
Ownership (TCO). The normalized version of each of the objectives can also be specified.
The plugin measures the objective values for all the specified objectives, but tunes the
application only for the objective that is specified first.

Example

<objectives>

<objective>Energy</objective>

<objective>NormalizedEnergy</objective>

<objective>Time</objective>

<objective>NormalizedTime</objective>

<objective>EDP</objective>

<objective>NormalizedEDP</objective>

<objective>ED2P</objective>

<objective>NormalizedED2P</objective>

<objective>CPUEnergy</objective>

<objective>NormalizedCPUEnergy</objective>

<objective>TCO</objective>

<objective>NormalizedTCO</objective>

</objectives>

To compute TCO, the CostPerJoule and CostPerCoreHour also needs to be specified.

<Configuration>

<CostPerJoule>0.00000008</CostPerJoule>

<CostPerCoreHour>1.0</CostPerCoreHour>

</Configuration>

3. Specify the energy metrics: Specify the energy plugin name and associated metric names.
For hdeem sync plugin, it’s possible to measure the energy for the whole node and for
the CPUs. The energy metrics should be specified under <periscope> </periscope>.

H2020-FETHPC-2014 22

READEX D4.3 Deliverable Report

Example

<periscope>

<metricPlugin>

<name>hdeem_sync_plugin</name>

</metricPlugin>

<metrics>

<node_energy>hdeem/BLADE/E</node_energy>

<cpu0_energy>hdeem/CPU0/E</cpu0_energy>

<cpu1_energy>hdeem/CPU1/E</cpu1_energy>

</metrics>

</periscope>

To specify the RAPL counter energy plugin x86 energy sync plugin, use the configura-
tion as follows:

Example

<periscope>

<metricPlugin>

<name>x86_energy_sync_plugin</name>

</metricPlugin>

<metrics>

<node_energy>x86_energy/BLADE/E</node_energy>

<cpu0_energy>x86_energy/CORE0/E</cpu0_energy>

<cpu1_energy>x86_energy/CORE1/E</cpu1_energy>

</metrics>

</periscope>

4. Specify a search algorithm: Specify a single search algorithm from exhaustive, random,
individual or genetic search. For the random search strategy, specify the number of sys-
tem configurations that the plugin should explore. For the individual search, specify the
number of tuning parameter values to keep in the search space. Individual search tunes
the parameters independently. The number of best settings (keep factor) are taken into
account when tuning the next parameter. For the genetic search, specify the population
size, the maximum number of generations and the timer to set an upper limit on the
tuning execution time.

Example

<periscope>

<searchAlgorithm>

<name>exhaustive</name>

<name>random</name>

<samples>2</samples>

<name>individual</name>

<keep>2</keep>

<name>gde3</name>

<populationSize>10</populationSize>

<maxGenerations>10</maxGenerations>

<timer>20</timer>

</searchAlgorithm>

</periscope>

H2020-FETHPC-2014 23

READEX D4.3 Deliverable Report

If Application Tuning Parameters are used, you also specify the search strategy for ATP
tuning (see Section A.6.2).

5. Specify the tuning model file name: The generated tuning model file name can also be
specified under <periscope> </periscope>

Example

<periscope>

<tuningModel>

<file_path>./tuning_model.json</file_path>

</tuningModel>

</periscope>

Optionally, if the Application Tuning Parameter (ATP) library is used, then the details for
the ATP library should be included in the READEX configuration file as outlined in Section
A.6.2.

A.3.3 Tuning Model Creation

After updating the readex config.xml file for use by PTF, use the following steps to per-
form design-time analysis using PTF as explained using a slurm job script for the miniMD
application as an example.

1. Build the application with instrumentation as discussed in Section A.2.3 (scorep
--online-access --user) for the instrumented phase region. Additionally, you may op-
tionally use the Score-P options that are required to specify compile-time filtering, MPP
and thread instrumentation options. Refer to the Score-P documentation for this.

2. Set the number of nodes to at least 2 (line 4), and allocate enough memory per CPU to
fit the application as shown in line 9. In general, if N > 1 nodes are allocated for this
job, then PTF will use one node for the tool’s agents and the remaining N-1 nodes for the
application processes.

3. Use the parameter control plugins compatible with Score-P and PTF as shown in line 27,
and set the environment variable with the tuning parameters as shown in line 28.

4. Load the scorep-hdeem sync plugin for energy measurements compatible with the Score-
P built for the READEX toolsuite, and set the environment variables as shown in lines
31–38.

5. Apply PTF on the application with the psc frontend command as shown in lines 40–48.
Specify the instrumented phase region name for the option --phase, the readex tuning
plugin for --tune and the readex configuration file for --config-file.

The options --info and --selective-info are only used for debug messages, and are
not mandatory. For more debug output, set the --info=<max info level> between 2

H2020-FETHPC-2014 24

https://silc.zih.tu-dresden.de/scorep-current.pdf

READEX D4.3 Deliverable Report

and 7, and --selective-info=<comma separated list of information levels>. For
more information about other options, see psc frontend --help.

This will produce a tuning model in the execution directory under the name specified in
the readex config.xml file, or tuning model.json if unspecified.

