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Executive Summary

The objective of Work Package 4 (WP4) ‘READEX Tool Suite Development’ is to integrate
the developed READEX techniques and software components into the overall READEX tool
suite. As such, one of the early objectives of WP4 is to specify the concepts and formalism of
the overall tool suite, as well as to define the interfaces between the design-time and runtime
components.

In this deliverable, we describe the fundamental concepts of the READEX methodology. By
presenting a formal mathematical description of the READEX concepts for the first time,
one of the central aims of the deliverable is to minimise ambiguity in their definitions, to
improve common understanding and communication between the project partners, as well as
to support the development of READEX methodologies and software components throughout
the lifetime of the project.

In READEX, we distinguish between three different levels of the High Performance Comput-
ing (HPC) stack, i.e., hardware, runtime system, and application-level. Multiple parameters
across the HPC stack have so far been identified as being relevant to READEX. We con-
tinuously emphasise throughout the deliverable that all of these tuning parameters can be
influenced at runtime, a characteristic that is fundamental to the READEX approach. When
describing the READEX methodology, we expand on how the tuning approach can be sup-
ported by domain knowledge, specified by the READEX tool suite user.

We describe how the READEX tool suite will leverage two existing software tools, namely
the Periscope Tuning Framework (PTF) and the Score-P instrumentation and measurement
infrastructure. The READEX project will see the development of a new READEX Run-time
Library (RRL). In addition to a high-level description of how this software infrastructure
will serve the READEX tool suite, we provide an architectural description of the software
components, including the software extensions that will be implemented during the READEX
project. We also provide a description and release plan for READEX tool suite prototypes,
as well as a plan to ensure software quality throughout the development phases of the project.

Finally, we describe a case study that centres around a widely used HPC application in
the engineering domain, which will serve to guide the design of the READEX tool suite
throughout the project.

The deliverable reflects the content of the following internal Working Documents (WDs):
WD1.1 ‘Description of Available Tuning Parameters’, WD2.1 ‘Description of the Concepts for
Scenario Identification and Configuration Pre-Computation’ and WD3.1 ‘Description of the
READEX Runtime Library Architecture.’ With the finalisation of this document, milestone
MS1 ’System parameters for exploiting dynamism have been established’ is also completed.
While this deliverable and corresponding WDs reflect the current READEX concepts as well
as the overall approach and architecture, it should be noted that these may be refined over
the course of the project.

H2020-FETHPC-2014 3



Contents

1 Introduction 5

2 READEX Concepts and Formalism 9

2.1 Fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Tuning model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Applying the formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Extension for inter-phase dynamism . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Extension for multiple application inputs . . . . . . . . . . . . . . . . . . . . 20

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Tuning Parameters 23

3.1 Hardware parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 System software parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Application parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Coordination of switching decisions . . . . . . . . . . . . . . . . . . . . . . . . 28

4 READEX Tool Suite: The Approach 31

4.1 Design Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Runtime Application Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Domain knowledge specification . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 READEX Tool Suite: Integrated Architecture 44

5.1 Design time analysis with PTF . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Runtime application tuning with the RRL . . . . . . . . . . . . . . . . . . . . 46

5.3 READEX tool suite prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Software Quality Assurance Plan . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Application Case Study 53

6.1 FETI methods and their implementations . . . . . . . . . . . . . . . . . . . . 53

6.2 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Preprocessing, solve and overall FETI vs. CPU frequency . . . . . . . . . . . 55

6.5 CG kernels of the FETI solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6 Local Dense and Sparse BLAS evaluation . . . . . . . . . . . . . . . . . . . . 59

7 Summary 61

4



READEX D4.1-Deliverable

1 Introduction

As part of the US Department of Energy (DOE)’s Exascale Computing Initiative [4], both
the US DOE and US National Nuclear Security Administration (NNSA) have set out the
goal to develop and deploy a productive Exascale system with a power envelope of 20 MW by
2023, which is just above the power dissipation of today’s leading systems. This goal is also
reflected by the ETP4HPC Strategic Research Agenda [9]. As a result of the 20 MW power
constraint, the High Performance Computing (HPC) community (as well as the data centre
market) has been experiencing a shift from merely focusing on the maximum performance of
an application running on a HPC system, to focusing also on its performance per watt, to
prepare for the Exascale era.

Several measures that influence the energy consumed when running a software application
on an extreme-scale HPC system are available to developers, including hardware settings,
system software parameters, and application characteristics. However, developers typically
focus on implementing and optimising algorithms for accuracy and performance and neglect
possible improvements to the energy-efficiency of the application running on the HPC system.
The fact that developers typically lack the platform and hardware knowledge, as well as
tools, required to influence the energy consumption means that improvements to the energy
efficiency of applications have, to date, been rarely targeted.

With this challenge in mind, the objective of the READEX project is to deliver the first
stand-alone auto-tuning framework that has the capability to automatically and dynamically
tune a wide breadth of large-scale HPC applications at design- and run-time as we progress
from deep-Petascale to Exascale computing. In developing such a tools-aided auto-tuning
methodology, the project aims to enable developers to achieve significant improvements in
the energy-efficiency of current and future applications on extreme-scale systems, while at
the same time significantly increasing productivity relative to manual tuning.

The auto-tuning concept, which combines application performance analysis and tuning based
on the trial-and-error tuning of a set of predefined strategies, has been investigated and
employed for more than two decades on a wide range of computing systems [6]. Existing
auto-tuning frameworks explore optimal configurations at design-time and assume a fixed
selection of the best configurations throughout the complete production run of an application
(static auto-tuning). This assumption will no longer hold for Exascale systems. Instead, an
application will also be required to adapt to both resource changes and its own behaviour
during production runs (dynamic auto-tuning). While a small number of dynamic auto-tuning
methodologies and prototype tools exist that target dynamic optimisations during production
runs [22, 18], no single standalone dynamic auto-tuning framework currently exists with the
capability to target the full breadth of extreme-scale HPC applications being exploited in
academia and industry, both now and on the road to Exascale.

A key technology objective of READEX is to focus on targeting extreme-scale applications
and, as such, to develop an auto-tuning framework that can scale to extreme node counts.
Inspired by the system scenario based design methodology [17, 13, 10] used in the embedded
systems community, READEX will develop the concept of (semi)-distributed dynamic tun-
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ing, which aims to minimise centralisation of control, which is known to impede scalability
due to global synchronisations. One of the central aims of READEX is to instead perform
synchronisations as locally as possible (e.g., restrained to a node and only if required by the
tuning parameters employed), thereby avoiding scaling bottlenecks. With the system scenar-
ios methodology at its core, the READEX framework will be a lightweight infrastructure,
which will result in minimal overhead in monitoring and tuning at run-time.

The majority of current auto-tuning frameworks and optimisation methodologies focus on
single objective optimisations, be it tuning for either time or energy. One of the major
challenges on the road to Exascale is the ability to tune an application for energy, but at
the same time ensure that the application’s performance does not suffer as a consequence.
Therefore, the READEX tool suite will be specifically designed for efficient multi-objective
tuning for time and energy based on pre-computing Pareto curves.

One of the most important opportunities for improving an application’s energy-efficiency is
based on the fact that HPC applications have characteristics that vary during their execu-
tion. This variation, called application dynamism, is what READEX exploits to improve
energy efficiency. Typical characteristics of application dynamism include application com-
pute intensity (compute/memory bound), load balancing (balanced/unbalanced), algorithm
granularity (coarse/fine), as well as parallel efficiency (high/low).