1 #!/bin/sh

2

3 #SBATCH --time=5:00:00 # walltime

4 #SBATCH --nodes=2 # number of nodes requested; 1 for PTF and remaining for application run

5 #SBATCH --tasks-per-node=8 # number of processes per node for application run

6 #SBATCH --cpus-per-task=1

7 #SBATCH --exclusive

8 #SBATCH --partition=haswell

9 #SBATCH --mem-per-cpu=2500M # memory per CPU core

10 #SBATCH -J "miniMD_PTF" # job name

11 #SBATCH -A p_readex

12

13 echo "run PTF begin."

14

15 NP=8 # check against --ntasks and tasks-per-node

16

17 module purge

18 module use /projects/p_readex/modules

19 #module load readex/beta_gcc6.3

20 module load readex/ci_readex_bullxmpi1.2.8.4_gcc6.3.0

21

22 INPUT_FILE=in3.data #in.lj.miniMD

23 PHASE=INTEGRATE_RUN_LOOP

24

25 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

26

27 export SCOREP_SUBSTRATE_PLUGINS=rrl

28 export SCOREP_RRL_PLUGINS=cpu_freq_plugin,uncore_freq_plugin

29 export SCOREP_RRL_VERBOSE="WARN"

30

31 module load scorep-hdeem/sync-xmpi-gcc6.3

32 export SCOREP_METRIC_PLUGINS=hdeem_sync_plugin

33 export SCOREP_METRIC_PLUGINS_SEP=";"

34 export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_CONNECTION="INBAND"

35 export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_VERBOSE="WARN"

36 export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

37

38 export SCOREP_MPI_ENABLE_GROUPS=ENV

39

40 psc_frontend --apprun="./miniMD_openmpi_ptf -i $INPUT_FILE"

41 --mpinumprocs=$NP

42 --ompnumthreads=1

43 --phase=$PHASE

44 --tune=readex_tuning

45 --config-file=readex_config.xml

46 --force-localhost

47 --info=7

48 --selective-info=AutotuneAll,AutotunePlugins

49

50 echo "run PTF done."

To use the RAPL counter energy plugin change from lines 31–36 with the following:

H2020-FETHPC-2014 25

READEX D4.3 Deliverable Report

1 module load scorep_plugin_x86_energy

2 export SCOREP_METRIC_PLUGINS=x86_energy_sync_plugin

3 export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN=*/E

4 export SCOREP_METRIC_PLUGINS_SEP=";"

5 export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_CONNECTION="INBAND"

6 export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_VERBOSE="WARN"

7 export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

A batch job script to apply PTF for design-time analysis and create a tuning model for the
miniMD application is available in

/projects/p_readextest/miniMD/run_ptf.sh

and is submitted as

sbatch run_ptf.sh

For different applications, run ptf.sh can be reused by updating the command to run the
application in --apprun. This script is to be run from the location with the application’s
executable.

Outcome:

- A printed summary of the created scenarios, the properties found in each scenario,
the optimum and the worst scenarios for the phase, the measured objective values for
the phase in each scenario, the best configuration for each rts, the static and dynamic
energy savings for the rts’s, and the static energy savings for the whole phase.

- A tuning model.json file containing the list of rts’s that were tuned by the plugin, the
scenarios into which they are classified, and the best configuration for each scenario.

H2020-FETHPC-2014 26

READEX D4.3 Deliverable Report

A.4 Runtime Application Tuning (RAT)

A.4.1 Production Run with Tuning Model

The following steps describe how to use RRL to tune the application during its production
run and compare the execution time and energy consumption with an untuned run of the
application.

1. If Application Tuning Parameters are exploited in the application then the ATP related
instrumentation functions should remain in the code.

2. Use an uninstrumented verion of the application to compare its energy consumption and
execution time against the version tuned with RRL.

3. For the application run tuned with RRL, use the application built for analysis with PTF
as described in Section A.3.

4. Set the number of nodes to run the application on (line 4), and allocate enough memory
per CPU to fit the application (line 10). Here, the number of nodes required is the same
as the number of nodes on which to run the application.

5. For the untuned run of the application (lines 28–66) perform the following steps:

(a) Disable Score-P profiling and tracing (lines 29 and 30), and set the Score-P substrate
plugins, RRL tuning plugins and the tuning model to empty (lines 31–33).

(b) Before running the uninstrumented version of the application (line 41), start the
HDEEM energy measurements on all nodes (line 37–38) and get the start timestamp
(line 39).

(c) After the application run is complete, stop the HDEEM measurements and print
the statistics from all nodes into a file hdeem.out (lines 47–49), and get the end
timestamp (line 43).

(d) Aggregate the energy consumption for the untuned run of the application from
hdeem.out (lines 47–60).

6. For the RRL-tuned run of the application (lines 68–106) perform the following steps:

(a) Disable Score-P profiling and tracing (lines 69 and 70), set the Score-P substrate
plugins to rrl, RRL plugins to the tuning plugins to use (cpu freq plugin and
uncore freq plugin in this example) and the tuning model to the file generated by
PTF (lines 71–73).

(b) Before running the RRL-tuned version of the application (line 81), start the HDEEM
energy measurements on all nodes (line 77–78) and get the start timestamp (line 79).

(c) After the application run is complete, stop the HDEEM measurements and print
the statistics from all nodes into a file hdeem.out (lines 87–89), and get the end
timestamp (line 83).

H2020-FETHPC-2014 27

READEX D4.3 Deliverable Report

(d) Aggregate the energy consumption for the RRL-tuned run of the application from
hdeem.out (lines 91–105).