In exploiting application dynamism, READEX will target applications that exhibit iterative
behaviour, typically in the form of a main progress loop that, for example, iterates over time
steps during a simulation. These individual time steps are known as phases in the execution
of an application. Applications that contain such phases exhibit phase dynamism, which
can be further extended to the concept of intra- and inter-phase dynamism. The intra-phase
dynamism results from the execution of different algorithms within a single phase, whereas
the inter-phase dynamism results from changing characteristics of the algorithms while the
simulation is progressing through the sequence of phases.

Fundamental to the READEX approach is the exploitation of this intra- and inter-phase
dynamism to guide in the optimal tuning of the HPC stack. In READEX, the term HPC
stack covers the hardware, the runtime system, and the application layer. We will investigate
parameters on all of these levels, which we refer to generically as the set of tuning parameters.
Included in this deliverable is a wide-ranging early-stage analysis of the tuning parameters,
which we plan to target as part of the READEX project.

The central technical aim of the READEX project is to combine the concept of application
dynamism with the automatic energy and performance tuning of HPC stack parameters
that are tunable at runtime. As described in detail in this deliverable, this approach will
span two major parts of the HPC application life-cycle, namely, (1) application development
and performance tuning at design-time, and (2) performance tuning during the runtime of
applications in production mode. In the READEX methodology, we refer to these two parts
of the life-cycle as Design Time Analysis (DTA) and Runtime Application Tuning (RAT),
respectively, as shown in Figure 1.

H2020-FETHPC-2014 6
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Figure 1: High-level view of READEX tools-aided methodology

During DTA, analysis of the dynamism exhibited by a target HPC application is performed.
This analysis will be made possible by an extended version of Periscope Tuning Framework
(PTF) [12] to be further developed during the READEX project. PTF was developed as part
of the EU FP7 ICT AutoTune project [1] and is an extension of Periscope [5], an automatic
distributed performance analysis tool developed by TUM, towards a generic platform sup-
porting various automatic tuners for static performance and energy-efficiency optimisation.
PTF’s main principles are the use of formalised expert knowledge and strategies comple-
mented by the automatic execution of experiments. Its design is based on an extensible and
modular architecture that exploits tuning plugins and allows for distributed, scalable pro-
cessing. PTF already provides a number of predefined tuning plugins as well as a tuning
plugin interface for the development of new plugins and where individual tuning plugins can
be combined into so-called meta-plugins. As described in detail in this deliverable, PTF will
be used as a core component of the DTA software infrastructure, where it will be significantly
extended with the capabilities for the detection of application dynamism as well as for the
search for optimal values for relevant HPC stack tuning parameters, which we refer to as
system configurations.

The search for optimal system configurations is based on the evaluation of an objective, such
as the minimisation of energy consumption or the minimisation of time-to-solution. Such
measurements will be carried out by PTF during DTA via the Score-P instrumentation and
measurement infrastructure [15]. Through its flexible design, Score-P offers different strate-
gies for application instrumentation, including support for compiler-based and manual region
instrumentation, which both insert calls to event handlers into the application code. More-
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over, Score-P also supports several parallelisation paradigms such as the Message Passing
Interface (MPI, [11]) and OpenMP [8], all of which will be employed in READEX. The dif-
ferent instrumentation points are triggered upon events that are caused by the application
during execution and are handled by event handlers inside the Score-P monitoring library.
These events are used for various means of data processing and storage inside Score-P, in-
cluding trace and profile generation as well as an online access interface for direct analysis at
runtime, as used by PTF.

As detailed in this deliverable, all of the knowledge obtained during DTA is encapsulated
in a tuning model. This tuning model captures the knowledge about the best-found system
configurations for individual scenarios. It is based on the idea of scenario-based tuning, which
aggregates similar runtime situations (rts’s) into scenarios, where an rts could be a particular
function call on a given process during a given loop iteration. This partitioning of the set of
rts’s into scenarios is based on the sharing of common best-found system configurations. In
its most basic form, the tuning model will contain a look-up table providing the best-found
system configurations for the known scenarios determined during DTA. This tuning model is
subsequently forwarded to a low-overhead library, which we refer to as the READEX Runtime
Library (RRL). The aim of the RRL is to ensure that the system is configured in an optimised
way for the execution of each rts.

During production runs, the READEX methodology uses the previously obtained knowledge
about application dynamism and the best-found system configurations to adapt the HPC
stack parameters to the changing characteristics of the target application. This task is carried
out by the RRL linked to the application. While running the application in production mode,
the RRL is called on every entry to instrumented code regions and where the forthcoming
scenario is predicted using a classifier created during DTA. In most cases, the result of the
prediction will be an already known scenario, in which case the look-up table from the tuning
model is employed to provide the best-found system configurations. The RRL will include
a switching mechanism, which will tune the HPC stack tuning parameters defined by the
system configurations via extensions being developed for the Score-P infrastructure. As a
result of successful switching, the application will continue its execution in the best-found
system configuration.

The remainder of this deliverable expands on the READEX concepts, methodology and
framework as described so far. In Section 2, we present the fundamental concepts and for-
malism of the READEX methodology. In Section 3, we describe the tuning parameters that
we will initially target as part of the READEX project. In Section 4, we describe the overall
READEX tool suite approach, followed in Section 5 by a description of the tool suite from
an integrated architecture perspective. Finally, in Section 6 we provide an application case
study that has acted to guide our concepts for the project so far.

H2020-FETHPC-2014 8
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2 READEX Concepts and Formalism

The goal of this section is to present a formal mathematical description of the READEX
concepts to minimize ambiguity in their definitions, to improve common understanding and
communication between the project partners, and to support the development of READEX
DTA and RAT methodologies and software components.

In Section 2.1, we present the fundamental concepts of the READEX methodology. Sec-
tion 2.2 presents the concept of a tuning model which is the final outcome of the DTA stage
and which is passed to the RRL to guide dynamic runtime tuning of the HPC stack.

In Section 2.3, we describe how the base READEX concepts are applied to define the tuning
potential metric, a metric quantifying the potential improvement to be achieved by the tuning,
and thus central to the overall READEX methodology. Section 2.4 extends the base concepts
to include the central concept of inter-phase dynamism. Finally, in Section 2.5 we describe
how these fundamental concepts can be extended to handle a multiplicity of application
inputs, which also typically leads to varying application behaviour during runtime.

2.1 Fundamental concepts

This section introduces the core concepts that will be referred to throughout this document
and the READEX project more generally.

2.1.1 Significant regions

The set of all instrumented regions in the program, e.g., functions, parallel OpenMP regions,
and MPI operations, is denoted by Rinstr, i.e., all regions that are known to the READEX
tool suite. During execution of the application, a region might be executed multiple times.
Each region execution is called a region instance. It is assumed that for all regions r ∈ Rinstr

the instrumentation overhead is insignificant.

A region r ∈ Rinstr is called a significant region if it covers a significant part of the execution
time. The READEX tuning approach only targets the significant regions. The set of signifi-
cant regions are denoted Rsig ⊆ Rinstr. From this point in the deliverable, the subscript sig
may be omitted, in which case R stands for Rsig.

2.1.2 Identifiers

An identifier is an element that contains information to predict the characteristics of the
consequent execution

The set of all identifiers is denoted as ID . IDr ⊆ ID is the set of identifiers for a region r ∈ R
and IDR is the set of identifiers of all regions. Identifiers of regions considered in READEX
include the region name, region call path, and region parameters. The region call path is

H2020-FETHPC-2014 9
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the sequence of nested region instances when a region is executed. Region parameters are
variables associated with the region as identifiers (see Section 4.3 for more details).

Further subsets of the set ID are specified in Section 2.4.3 and Section 2.5.2. Values that can
be taken by identifiers are denoted as v ∈ V .

2.1.3 Context elements

A context element c is a tuple consisting of an identifier and its value. C := ID ×V is the set
of all context elements, and is defined as the cross product of all identifiers and the values
taken by them.

The set of context elements for region r ∈ R is defined as Cr := {c ∈ C|c = (id, v)∧id ∈ IDr}.

2.1.4 Runtime situations

A runtime situation (rts) is an instance of a significant region r ∈ R during an execution.
Instances of regions r ∈ Rinstr \Rsig are not rts’s. The set of all possible runtime situations
is denoted by RTS .

The region of an rts ∈ RTS is denoted by rrts ∈ R and its context by Crts ⊆ C. Multiple
rts’s may have the same context.

2.1.5 Application execution

An application is executed by a set of processes P , each of which can use multiple threads.
An execution of the application on a given input by a process p is exep := rts1, rts2, . . . , rtsn,
where n = len(exe). An application execution is the set of executions of all processes and is
defined as EXE := {exep|∀p ∈ P}.

2.1.6 Tuning parameters

A tuning parameter tp ∈ TP is a parameter of the HPC stack (e.g. CPU frequency, accelerator
offloading switch, application parameter, etc.). READEX focuses on tuning parameters that
have the potential to influence the energy consumption of an application running on an
extreme-scale system and can be affected by the RRL at runtime.

A tuning parameter tp ∈ TP can take a value from VALtp. The set of all values of tuning
parameters is VAL = ∪tp∈TP VALtp. See Section 3 for possible tuning parameters considered
in READEX.

H2020-FETHPC-2014 10
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2.1.7 System configurations

A system configuration cfg ∈ CFG is a function that maps a tuning parameter tp ∈ TP onto
its value val ∈ VALtp and is defined as cfg : TP −→ VAL.

2.1.8 Switching point

A switching point sp ∈ SP is a point during application execution when the monitoring
library is entered and can perform switching of the system configuration. The monitoring
library can determine the region r at every switching point. Switching points are triggered
when a region is entered or exited.

The set of sequences of switching points during a given execution exep is defined as SPexep :=
{spp|p ∈ P ∧ spp = spp1, sp

p
2, . . . , sp

p
n ∧ n = len(spp)}.

2.1.9 Objective function

The objective function o : RTS ×CFG −→ R is a function mapping a given runtime situation
rts and a given system configuration onto a real number. The objective of tuning is to
minimise or maximise a given objective function by varying the system configuration.

2.1.10 Static system configuration

In READEX, we consider a static system configuration cfgstatic ∈ CFG as a static system
configuration that is either a system-wide default or was obtained by tuning for a best static
configuration. For example, we could select the best fixed CPU frequency for an entire
program run, optimising the energy consumption of the application.

The static system configuration cfgstatic gives a baseline for a comparison of the results
achieved with READEX runtime tuning.

2.1.11 Example

This section describes the terms introduced in Section 2.1 with an example code.

The program in Listing 1 consists of the main() function that calls three other functions,
namely laplace(), reduction(), and fftw(). After instrumenting the application with
Score-P, we obtain Rinstr = {laplace, reduction,fftw}, the set of all regions in the application.
In READEX, the most interesting regions are the ones that are coarse-granular so that there
is low overhead while switching between configurations (see Section 4.1.2).

Suppose the execution times of each instance of laplace(), reduction(), and fftw() are
2 s, 0.1 ms and 1 s respectively. The execution times for laplace() and fftw() are much
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Listing 1: Code example

1 int main(void) {

2

3 // Initialize application

4 // Initialize experiment variables

5

6 int num_iterations = 2;

7 for (int iter = 1; iter <= num_iterations; iter++) {

8 laplace(); // significant region

9 residue = reduction(); // insignificant region

10 fftw(); // significant region

11 }

12

13 // Post-processing:

14 // Write noise matrices to disk for visualization

15 // Terminate application

16

17 MPI_Finalize();

18 return 0;

19 }

greater than the switching overhead. Thus, laplace and fftw are significant regions Rsig =
R = {laplace,fftw} and will be the targets of the READEX tuning approach.

The region name and call-path of these functions can be selected as identifiers. For example,
identifiers for region laplace would be ID laplace = {RegionName,CallPath}.

Suppose we have two processes, P0 and P1, executing this program. An rts of region laplace

in process P1 for iteration iter = 1 of the loop is denoted as rts1,P1

laplace. Assuming that we
have two iterations, all possible runtime situations are denoted by

RTS = {rts1,P0

laplace, rts
1,P1

laplace, rts
2,P0

laplace, rts
2,P1

laplace, rts
1,P0

fftw , rts
1,P1

fftw , rts
2,P0

fftw , rts
2,P1

fftw }.

A context element c
rts

1,P0
laplace

= (CallPath,main/laplace) for region laplace

is a tuple containing the identifier CallPath and its value. C
rts

1,P0
laplace

=

{(RegionName, laplace), (CallPath,main/laplace)} is the set of all context elements
of this rts. The application execution on process P0 is defined as

exeP0 = rts1,P0

laplace, rts
1,P0

fftw , rts
2,P0

laplace, rts
2,P0

fftw .
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laplace fftw

rtslaplace rtsfftw

splaplace_enter splaplace_exit spfftw_enter spfftw_exit

Figure 2.1: Sequence of switching points and runtime situations

Switching points are triggered when a region is entered or exited and SP =
{splaplace enter, splaplace exit, spfftw enter, spfftw exit} is the set of switching points. The sequence
of switching points and rts’s for process P0 are shown in Figure 2.1.

The goal of READEX is to optimize an objective function o(rts, cfg) by switching the system
configuration dynamically at the switching points. In this example, the tuning parameter tp ∈
TP that influences the energy consumption is CPU Freq, the CPU frequency setting (See
Section 3.1.1). CPU Freq can take values from VALCPU Freq = {1.8, 2.0, 2.1, 2.3, 2.4, 2.5}.

The system configurations

cfg0(CPU Freq) = 1.8

cfg1(CPU Freq) = 2.0

cfg2(CPU Freq) = 2.1

cfg3(CPU Freq) = 2.3

cfg4(CPU Freq) = 2.4

cfg5(CPU Freq) = 2.5

map CPU Freq to different values. Let the system-wide static configuration be
cfgstatic(CPU Freq) = 2.5. The application execution on process P0 results in Table 1
of measured energy values.