1 #!/bin/sh

2

3 #SBATCH --time=2:00:00

4 #SBATCH --nodes=1

5 #SBATCH --ntasks=8

6 #SBATCH --tasks-per-node=8

7 #SBATCH --cpus-per-task=1

8 #SBATCH --exclusive

9 #SBATCH --partition=haswell

10 #SBATCH --mem-per-cpu=2500M

11 #SBATCH -J "miniMD_rrl"

12 #SBATCH -A p_readex

13

14 module use /projects/p_readex/modules

15 module load readex/ci_readex_bullxmpi1.2.8.4_gcc6.3.0

16

17 energy_label="Energy"

18 rm -rf host_names.out

19 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 hostname >> host_names.out

20

21 #####

22 # application-specific setup here

23 INPUT_FILE=in3.data #in.lj.miniMD

24 #####

25

26 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

27

28 # start plain run

29 export SCOREP_ENABLE_PROFILING="false"

30 export SCOREP_ENABLE_TRACING="false"

31 export SCOREP_SUBSTRATE_PLUGINS=""

32 export SCOREP_RRL_PLUGINS=""

33 export SCOREP_RRL_TMM_PATH=""

34 export SCOREP_MPI_ENABLE_GROUPS=ENV

35

36 # start measurements

37 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 clearHdeem

38 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 startHdeem

39 start_time=$(($(date +%s%N)/1000000))

40 # run untuned application

41 srun ./miniMD_openmpi_plain -i $INPUT_FILE

42 # stop measurements

43 stop_time=$(($(date +%s%N)/1000000))

44 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 stopHdeem

45 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 sleep 5

46 exec < host_names.out

47 while read host_name; do

48 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 --nodelist=$host_name checkHdeem >> hdeem.out

49 done

50

51 # aggregate energy measurements from HDEEM

52 energy_total=0

53 if [-e hdeem.out]; then

54 exec < hdeem.out

55 while read max max_unit min min_unit average average_unit energy energy_unit; do

56 if ["$energy" == "$energy_label"]; then

57 read blade max_val min_val average_val energy_val

58 energy_total=$(echo "${energy_total} + ${energy_val}" | bc)

H2020-FETHPC-2014 28

READEX D4.3 Deliverable Report

59 fi

60 done

61 time_total=$(echo "${stop_time} - ${start_time}" | bc)

62 echo ""

63 echo "Untuned run: Total time = $time_total ms, Total energy = $energy_total J"

64 rm -rf hdeem.out

65 fi

66 # end plain run

67

68 # start RRL-tuned run

69 export SCOREP_ENABLE_PROFILING="false"

70 export SCOREP_ENABLE_TRACING="false"

71 export SCOREP_SUBSTRATE_PLUGINS="rrl"

72 export SCOREP_RRL_PLUGINS="cpu_freq_plugin,uncore_freq_plugin"

73 export SCOREP_RRL_TMM_PATH="tuning_model.json"

74 export SCOREP_MPI_ENABLE_GROUPS=ENV

75

76 # start measurements

77 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 clearHdeem

78 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 startHdeem

79 start_time=$(($(date +%s%N)/1000000))

80 # run RRL-tuned application

81 srun ./miniMD_openmpi_ptf -i $INPUT_FILE

82 # stop measurmenents

83 stop_time=$(($(date +%s%N)/1000000))

84 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 stopHdeem

85 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 sleep 5

86 exec < host_names.out

87 while read host_name; do

88 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 --nodelist=$host_name checkHdeem >> hdeem.out

89 done

90

91 # aggregate energy measurements from HDEEM

92 energy_total=0

93 if [-e hdeem.out]; then

94 exec < hdeem.out

95 while read max max_unit min min_unit average average_unit energy energy_unit; do

96 if ["$energy" == "$energy_label"]; then

97 read blade max_val min_val average_val energy_val

98 energy_total=$(echo "${energy_total} + ${energy_val}" | bc)

99 fi

100 done

101 time_total=$(echo "${stop_time} - ${start_time}" | bc)

102 echo ""

103 echo "RRL-tuned run: Total time = $time_total ms, Total energy = $energy_total J"

104 rm -rf hdeem.out

105 fi

106 # end RRL-tuned run

This batch job script is available in

/projects/p_readextest/miniMD/run_rrl.sh

and is submitted as

sbatch run_rrl.sh

H2020-FETHPC-2014 29

READEX D4.3 Deliverable Report

For different applications, run rrl.sh can be reused by updating the command to run the
application in lines 41 and 81. This script is to be run from the location with the application’s
executable.

Outcome:

- The total execution time and energy consumption of the untuned run of the application
and the run tuned by RRL are printed for comparison.

A.4.2 Visualise Configuration Switching

There are two ways of visualising the configuration switching:

1. A visualization plugin that shows the RRL perspective to the switching, i.e. the con-
figuration that is supposed to be applied. It can be used during DTA and RAT.

2. The Score-P asynchronous plugins that show what actually happens in the processor.
They can just be applied during RAT.