2.2 Tuning model

As a result of DTA, a tuning model is produced. The tuning model captures the knowledge
about the best-found system configurations for individual rts’s. It is based on the idea of
scenario-based tuning which aggregates similar rts’s into scenarios.
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Table 1: Energy measurement values for process P0 in Joules

cfg CPU Freq
rtslaplace rtsfftw

o(cfg , rts1,P0

laplace) o(cfg , rts2,P0

laplace) o(cfg , rts1,P0

fftw ) o(cfg , rts2,P0

fftw )

0 1.8 1 4 3 4
1 2.0 2 5 4 1
2 2.1 3 2 2 3
3 2.3 6 8 1 2
4 2.4 11 13 7 6
5 2.5 14 15 10 12

2.2.1 Scenarios

The set of rts’s is partitioned into a set, S, of scenarios. The rts’s are grouped into one
scenario if they have the same best-found configuration, i.e., the same selector as defined in
Section 2.2.3 below, or if they have the same context Crts.

2.2.2 Classifier

A classifier cl : P(CR) −→ S maps each rts ∈ RTS onto a unique scenario s ∈ S based on
the rts context Crts.

2.2.3 Selectors

A selector of a scenario s ∈ S is a function sels : ∅ −→ CFG that returns a single configura-
tion. The configuration is usually the best configuration with respect to the chosen objective.
The set of all selectors is SEL. Selectors can have quite different implementations based on
the knowledge included in the tuning model for the scenario. Examples of selectors are:

• It is based on a single best configuration determined at design time.

• It is based on a set of pareto-optimal configurations and returns one of those according
to some runtime priorities for the objectives.

• It could choose from a set of good configurations determined during design time analysis
based on probabilities. This could actually dynamically check for the best solution and
go beyond the limitation of design time analysis.

• It could select from different configurations that were combined because of merging
rts’s with different best configurations, but with the same context (see Section 2.2.4 for
an example).
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Selectors are also used to store the tuning information for individual rts’s, which we call rts
selectors.

2.2.4 Example (continued)

This section describes the terms introduced in Section 2.2 using the example defined in
Section 2.1.11.

Table 1 contains the measured energy values for the objective function o(rts, cfg). The values
of the consumed energy for o(cfg , rts1,P0

laplace) and o(cfg , rts2,P0

laplace), and for o(cfg , rts1,P0

fftw ) and

o(cfg , rts2,P0

fftw ) vary for configurations cfg0 to cfg5.

The classifier cl(Crts) groups rts1,P0

laplace, rts
2,P0

laplace, rts
1,P0

fftw and rts2,P0

fftw into scenarios s ∈ S if

they have the same context or if they have the same selector. Since rts1,P0

laplace and rts2,P0

laplace

have the same context

C
rts

1,P0
laplace

= C
rts

2,P0
laplace

= {(RegionName, laplace), (CallPath,main/laplace)}

they are grouped into one scenario. Similarly, rts1,P0

fftw and rts2,P0

fftw have the same context

C
rts

1,P0
fftw

= C
rts

2,P0
fftw

= {(RegionName,fftw), (CallPath,main/fftw)}

and are grouped into another scenario. Thus, we have two scenarios:

s0 = {rts1,P0

laplace, rts
2,P0

laplace}

s1 = {rts1,P0

fftw , rts
2,P0

fftw }

It may be argued that the rts’s of laplace and fftw have different best configurations, and
so, they should be partitioned into different scenarios. This does not happen because it is not
possible to differentiate between the rts’s based on the context, and hence, they are merged
into the same scenario. These cases will happen rarely if the identifiers are well chosen.

The selector returns a single best configuration from configurations that were combined due
to the merging of rts1,P0

laplace and rts2,P0

laplace into s0 and rts1,P0

fftw and rts2,P0

fftw into s1. The selector
sels0() = cfg2 chooses the configuration cfg2(CPU Freq) = 2.1 for scenario s0 and sels1() =
cfg3 chooses cfg3(CPU Freq) = 2.3 for scenario s1.

2.3 Applying the formalism

This section describes how the concepts described so far can be applied, both in terms of
tuning-relevant dynamism and in terms of the tuning potential.
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Table 2: Optimal system configurations for rts’s

ocfg(rts1,P0

laplace, o) ocfg(rts2,P0

laplace, o) ocfg(rts1,P0

fftw , o) ocfg(rts2,P0

fftw , o)

cfg0 cfg2 cfg3 cfg1

2.3.1 Optimal system configuration

The function ocfg : RTS × OBJ −→ CFG is an oracle and determines the optimal system
configuration for a runtime situation and a given objective. It is the goal of READEX to
approximate ocfg as best as possible based on the READEX methodology.

2.3.2 Tuning-relevant dynamism

An application exhibits tuning relevant dynamism iff ∃rts, rts′ ∈ RTS such that ocfg(rts, o) 6=
ocfg(rts′, o). This means that there are two rts’s during one execution exep ∈ EXE that
have different optimal configurations with respect to objective o. In such cases, the system
configuration has to be switched in order to achieve the best possible objective function value.

2.3.3 Tuning potential

The tuning potential tpo : RTS × OBJ −→ R is a function that maps a runtime situation
onto a real value specifying the improvement in the objective function compared to a static
configuration cfgstatic. It is defined as tpo(rts, o) := o(rts, ocfg(rts, o))− o(rts, cfgstatic).

The tuning potential for the execution exep ∈ EXE is an extension of tpo for sequences of

rts’s. It is defined as tpo(exep, o) :=
∑len(exep)

n=1 tpo(rtsn, o). The tuning potential of the entire
application run is defined as tpo(EXE , o) :=

∑
p∈P tpo(exep, o).

Whether the tuning potential can be achieved with the READEX methodology depends on
the quality of the tuning model, the switching overhead, and mutual side effects between
processes.

2.3.4 Example (continued)

This section extends the example defined in Section 2.1.11 and Section 2.2.4 to describe the
terms introduced in Section 2.3.

The optimal system configuration function ocfg(rts, o) returns an optimal configuration cfg ∈
CFG for each rts as shown in Table 2.
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During the application execution, we see that rts1,P0

laplace and rts2,P0

laplace have different optimal
configurations with respect to the objective. Hence, tuning relevant dynamism exists because
a configuration switch is determined to be worthwhile.

The tuning potential tpo(rts1,P0

laplace, o) = o(rts1,P0

laplace, ocfg(rts1,P0

laplace, o))− o(rts
1,P0

laplace, cfgstatic)

for rts1,P0

laplace specifies the improvement in the value of the objective function (consumed
energy) as compared to the value for cfgstatic(CPU Freq) = 2.5. The improvement for
rts1,P0

laplace is 92.857%, and for the application execution exeP0 is 90.196%. However, the
tuning effect is diminished because of the merging of the rts’s. Due to this limitation, we
can only realize an improvement of 88% for execution exeP0 . To avoid this, an additional
identifier can be introduced to distinguish the rts’s (see Section 2.4.5).

2.4 Extension for inter-phase dynamism

This section describes an extension of the formalism for inter-phase dynamism. We define an
inter-phase tuning model, which is a tuning model according to the definition in Section 2.2
and can provide different system configuration for rts’s in phases with different characteris-
tics. The definitions in this section and in Section 2.5 align strongly with the definitions for
identifiers, scenarios, and tuning model in Section 2.1, which demonstrates the generality of
the fundamental concepts.

2.4.1 Phase region

A phase region is a program region r ∈ Rinstr that defines the phases of execution. All
significant regions should be included in the dynamic extent1 of the phase region. The set of
all phase regions is Rphase ⊆ Rinstr. In READEX, we initially assume that there is exactly
one phase region, i.e., |Rphase| = 1.

2.4.2 Phase

A phase ph ∈ PH is an instance of a phase region and thus an rts on phase level. It is a
single execution of the phase region. In READEX we assume that the phases are executed
collectively by all of the processes. Thus, all the processes go through the same phase sequence
ps = ph1, ph2, . . . , phk.

2.4.3 Phase identifiers

For the phase region r ∈ Rphase, identifiers can be given, as for any other significant region.
We denote the set of phase identifiers as IDphase ⊆ ID . The phase identifiers should be
chosen such that they allow to distinguish different behaviour across phases of that phase

1The dynamic extent of a region is all the code executed during a region instance. This is different from
the code textually nested in the region.
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region. For region identifiers, we define the context elements based on phase identifiers as
Cphase ⊆ C.

2.4.4 Inter-phase tuning model

Based on the phase identifiers, the rts’s of a region with the same context but in phases with
different characteristics can now be mapped to different rts scenarios with different selectors.
Thus, we obtain again a set of scenarios, S, which might be different from the one for the same
execution ignoring phases. The partitioning into rts scenarios is now given by a phase-aware
classifier cl : P(Cphase ∪ CR) −→ S.

Since the tuning model, TM = (S, cl, SEL), is based on a phase-aware classifier, it can now
cover the scope of inter-phase dynamism .

2.4.5 Example (continued)

This section describes the terms introduced in Section 2.4 with an extension to the example
code described in Section 2.1.11.

The program in Listing 2 now consists of the phase region r ∈ Rphase. ph1 is the first
execution of r, the body of the for loop and the first loop iteration. Phase ph2 is the second
loop iteration. Thus, the sequence of phases is ps = ph1, ph2. All the processes execute the
same sequence.

In Section 2.2.4, both the rts’s of laplace and fftw were merged into scenarios s0 and s1
respectively, and the tuning potential was diminished. To avoid this, a phase identifier is
introduced, IDphase = {PhaseCharact}, which distinguishes phases with different character-
istics. Let PhaseCharact = A for ph1 and PhaseCharact = B for ph2. Now, the merged
rts’s can be distinguished because we can draw information about a phase’s characteristic,
and thus determine which phase an rts belongs to.
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Listing 2: Code example with phase region

1 int main(void) {

2

3 // Initialize application

4 // Initialize experiment variables

5

6 int num_iterations = 2;

7 for (int iter = 1; iter <= num_iterations; iter++) {

8 // Start phase region

9 // Read PhaseCharct

10 laplace3D(); // significant region

11 residue = reduction(); // insignificant region

12 fftw_execute(); // significant region

13 // End phase region

14 }

15

16 // Post-processing:

17 // Write noise matrices to disk for visualization

18 // Terminate application

19

20 MPI_Finalize();

21 return 0;

22 }

The phase contexts cph1 = (PhaseCharact, A) and cph2 = (PhaseCharact, B) form the set
of all phase contexts Cphase = {(PhaseCharact, A), (PhaseCharact, B)}. The contexts of
the rts’s of laplace and fftw are now extended to include the phase contexts as

C
rts

1,P0
laplace

={(RegionName, laplace), (CallPath,main/laplace),

(PhaseCharact, A)}

C
rts

2,P0
laplace

={(RegionName, laplace), (CallPath,main/laplace),

(PhaseCharact, B)}

C
rts

1,P0
fftw

={(RegionName,fftw), (CallPath,main/fftw),

(PhaseCharact, A)}

C
rts

2,P0
fftw

={(RegionName,fftw), (CallPath,main/fftw),

(PhaseCharact, B)}
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The phase-aware classifier cl(Crts) −→ s where s ∈ S returns the following scenarios:

s0 = {rts1,P0

laplace}

s1 = {rts1,P0

fftw }

s2 = {rts2,P0

laplace}

s3 = {rts2,P0

fftw }

The selectors for the scenarios return the following configurations:

sels0 = cfg0

sels1 = cfg3

sels2 = cfg2

sels3 = cfg1

The scenarios, the phase-aware classifier and the selectors form the inter-phase tuning model
TM = ({s0, s1, s2, s3}, cl, {sels0 , sels1 , sels2 , sels3}). With this tuning model, the full tuning
potential for P0 can be realized.

2.5 Extension for multiple application inputs

This section presents an extension of the previous concepts for different application runs with
different application inputs. The application input comprises input data and execution envi-
ronment configurations. Application runs with different inputs will usually result in different
performance and energy characteristics. Since in READEX, we assume that the applica-
tion has reproducible performance and energy characteristics when run with the same input
several times, the tuning model should be extended to account for this varying behaviour.

2.5.1 Application input

The application input ai ∈ AI includes the input data to the application as well as other
application-external settings at the start of an application that influence the performance
and dynamic behaviour of the execution, such as the set of processes P . As a result of
the application behaving differently for different application inputs, the DTA will have to
consider a set of application inputs. AI denotes all possible application inputs for the given
application.
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2.5.2 Input identifier

Identifiers can be given for the application input that can be used to differentiate different
performance and energy characteristics. Such identifiers are called input identifiers and are
denoted by ID input. The context elements for those identifiers are denoted by Cinput.

2.5.3 Application tuning model

Based on the application input identifiers we can now obtain the application tuning model
that considers application input, application phases, and significant regions. It is based on
a partitioning of all rts’s in all executions for the different inputs into rts scenarios. The
partitioning will be given by an input-aware classifier cl : P(Cinput ∪ Cphase ∪ CR) −→ S
that maps rts’s based on the input context, the phase context, and the rts context into rts
scenarios.

2.5.4 Example (continued)

This section describes the terms introduced in Section 2.5 with reference to the code in
Listing 2.

Different application inputs with different characteristics i1, i2, i3, . . . result in different mea-
sured values of the consumed energy. Assuming there is an input identifier InputCharact,
which takes the values i1, i2, i3, . . . and identifies these characteristics, it can be used to
differentiate different energy characteristics.

The contexts of the rts’s of laplace and fftw can now also contain the contexts of the input
identifiers. The contexts of the rts’s for the first execution are:

C
rts

1,P0
laplace

={(RegionName, laplace), (CallPath,main/laplace),

(PhaseCharact, A), (InputCharact, i1)}

C
rts

2,P0
laplace

={(RegionName, laplace), (CallPath,main/laplace),

(PhaseCharact, B), (InputCharact, i1)}

C
rts

1,P0
fftw

={(RegionName,fftw), (CallPath,main/fftw),

(PhaseCharact, A), (InputCharact, i1)}

C
rts

2,P0
fftw

={(RegionName,fftw), (CallPath,main/fftw),

(PhaseCharact, B), (InputCharact, i1)}
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The contexts of the rts’s for the second execution are:

C
rts

1,P0
laplace

={(RegionName, laplace), (CallPath,main/laplace),

(PhaseCharact, A), (InputCharact, i2)}

C
rts

2,P0
laplace

={(RegionName, laplace), (CallPath,main/laplace),

(PhaseCharact, B), (InputCharact, i2)}

C
rts

1,P0
fftw

={(RegionName,fftw), (CallPath,main/fftw),

(PhaseCharact, A), (InputCharact, i2)}

C
rts

2,P0
fftw

={(RegionName,fftw), (CallPath,main/fftw),

(PhaseCharact, B), (InputCharact, i2)}

The application tuning model will now contain the new rts scenarios, the input-aware classifier
clTM and the selectors for the new rts scenarios.