Using the visualisation plugin Since visualization is implemented as a synchronous
plugin, Score-P supports this only in profiling mode, so to get the metrics in trace, tracing
has to be set.

export SCOREP_ENABLE_TRACING=true

1. Set the environment variables to specify the metric plugin from RRL for visualization of
tuning parameters as metrics in Vampir.

export SCOREP_METRIC_PLUGINS="scorep_substrate_rrl"

2. Set the environment variable to specify the tuning parameters which need to be added to
trace. For the hardware and software tuning parameters, names of the PCPs are used. All
of the hardware and software parameters can be loaded by simply setting the environment
variable to “*”. This will add all the loaded tuning parameters into the Vampir [1, 2]
trace and the user can visualize the switching of values of each tuning parameter for each
region of the application in the trace. Application Tuning Parameters (ATP) need to be
explicitly specified. To load ATPs, the value should be set equal to ’ATP/<atp name>’
where atp name is the name of the ATP as specified by the user. The prefix ’ATP/’ is
required to recognize the ATPs.

export SCOREP_METRIC_SCOREP_SUBSTRATE_RRL="ATP/<atp_name>, <pcp_name>"

For example, the environment variables to specify the RRL as metric plugin and view the
processor core frequency switching in trace in Vampir can be set as follows:

H2020-FETHPC-2014 30

READEX D4.3 Deliverable Report

export SCOREP_METRIC_PLUGINS="scorep_substrate_rrl"

export SCOREP_METRIC_SCOREP_SUBSTRATE_RRL="cpu_freq_plugin"

Figure 5: Vampir trace showing the switching of CPU FREQUENCY, UN-
CORE FREQUENCY and NUMTHREADS for Blasbench benchmark

An example trace showing the switching of different configurations during RAT is given
in Figure 5. The Score-P tracing is enabled and the visualization plugin is applied dur-
ing the RAT phase for Blasbench benchmark which traces all the tuning parameters spec-
ified through parameter control plugins. The tuning parameters in Figure 5 are named
as CPU FREQUENCY, UNCORE FREQUENCY and NUMTHREADS. The visualization
plugin shows the configurations which have been set through RRL. To confirm that these
configurations are actually set in the processor, Score-P asynchronous plugins, which are
explained next, can be used.

Using the asynchronous Score-P sampling plugins To use the asynchronous PAPI
and uncore plugin, and to visualize the processor core and uncore frequencies, please add the
following lines to your script:

module load scorep-uncore

module load scorep-apapi

export SCOREP_ENABLE_TRACING=true

export SCOREP_ENABLE_PROFILING=false

export SCOREP_METRIC_PLUGINS="apapi_plugin,upe_plugin"

export SCOREP_METRIC_APAPI_PLUGIN="PAPI_TOT_CYC"

export SCOREP_METRIC_APAPI_INTERVAL_US=10000

export SCOREP_METRIC_UPE_PLUGIN="hswep_unc_cbo0::UNC_C_CLOCKTICKS"

H2020-FETHPC-2014 31

READEX D4.3 Deliverable Report

export UPE_INTERVAL_US=10000

export SCOREP_EXPERIMENT_DIRECTORY=<location_for_trace_file>

The trace file generated will be placed in the folder specified by
SCOREP EXPERIMENT DIRECTORY. This can be viewed using Vampir.

Figure 6 shows the trace for the APAPI TOT CYC and UNC C CLOCKTICKS traced us-
ing the asynchronous PAPI and uncore plugins respectively. Both the traces presented in
Figure 5 and Figure 6 are obtained in the same RAT run of Blasbench benchmark. The
APAPI TOT CYC trace in Figure 6 confirms the trace of CPU FREQUENCY in Figure 5.
The APAPI TOT CYC trace in Figure 6 shows that for region ”!$omp parallel@main.cpp”
the frequency is first set to 2.5GHz according to the CPU FREQUECY set by RRL but then
goes down to zero whereas the CPU FREQUENCY shown in Figure 5 stays at 2.5GHz for
the entire duration of ”!$omp parallel@main.cpp” region. The reason for this difference is
that this is an omp parallel region and the Master thread goes to sleep while waiting for other
threads to finish. The UNC C CLOCKTICKS trace in Figure 6 also confirms that the value
of UNCORE FREQUENCY is set as instructed by RRL.

Figure 6: Vampir trace showing the PAPI TOT CYC and UNC C CLOCKTICKS recorded
using the Score-P asynchronous PAPI and uncore plugin respectively

Details about the plugins can be found at: https://github.com/score-p/scorep_plugin_
apapi and https://github.com/score-p/scorep_plugin_uncore.

H2020-FETHPC-2014 32

https://github.com/score-p/scorep_plugin_apapi
https://github.com/score-p/scorep_plugin_apapi
https://github.com/score-p/scorep_plugin_uncore

READEX D4.3 Deliverable Report

A.5 Filtering and Manual Instrumentation

A.5.1 Runtime Filtering

The first way to reduce the instrumentation overhead is to suppress the measurements done
by Score-P for instrumented regions. This is called runtime filtering of regions. READEX
provides the scorep-autofilter tool that inspects a generated profile and creates a filter
file for guiding runtime filtering. This file includes the names of too fine-granular regions that
are dominated by the measurement overhead.

1. Apply the scorep-autofilter tool on the profile.cubex file as follows:

scorep-autofilter -t <region_granularity_threshold_in_sec>

-f <filter_file_name_without_extension>

<path_to_cubex_file>/profile.cubex

Choose a value to use as a threshold, for example 100 ms (-t 0.1) for regions to be
considered for the significant region analysis. This will create a filter file with .filt

extension. The user of the tool-suite can decide the value of the threshold depending
on the amount of instrumenation overhead that they wish to retain for the analysis of
regions in the application. The higher the threshold value, the lower will be the number
of significant regions and the resulting instrumentation overhead.

2. It is advisable but not required to rerun the application and scorep-autofilter to detect
additional fine granular regions that were missed in the previous step because their exe-
cution time was increased by the measurement overhead of nested regions. This requires
that the environment variable SCOREP FILTERING FILE is to be set to the filter file name
(including the .filt extension) before rerunning the application.

Apply scorep-autofilter to the new profile. Be careful not to overwrite the current
filter file. Copy the newly found region names into the original filter file.

Repeat this step until no more regions were found.

Outcome: A filter file with .filt extension containing the application regions that Score-P
will not measure.

Section A.7.1 presents an example.

A.5.2 Compile-time Filtering

Runtime filtering only suppresses the measurements while the overhead for the probes is
still there. You can apply the filter file also during instrumentation of the application to
suppress the insertion of probes for the given regions. Please check the Score-P user manual
for details on how to perform compile-time filtering. It is advisable that the user do this
whenever possible since each existing instrumentation interrupts the program flow during its
execution.

H2020-FETHPC-2014 33

READEX D4.3 Deliverable Report

A.5.3 Filtering OpenMP and MPI regions

You can remove instrumentation of MPI routines and OpenMP regions as follows:

• Filtering OpenMP regions: To skip the instrumentation of OpenMP regions, the
option --thread=none should be used. As a side-effect, no instrumented regions should
occur inside of parallel regions. Otherwise, a runtime error will occur. Instead of switch-
ing off instrumentation of all OpenMP regions, you can also disable regions selectively
via

--opari="--disable=omp:single,master,atomic,critical,barrier"

This will instrument parallel regions and nested instrumented regions would be handled
as expected by Score-P.

• Filtering MPI regions: To disable measurements for MPI routines, you can add the
following line to your batch script:

export SCOREP_MPI_ENABLE_GROUPS=ENV

It suppresses instrumentation for all MPI routines except MPI Init, MPI Finalize and
other environment routines. These are required during DTA with the Periscope Tuning
Framework.

A.5.4 Energy Measurements

Due to the overhead of energy measurements on Taurus with hdeem for application pro-
filing with Score-P of about 5 ms, it is necessary to check the overhead when the energy
measurements are switched on.

For energy measurements, load the hdeem module compatible with the compiler that was
used to build the READEX tool suite.

module load scorep-hdeem/sync-xmpi-gcc6.3

(or)

module load scorep-hdeem/sync-hdeem2.2.5-intelmpi-intel2017

Load the scorep-hdeem sync plugin that is compatible with the Score-P built for the
READEX toolsuite, and set the following environment variables:

export SCOREP_METRIC_PLUGINS=hdeem_sync_plugin

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_CONNECTION="INBAND"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_VERBOSE="WARN"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

If the overhead for hdeem measurements for the application regions is more than a few
percent, you need to switch to manual instrumentation of important coarse-granular regions
as explained in Section A.5.5.

H2020-FETHPC-2014 34

READEX D4.3 Deliverable Report

A.5.5 Manual Instrumentation

If none of the other filtering methods is successful in reducing the overhead to an acceptable
level, then manually annotate regions where most of the computation time is spent. You can
find these regions with a standard profiler. It is also recommended to instrument the parents
of all the significant regions up until the main caller in the hierarchy. This is an optional step
which will allow the annotated regions to be used as identifiers for runtime situations.

1. Build the application with additional options to disable compiler instrumentation
(--nocompiler) and to enable user region instrumentation (--user).

2. Manually annotate coarse granular application regions or any other regions that are of
interest for tuning using SCOREP USER REGION DEFINE inside the function definition as
shown below:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

SCOREP_USER_REGION_BEGIN(REGION_HANDLE, "REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)

// application region

SCOREP_USER_REGION_END(REGION_HANDLE)

Note: You also have to instrument the main routine.

Section A.7.3 presents an example.

H2020-FETHPC-2014 35

READEX D4.3 Deliverable Report

A.6 Application Tuning Parameter (ATP) Library

As explained earlier, it is also possible to optionally exploit application level tuning using
the READEX tool suite. This requires some additional manual code annotation and in-
strumentation to pinpoint the parts of the code that can be exploited as application tuning
parameters and annotate them with certain API functions.

A.6.1 Instrumentation for ATP library

1. Include the atplib.h header file in the source code.

2. Declare the parameter in the source code using ATP PARAM DECLARE function. Each
parameter must contain a unique name, type, default value, and domain name (uses
default domain if domain name is NULL):

ATP_PARAM_DECLARE("PARAM_NAME", ATP_PARAM_TYPE_RANGE, DEFAULT_VALUE, "DOMAIN_NAME");

Available ATP parameter types are:

• ATP PARAM TYPE RANGE - defines a range with min, max and step values

• ATP PARAM TYPE ENUM - defines an array of all possible values

3. Add values to the parameter using ATP ADD VALUES. The second parameter is an array
of values added to the parameter, the third parameter is the number of values added.