2.6 Summary

The previous sections presented a formalism to describe the READEX methodology as well
as the tool suite described in detail in later sections. The tuning model serves as the interface
between the DTA and RAT stages and is based on a partitioning of rts’s into scenarios. For
each scenario, the decision logic for selecting the system configuration to use is provided by a
selector, which in turn returns a system configuration. The rts’s are mapped by a classifier to
those scenarios. In the tuning model, the classifier is based on the input context, the phase
context, and the context of the rts. As a result, all of the sources of application dynamism
can be used to select a system configuration.
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3 Tuning Parameters

The concepts described in the previous chapter will be used to determine the optimal pa-
rameter settings for running a given rts. In our description of READEX-relevant tuning
parameters, we distinguish between three different levels of the HPC stack, i.e., hardware
parameters, system software parameters, and application-level parameters. The parameters
that we have so far identified as being potentially relevant to the READEX project are sum-
marised in Table 3 and will be described in more detail below. It should be emphasised
that all of the parameters in Table 3 can be tuned at runtime, which is a vital property for
dynamic auto-tuning. Any parameter that can only be statically changed before application
start-up will not be considered in the READEX project.

While the parameters in Table 3 are considered relevant to READEX, further investigations
are required to confirm that the impact they have on the energy-efficiency of applications
in production is significant enough to warrant inclusion in the READEX tool suite. Finally,
parameters that share a similar impact on energy efficiency or parameters that require coor-
dinated control have been combined into so-called tuning aspects, where such tuning aspects
will need to be handled in a coordinated way to avoid contravening settings.

We will initially focus on the the Taurus system installed at TU Dresden.2 This system is
comprised of 1456 nodes with each hosting containing two 12-core Intel Xeon CPUs E5-2680
v3 (Intel Haswell processor family) running with a default frequency of 2.50 GHz [16]. The
nodes contain between 64 and 256 GB of memory. Additionally, 44 nodes are equipped with
two Nvidia Tesla K20x GPUs and 64 nodes contain four Nvidia Tesla K80 GPUs per node.

3.1 Hardware parameters

Currently, the most relevant hardware settings that we consider for investigation are proces-
sor related parameters. This is due mainly to the fact that the processor has the highest
power dissipation in a computer system. In the following sections, we will describe each of
the hardware tuning parameters and tuning aspects that we will investigate as part of the
READEX project.

3.1.1 Processor core frequency

The method of Dynamic Voltage and Frequency Scaling (DVFS) has been investigated since
the 1990’s [23] as a means of reducing the energy consumption of computer systems. Re-
ducing the frequency of a CPU core through DVFS results in the reduction of the required
power draw of the platform, where energy savings of up to 32% have been reported [19].
DVFS can be implemented through various means, e.g., by changing the governor, which is
a pluggable infrastructure that commonly controls the CPU frequency settings in the Linux
operating system based on defined policies such as performance, powersave, or ondemand.

2https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
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Table 3: Overview on envisioned tuning parameters

Level Tuning Aspect Tuning Parameter Scope

Hardware
Parameters

CPU Frequency
Controls

Frequency Scaling (DVFS) Core
Duty Cycle Management (DDCM) Core
Uncore frequency Socket
Energy Performance Bias (EPB) Socket

Memory Prefetcher Prefetcher Setting Socket

System
Software
Parameters

MPI Reduction
Short message size threshold Application
SMP-awareness Application
SMP message size threshold Application

MPI Alltoall
Short message size threshold Application
Medium message size threshold Application

OpenMP Threading
Dynamic Concurrency Throttling Process
Workload scheduling algorithm Process

Application
Parameters

User-specified
code-paths

Decomposition Application
Compiler type & compiler
parameter

Application

Type of iterative & direct solvers Application
Preprocessing of stiffness & coarse
problem matrices

Application

Dynamic offloading OpenMP target device Process

For full control over the frequency settings, the so-called userspace governor allows the ar-
bitrary applications to select the so-called P-state, which are essentially frequency steps of
the processor.

One interesting point to emphasise is that the Intel Haswell processor family allows for the
independent selection of P-states for individual cores as opposed to full sockets as seen in
previous processor lines. The Intel Haswell processor also introduces a switching window
for frequency changes that causes a delay of up to 500µs before switching decisions go into
effect [14].

3.1.2 Processor uncore frequency

Transfers to and from memory are controlled by the so-called uncore frequency. The Haswell
processor usually sets this frequency independently of the CPU core frequencies. However,
it is also possible to control the uncore frequency from userspace by setting machine specific
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registers (MSRs) to control the uncore frequency. For this purpose, a library will be installed
on the machine Taurus that allows controlled unprivileged access to MSRs [21].

In the READEX project, we will investigate the potential for energy savings by reducing the
uncore frequency for compute intensive regions and subsequently increasing it for memory-
bound regions. Since the uncore and core power domains share the same thermal budget,
we will investigate potential performance benefits to memory operations when reducing the
core frequency, thus shifting power budget to the uncore of the processor and potentially
increasing memory performance [14].

3.1.3 Dynamic Duty Cycle Modulation (DDCM)

A further possibility to reduce power consumption on a processor is by taking advantage
of a feature known as Dynamic Duty Cycle Modulation (DDCM). This technique involves
so-called T-states which instruct the processor to statistically skip a user-defined number of
clock cycles, i.e., between 12.5 % and 87.5 % of the overall clock cycles for a give time period.
This can be beneficial in program regions in which not all cycles can be used effectively,
e.g., memory- or I/O-bound regions or wait-states. By skipping idle cycles, energy is saved
through clock-gating. DDCM is expected to suffer less from the delay introduced by the
frequency switching window of the Haswell processor family described in Section 3.1.1. Energy
savings up to 20% have been reported under controlled circumstances, e.g., for rebalancing
the execution of otherwise unbalanced OpenMP parallel regions [7].

3.1.4 Energy Performance Bias (EPB)

The Energy Performance Bias (EPB) is a setting introduced with the Intel Haswell processor
family that controls different energy efficiency related features on the processor, e.g., the
turbo mode [14]. The processor monitors the current execution to automatically adapt to
the current compute requirements. The processor offers three settings: performance, energy
saving, and balanced, providing a coarse-grain control over the features of the processor. We
expect that changing the EPB can change parameters on the CPU that are not accessible
through software. As such, we will investigate how achievable energy savings compare to the
manual tuning of parameters such as CPU core frequency.

3.1.5 Hardware Prefetcher

Hardware prefetchers aim to predict upcoming memory access patterns based on the recent
access pattern. Enabling them can lead to performance improvements for regular strided ac-
cesses. Unfortunately, random memory accesses are not predictable, leading to a high number
of unnecessary memory loads consuming bandwidth that becomes unavailable to the applica-
tion. Disabling the prefetchers can therefore lead to a higher bandwidth of random memory
access pattern [21]. With higher memory performance being available to the application, the
performance may increase, thus leading to improved energy-efficiency.
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3.2 System software parameters

The majority of scalable HPC applications employ the Message Passing Interface (MPI) for
distributed memory parallelism, with many HPC applications now also employing OpenMP
to target thread-level parallelism as part of a so-called hybrid model. Due to their widespread
adoption within the HPC community, both of these programming models will be investigated
throughout the READEX project for runtime tuning opportunities.