ATP_ADD_VALUES("PARAM_NAME", {1,5,1}, 3, "DOMAIN_NAME");

• If parameter type is range, the number of values should be 3 and the values array
should contain {min value, max value, step}.
• If the parameter type is enum, then the values array should contain all the possible

values that the parameter can have, and the number of values parameter indicates
how many values are in this array.

4. Add the call for parameter value assignment. Assigns the parameter value to
control variable. The value is assigned by RRL. In case no value is available to
RRL, the default parameter value defined in ATP is used:

ATP_PARAM_GET("PARAM_NAME", &control_variable, "DOMAIN_NAME");

5. Add constraint to the parameters of domain "DOMAIN NAME" (optional):

ATP_CONSTRAINT_DECLARE("CONSTRAINT_NAME", "expr", "DOMAIN_NAME");

• The constraint is expressed in the form of a character string "expr" which contains
a logical expression of how parameters in this domain are constrained (see example
in Section A.7.4).

H2020-FETHPC-2014 36

READEX D4.3 Deliverable Report

• Any ATP parameters declared in the application can be used in the constraint as
long as they belong to the same domain as the constraint.

• Multiple constraints can be defined for the same domain.

• If the domain name is not specified (NULL) the constraint will apply to parameters
in the default domain.

Section A.7.4 presents an example.

A.6.2 Using the ATP Library

1. Build the application by linking with the ATP library (-latp) .

2. Specify a search algorithm for the ATP library from among exhaustive atp and
individual atp strategies. This is done by adding sections in the READEX configu-
ration file (readex config.xml) used as input for PTF during DTA as shown below:

<periscope>

<atp>

<searchAlgorithm>

<name>exhaustive_atp</name>

<name>individual_atp</name>

</searchAlgorithm>

</atp>

</periscope>

For the individial strategy, the keep factor is always 1. Updating/extending the
READEX configuration file was explained in detail in Section A.3.2.

3. Running the application: there are two phases for running the application with ATP:

• parameter collection phase - parameters, constraints and explorations defined in
application are collected and saved for the tuning system to explore.

• parameter exploration phase - declaration functions are turned off and the tuning
system can explore the parameter combinations by providing parameter values
through the ATP PARAM GET function.

There are two ATP modes available that allow to enable which phases will be used in
the application, although the parameter collection phase needs to be run at least once
for the application to allow parameter collection and ATP configuration file creation.

• DTA mode:

– Includes both ATP phases.

– ATP EXECUTION MODE environment variable should be set to DTA.

– It is necessary to run the application in DTA mode at least once in order to
generate the ATP description file.json.

H2020-FETHPC-2014 37

READEX D4.3 Deliverable Report

– Starts with parameter collection phase: parameter, constraint and exploration
declaration functions are executed only once.

– Second time the same parameter declaration is executed it triggers the end of
parameter collection phase, generates ATP description file.json and be-
gins the exploration phase.

– ATP PARAM GET assigns parameter values decided by RRL (In the first phase
default value is used).

• RAT mode:

– Only parameter exploration phase is running.

– ATP EXECUTION MODE environment variable should be unset or set to RAT.

– Declaration functions are shut down, only ATP PARAM GET function is working.

– Details of parameters are loaded from ATP description file.json.

H2020-FETHPC-2014 38

READEX D4.3 Deliverable Report

A.7 Examples

A.7.1 Runtime Filtering

Apply scorep-autofilter as follows:

scorep-autofilter -t 0.1 -f scorep scorep-*/profile.cubex

The file scorep.filt contains the region names to be filtered enclosed between
SCOREP REGION NAMES BEGIN and SCOREP REGION NAMES END, as shown below:

SCOREP_REGION_NAMES_BEGIN

EXCLUDE

Atom::Atom()

Atom::~Atom()

...

SCOREP_REGION_NAMES_END

A script to repeat the identification of too fine-granular regions for the miniMD application
is available in

/projects/p_readextest/miniMD/run_saf.sh

and is executed as

sh run_saf.sh

For different applications, run saf.sh can be reused by updating the line to execute the
application. This script requires do scorep autofilter single.sh that is present in the
same directory.

A.7.2 MiniMD Phase Region Annotation

void Integrate::run(Atom &atom, Force* force, Neighbor &neighbor,

Comm &comm, Thermo &thermo, Timer &timer)

{

int i, n;

comm.timer = &timer;

timer.array[TIME_TEST] = 0.0;

int check_safeexchange = comm.check_safeexchange;

mass = atom.mass;

dtforce = dtforce / mass;

#pragma omp parallel private(i,n)

{

SCOREP_USER_REGION_DEFINE(R1)

H2020-FETHPC-2014 39

READEX D4.3 Deliverable Report

for(n = 0; n < ntimes; n++)

{

SCOREP_USER_OA_PHASE_BEGIN(R1, "INTEGRATE_RUN_LOOP", 2)

#pragma omp barrier

x = &atom.x[0][0];

v = &atom.v[0][0];

f = &atom.f[0][0];

xold = &atom.xold[0][0];

nlocal = atom.nlocal;

initialIntegrate();

#pragma omp barrier

#pragma omp master

timer.stamp();

if((n + 1) % neighbor.every)

{

#pragma omp barrier

comm.communicate(atom);

#pragma omp master

timer.stamp(TIME_COMM);

#pragma omp barrier

}

else

{

{

if(check_safeexchange)

{

#pragma omp master

{

double d_max = 0;

for(i = 0; i < atom.nlocal; i++)

{

double dx = (x[3 * i + 0] - xold[3 * i + 0]);

if(dx > atom.box.xprd) dx -= atom.box.xprd;

if(dx < -atom.box.xprd) dx += atom.box.xprd;

double dy = (x[3 * i + 1] - xold[3 * i + 1]);

if(dy > atom.box.yprd) dy -= atom.box.yprd;

if(dy < -atom.box.yprd) dy += atom.box.yprd;

double dz = (x[3 * i + 2] - xold[3 * i + 2]);

if(dz > atom.box.zprd) dz -= atom.box.zprd;

if(dz < -atom.box.zprd) dz += atom.box.zprd;

double d = dx * dx + dy * dy + dz * dz;

if(d > d_max) d_max = d;

}

d_max = sqrt(d_max);

if((d_max > atom.box.xhi - atom.box.xlo) || \

(d_max > atom.box.yhi - atom.box.ylo) || \

(d_max > atom.box.zhi - atom.box.zlo))

printf("Warning: Atoms move further than your subdomain size, \

which will eventually cause lost atoms.\n" \

"Increase reneighboring frequency or choose a different processor grid\n" \

"Maximum move distance: %lf; Subdomain dimensions: %lf %lf %lf\n", \

d_max, atom.box.xhi - atom.box.xlo, \

atom.box.yhi - atom.box.ylo, \

atom.box.zhi - atom.box.zlo);

}

}

#pragma omp master

H2020-FETHPC-2014 40

READEX D4.3 Deliverable Report

timer.stamp_extra_start();

comm.exchange(atom);

comm.borders(atom);

#pragma omp master

{

timer.stamp_extra_stop(TIME_TEST);

timer.stamp(TIME_COMM);

}

if(check_safeexchange)

for(int i = 0; i < 3 * atom.nlocal; i++) atom.xold[i] = atom.x[i];

}

#pragma omp barrier

neighbor.build(atom);

#pragma omp barrier

#pragma omp master

timer.stamp(TIME_NEIGH);

}

force->evflag = (n + 1) % thermo.nstat == 0;

force->compute(atom, neighbor, comm, comm.me);

#pragma omp master

timer.stamp(TIME_FORCE);

if(neighbor.halfneigh && neighbor.ghost_newton)

{

comm.reverse_communicate(atom);

#pragma omp master

timer.stamp(TIME_COMM);

}

v = &atom.v[0][0];

f = &atom.f[0][0];

nlocal = atom.nlocal;

#pragma omp barrier

finalIntegrate();

#pragma omp barrier

if(thermo.nstat) thermo.compute(n + 1, atom, neighbor, force, timer, comm);

SCOREP_USER_OA_PHASE_END(R1)

}

} //end OpenMP parallel

}

This example is also available on Taurus in

/projects/p_readextest/miniMD/integrate.cpp

A.7.3 Manual Instrumentation

main()

{

...

integrate.run(...);

...

H2020-FETHPC-2014 41

READEX D4.3 Deliverable Report

}

void Integrate::run(...)

{

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

SCOREP_USER_REGION_BEGIN(REGION_HANDLE, "REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)

// application region

SCOREP_USER_REGION_END(REGION_HANDLE)

}

Example For the miniMD application, manually annotate
ForceLJ::compute halfneigh() and its parents Integrate::run() and main() as
significant regions as shown in the following files respectively:

/projects/p_readextest/miniMD/force_lj.cpp

/projects/p_readextest/miniMD/integrate.cpp

/projects/p_readextest/miniMD/ljs.cpp

A.7.4 Application Tuning Parameter (ATP) Instrumentation

void foo(){

int atp_cv;

...

ATP_PARAM_DECLARE("solver", ATP_PARAM_TYPE_RANGE, 1, "DOM1");

int solver_values[3] = {1,5,1};

//{1,5,1} means a range with a minimum value of 1, a maximum one of 5 and an increment of 1

ATP_ADD_VALUES("solver", solver_values, 3, "DOM1");

ATP_PARAM_GET("solver", &atp_cv, "DOM1");

switch (atp_cv){

case 1:

// choose algorithm 1

break;

case 2:

// choose algorithm 2

break;

...

}

int atp_ms;

ATP_PARAM_DECLARE("mesh", ATP_PARAM_TYPE_RANGE, 40, "DOM1");

int mesh_values[3] = {0,120,10};

ATP_ADD_VALUES("mesh", mesh_values, 3, "DOM1");

ATP_PARAM_GET("mesh", &atp_ms, "DOM1");

ATP_CONSTRAINT_DECLARE("const1", "(solver = 1 && 0 <= mesh 40) ||

(solver = 2 && 50 <= mesh <= 80) ||

(solver > 2 && mesh = 120)", "DOM1")

if ((atp_ms > 1) && (atp_ms <= 40)) {

// algorithm for mesh size 1

}

if ((atp_ms > 40) && (atp_ms <= 80)) {

// algorithm for mesh size 2

}

if (atp_ms == 120) {

// algorithm for mesh size 3

H2020-FETHPC-2014 42

READEX D4.3 Deliverable Report

}

A.7.5 Tuning Potential Analysis

1. The miniMD application with manually annotated phase region is built for
readex-dyn-detect as follows:

make openmpi PREP="scorep --online-access --user --thread=none"

2. When miniMD is run with in2.data as its input file and readex-dyn-detect

is applied on the resulting tupled profile.cubex as follows, the function
ForceLJ::compute halfneigh() is identified as the significant region.

readex-dyn-detect -t 0.001 -p INTEGRATE_RUN_LOOP -c 10 -v 10 -w 10 scorep-<xyz>/profile.cubex

Here, readex-dyn-detect takes the granularity for the region as 1 ms with -t 0.001.
The option -p INTEGRATE RUN LOOP is given to the tool to identify the phase region from
the profile.cubex call tree. The three options -c 10 -v 10 -w 10 define thresholds for
the compute intensity variation (absolute value), time deviation in % of the mean region
time and weight of the region (%) which is execution time w.r.t. phase time.