3.2.1 Message Passing Interface (MPI)

The MPI 3.0 standard has introduced the so-called MPI-T interface that allows MPI imple-
mentations to offer a set of parameters that can be read and written by the user. These
variables can be used to optimise an MPI implementation for a specific environment, or in
the case of the READEX project to adjust the implementation to the needs of a given ap-
plication during runtime. We will initially focus our investigations on the latest version of
the well-known open source MPICH implementation [2] of MPI, which offers the largest and
most relevant set of parameters for runtime tuning. For example, MPICH exposes the defi-
nition of short and long messages for many MPI commands as well as parameters influencing
shared memory operations. Unfortunately, most MPI parameters need to be changed in a
synchronised fashion throughout the whole MPI environment, i.e., on all processes, which is
expected to pose extra challenges for efficient tuning during runtime.

In Table 4, we point to several MPI tuning parameters that we consider relevant to the
READEX project and that we will initially investigate. The parameters shown represent
so-called collective communication operations. Relative to direct point-to-point communica-
tion between two MPI processes, collective operations are more expensive, as more processes
are involved. For example, MPI_Alltoall communicates data from all processes to all pro-
cesses and therefore is among the most expensive MPI commands in terms of communication.
MPI_Reduce collects results from different given processes and can carry out different calcula-
tions, e.g. it is possible to determine the minimum of a value about all processes. Therefore,
the call is not only communication intensive, but also compute intensive. We will tune dif-
ferent parameters related to these MPI commands and investigate their tuning potential.

3.2.2 OpenMP

The OpenMP standard offers users a means to implement thread-parallelism through pre-
processor statements, which are translated by the compiler into thread-parallel code. For
example, one of the most commonly used OpenMP parallelisation techniques is offered by
the OpenMP parallel-for directive, in which all iterations of a loop are distributed among
a defined number of threads. At the same time, the OpenMP standard provides an API
to control the behaviour of the OpenMP runtime library, e.g., to influence the number of
threads used by a parallel region and to control workload scheduling policies, as summarised
in Table 5.
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Table 4: MPI tuning parameters to be further investigated.

Tuning Aspect Tuning Parameter Description

MPI Reduce

Reduction Short
Message Size

The short message algorithm will be used if the
send buffer size is ≤ this value (in bytes)

SMP-awareness Enable SMP aware reduce

SMP Message Size
Threshold

Maximum message size for which SMP-aware re-
duce is used. A value of ’0’ uses SMP-aware reduce
for all message sizes

MPI Alltoall

Alltoall Short
Message Size

The short message algorithm will be
used if the per-destination message size
(sendcount*size(sendtype)) is ≤ this value

Alltoall Medium
Message Size

The medium message algorithm will be used
if the per-destination message size (send-
count*size(sendtype)) is ≤ this value and larger
than the short message size

Table 5: OpenMP tuning parameters to be further investigated.

Tuning Aspect Tuning Parameter Description

OpenMP Threading

Number of Threads The number of threads can be controlled via
omp_set_num_threads() to perform Dynamic
Concurrency Throttling (DCT).

Load scheduling
algorithm

Dynamically change the load scheduling al-
gorithm of thread-parallel loops. Requires
OMP_SCHEDULE be set to dynamic.
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The default number of OpenMP threads equals the number of logical CPUs in the system
or any value enforced via the environment variable OMP_NUM_THREADS. Reducing the number
of threads allows unused processor cores to reduce their C-state, i.e., to go from the active
C0 state into any of the power-saving states C1–C6 in which no computation can be per-
formed [16, 21]. Thus, reducing the number of threads and letting a subset of the available
cores go into a sleep-state can improve energy-efficiency, e.g., if the number of loop iterations
is too small for all active threads or if the loop iterations are memory-bound and the memory
bandwidth can be saturated by a smaller number of threads. Changing the workload sched-
uler policy can also be used to optimise the execution efficiency by controlling the distribution
of work among the threads, which can have a positive impact if not all loop iterations require
the same amount computational work.

3.3 Application parameters

As well as the hardware and system software parameters, the READEX project expects that
the targeted application itself offers a certain degree of tuning potential through application-
level parameters. So far, we have identified several potential parameters that can be exploited
by automatically switching between possible settings as listed in Table 6.

Parameters such as decomposition, solver and preprocessing model switches are highly appli-
cation and problem specific and thus can only be handled generically through the definition of
variables that are controllable by the tuning environment. Since the tuning library does not
have any knowledge of the algorithmic background of the parameter space, the user has to
specify the range of values that are suitable for the parameter under investigation. Additional
specification of domain knowledge will be presented in Section 4.3. Defining the interfaces
for specifying the application-level tuning parameters will be a major task to be carried out
in the second half of the first project year.

We have identified three different kinds of application-level tuning parameters, i.e., simple
control variable parameters, alternative code paths, and dynamic offloading. For simple
control variables, it is sufficient to define a variable that can be controlled by the tuning library
and its possible values. For alternative code paths, the application implementation has to
honour the value of a tuning variable to control the program flow. A special case of different
code paths is the choice between offloading models for heterogeneous accelerators, such as
GPUs or the Intel Xeon Phi coprocessor. Here, the choice does not require application-level
background but an estimate of whether the data transfer and the execution on an accelerator
might yield higher efficiency than the execution on the host.

3.4 Coordination of switching decisions

The scope of several of the parameters listed in Table 3 exceeds the boundary of a single
process, e.g., the set of MPI parameters. These parameters have to be set to the same value
on all processes of the parallel application run, which requires some form of coordination to
prevent differing settings among the processes.
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Different approaches can be taken to perform coordinated switching of parameters with a
global scope. If the decision of which value to be set for a global parameter is dependent on
information that is similar on all processes, no explicit communication is required. This can
be the case for MPI parameters if the choice is made based on the number of processes or
the number of Bytes to be transferred. This information has to be the same on all processes
participating in a global MPI operation to ensure standard compliance.

If the decision making is not based on implicitly synchronised information, some sort of
synchronisation has to be employed for parameters with a global scope. The first approach is
to synchronise all participating processes immediately before the switching decision is being
taken. This approach offers great flexibility since it allows different parameter settings to
be taken for every switching decision throughout the application execution, i.e., at every
switching point relevant for the respective parameter. However, synchronising processes with
a high frequency will incur a significant overhead. Nevertheless, this approach is applicable
if the number of relevant switching points is low.

Another approach is the synchronisation at the beginning or end of a phase region and
a modification of the tuning model for the current or next phase based on the outcome
of the coordination. This reduces the flexibility of global parameter choices to a per-phase
granularity but significantly reduces the coordination overhead. This step can be implemented
as part of the calibration mechanism introduced in Section 4.2.5.
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Table 6: Application-level tuning parameters to be further investigated.

Tuning Aspect Tuning Parameter Description

Control
values

Decomposition
parameter

Decomposition of a problem of fixed size into
various number of subdomains significantly af-
fects the behavioural of the FETI Solver in
terms of iterative solver processing time, solver
convergence, preprocessing time and memory
usage

Loop optimization
factors

Factors controlling loop layout to adapt to
the underlying hardware characteristics, e.g.,
cache sizes.

Alternative
code paths

Type of iterative
and direct solvers

Different direct solvers provide various effi-
ciency for various input datasets. Iterative
solver reduces preprocessing, while increasing
the iteration time.