A script to perform steps 1 and 2 for the miniMD application is available in

/projects/p_readextest/miniMD/run_rdd.sh

and is executed as

sh run_rdd.sh

For different applications, run rdd.sh can be reused by updating the line to execute the
application. This is to be run from the location with the application’s executable and the
filter file name considered to be scorep.filt.
The following lines are printed as part of the output by readex-dyn-detect for miniMD:

1 ...

2 Significant regions are:

3

4 void Comm::borders(Atom&)

5 void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 0; int GHOST_NEWTON = 1]

6 void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 1; int GHOST_NEWTON = 1]

7 void Neighbor::build(Atom&)

8

H2020-FETHPC-2014 43

READEX D4.3 Deliverable Report

9

10 Significant region information

11 ==============================

12 Region name Min(t) Max(t) Time Dev.(%Reg) Ops/L3miss Weight(%Phase)

13

14 void Comm::borders(Atom&) 0.001 0.001 2.6 109 0

15 void ForceLJ::compute_hal 0.013 0.014 2.9 97 68

16 void ForceLJ::compute_hal 0.016 0.016 0.0 91 1

17 void Neighbor::build(Atom 0.047 0.048 0.7 332 23

18

19

20 Phase information

21 =================

22 Min Max Mean Dev.(% Phase) Dyn.(% Phase)

23

24 0.0138626 0.0664566 0.020337 72.731 258.612

25

26 ...

27

28 SUMMARY:

29 ========

30

31 Inter-phase dynamism due to variation of the execution time of phases

32

33 No intra-phase dynamism due to time variation

34

35 Intra-phase dynamism due to variation in the compute intensity of the following important significant

36 regions

37

38 void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 0; int GHOST_NEWTON = 1]

39

40 void Neighbor::build(Atom&)

The printed output above for the miniMD application can be divided into three parts:

First, lines 2–7 list the names of the significant regions computed from the detection algo-
rithm. For details of the algorithm, please see deliverable D2.1 [7].

Secondly, lines 10–26 show the profile statistic output for the detected significant regions and
phase region. This section consists of two parts. The significant region information presents
the minimum and the maximum of the execution time for each significant region as well as
the aggregated execution time for the region. It also prints the time deviation in % with
respect to its mean value. The Ops/L3miss column prints the absolute compute intensity
value. In the last column, Weight(%Phase), is the execution time with respect to phase time.

After that, the tool summarises the statistics information for the phase region. It shows the
minimum, maximum, and mean values of the execution time spent on the phase region as well
as the aggregated execution time for the phase. The Dev.(% Phase) column prints the time
deviation w.r.t. the phase mean execution time. The last column, Dyn.(% Phase), prints the
variation between minimum and maximum execution time w.r.t. the mean execution time of
the phase.

Finally, the tool prints the summary results of the dynamism analysis (lines 28–40). First,
if the standard deviation of the phase is larger than the variation threshold, then the tool
indicates having inter-phase dynamism due to variation of the execution time of phases.

H2020-FETHPC-2014 44

READEX D4.3 Deliverable Report

Otherwise, the application does not have inter-phase dynamism. For miniMD, the variation
is larger than the threshold. So the tool detects inter-phase dynamism for miniMD.

The tool compares Weight(%Phase) with the given threshold given by the user. If a significant
region has enough weight and its time deviation w.r.t. region is more than the time deviation
threshold given via -v, the tool detects intra-phase dynamism for these significant region(s)
due to time variation. For miniMD, there are two significant regions having weights larger
than the given threshold (> 10%):

void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 0; int GHOST_NEWTON = 1]

void Neighbor::build(Atom&)

But neither of them has a time deviation greater than 10%. So the tool does not detect
intra-phase for miniMD due to time deviation.

The tool computes the variation of the compute intensity for the set of detected significant
regions having a minimum weight of 10%. For miniMD the variation value is larger than the
provided threshold of compute intensity specified with -c. So the tool detects intra-phase
dynamism due to the variation in the compute intensity characteristic and lists the region
names that exhibit intra-phase dynamism.

H2020-FETHPC-2014 45

	Introduction
	Features of Beta Prototype
	Added Features of Design-Time Analysis (DTA)
	Features of Runtime Application Tuning (RAT)

	Using the Beta Prototype
	User Guide
	Pathway

	Summary
	User Guide
	Modules on Taurus
	Application instrumentation
	Design-time Analysis (DTA)
	Runtime Application Tuning (RAT)
	Filtering and Manual Instrumentation
	Application Tuning Parameter (ATP) Library
	Examples