Compiler type and
compiler parameter

Compiler type (e.g. icc, gcc, llvm), optimiza-
tion parameters (O0-O3).

Preprocessing of
stiffness and coarse
problem (CP)
matrices

Stiffness matrix (K) regularization and factor-
ization; Schur complement – uses dense rep-
resentation; sparse direct solver – uses sparse
representation; CP assembling; CP matrix fac-
torization, CP matrix explicit inverse. Various
approaches to assemble and solve CP provides
workload balancing between preprocessing and
projector processing per iteration.

Dynamic
offloading

OpenMP target
device

By setting the OpenMP target device for
target regions, the runtime library can choose
between devices to offload, including whether
the computations are executed on the host or
offloaded to an accelerator.
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4 READEX Tool Suite: The Approach

This section presents the READEX tool suite approach, which implements the concepts
described in Section 2. The approach for the DTA are described in Section 4.1 followed by
the RAT stage in Section 4.2. The concepts for the specification of domain knowledge are
presented in Section 4.3.

4.1 Design Time Analysis

Design Time Analysis (DTA) forms the first stage in the READEX methodology. In this
stage, the targeted application is analysed and a tuning model is produced, which is stored
by DTA and used by the RRL to guide dynamic tuning. The DTA stage leverages PTF and
the Score-P measurement infrastructure. Specifically, DTA uses Score-P in combination with
the RRL to instrument the target application, to set tuning parameters via tuning actions,
and to measure application performance and energy consumption. The tuning model captures
knowledge about intra-phase and inter-phase dynamism as well as about the characteristics
of different application inputs. In this section, we first provide an overview of DTA, with
subsequent sections providing more details on the individual steps involved during the DTA
stage.

4.1.1 DTA overview

In Figure 4.1 we show the overall workflow of the DTA stage, which begins with the specifica-
tion of the objective. The next step, the specification of the domain knowledge (Section 4.3)
via Score-P annotations is optional but typically involves the specification of at least a phase
region Rphase of interest. The step is followed by the instrumentation of the targeted ap-
plication via Score-P, where judicious instrumentation will typically be required to reduce
instrumentation overhead (Section 4.1.2). Subsequently, the significant regions Rsig of the
application are detected (Section 4.1.3), where such regions will be required to be coarse
enough to result in a measurable impact from tuning. These regions will also be required
to be nested in the phase region, but will not be mutually nested in early prototypes of the
READEX tool suite.

Once the significant regions are identified, the tuning potential of the READEX methodology
is estimated (Section 4.1.4), where this estimation is based on the amount of application dy-
namism. If this analysis indicates that it is worthwhile applying the READEX methodology,
the DTA stage progresses with the building of the tuning model.

Prior to starting the inter-phase analysis step, hints are first generated that guide the sub-
sequent analysis process (Section 4.1.7). Based on the hints, the inter-phase analysis step
is initiated, where a sequence of tuning cycles (TC) is performed. In each cycle, a phase
tuning model is determined for the current phase. At the end of the inter-phase analysis
step an inter-phase tuning model is provided (Section 4.1.6). The intra-phase analysis that is
initiated in a TC leverages the PTF tuning plugins to determine a best system configuration
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Figure 4.1: Design Time Analysis Workflow
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for the significant regions (Section 4.1.5). If the user has selected different application inputs
for DTA, the analysis is repeated for the different application inputs and a final application
tuning model is computed (Section 4.1.8).

4.1.2 Instrumentation

The first step of the DTA after the optional specification of domain knowledge (Section 4.3)
is to instrument the application with Score-P. The instrumentation enables the measurement
of program regions and dynamic runtime tuning with the RRL via calls to event handler in
Score-P that are inserted at the enter and exits points of regions. Score-P can instrument
various region types, such as application functions, MPI library calls, and OpenMP parallel
regions. The instrumentation can be carried out either automatically or manually by the
user.

While automatic instrumentation may be preferable for a user, this approach may lead to
high overhead, which is typically caused by the instrumentation of frequently executed fine
granular regions. To reduce this overhead, the Score-P monitor can be configured with a
list of regions that should be omitted from measurement (even though they may have been
instrumented). To select the regions that should not be measured, a threshold will be used for
the granularity of the region, where the metric for granularity is determined by the average
execution time of the instances of a region, expressed as

granularity =
tregionincl

#Instances

Only if the granularity of a region is larger than this threshold, will the region be considered
for the next steps of DTA. This threshold will be in the millisecond range so that the overhead
for switching the configuration will be lower than the gains due to tuned execution. After
the instrumentation, all regions that are not filtered during the execution of the application
form Rinst. In the next DTA step, the significant regions Rsig are selected from this set. The
optimisation of the instrumentation will require two runs of the application for determining
the overhead and verifying successful filtering.

4.1.3 Detection of significant regions

After the instrumentation step, all remaining regions are coarse granular enough to be can-
didates for the READEX tuning methodology. In this step, the set of significant regions Rsig

is selected, which are then considered for runtime tuning. In READEX, we will first consider
tuning only for regions that are not dynamically nested. This means that none of the signifi-
cant regions is executed as part of an instance of another significant region. An algorithm will
be developed to select those significant regions from all instrumented regions. The detection
of the significant region can be done based on the result of the second application run done
in the previous step.
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4.1.4 Predicting tuning potential

The goal of this step is to estimate the tuning potential of the application, where the outcome
of this analysis is a Boolean value indicating whether it is worthwhile to progress to a more
detailed analysis. The analysis will check whether there are variations in behaviour of the rts’s
of the significant regions. The application will be executed in this step and several metrics
will be measured for each of the rts’s. An important metric for variation is the execution time
of the rts’s, where differences in the execution time of rts’s for a significant region indicate
different characteristics. As well as execution time, other metrics might be considered, such
as the compute intensity3 of an rts, which is an indicator of whether the rts is memory or
compute bound. If the metrics can be measured in a single run with the available hardware
counters, this step might require only a single additional run of the application.

4.1.5 Intra-phase analysis

Intra-phase analysis will search for the best configuration for different rts’s of significant
regions within a given phase and will automatically select and execute READEX tuning plu-
gins for the tuning aspects given in Section 3. Tuning plugins optimise the application for
a specific tuning aspect with certain tuning parameters. A plugin captures expert knowl-
edge on how to search for the best configuration of those parameters. A plugin may use
performance analysis information to reduce the search space, e.g., the range of values for the
tuning parameters, and then apply a search strategy to evaluate different configurations via
experiments and measuring the objective value.

Figure 4.2 shows the detailed steps during intra-phase analysis. This overall step executes
the tuning plugins. Each plugin will determine a best configuration of its tuning parameters
for an rts. The best configurations determined by different plugins will be combined into a
global best configuration. Based on this best configuration the rts’s will be partitioned into
scenarios and the phase tuning model will be determined. The output of this step is the
phase tuning model, as described in Section 2.3.

4.1.6 Inter-phase analysis

The goal of the inter-phase analysis is to exploit dynamism across phases. During DTA,
the intra-phase analysis will be periodically restarted, where each restart is a tuning cycle.
The frequency of repeating intra-phase analysis can be determined by a PTF command line
argument or be a result of the hint analysis executed as one of the first steps of DTA (See
Section 4.1.7). As well as starting a new TC with a fixed frequency, TCs can also be triggered
by a user-provided-signal such as an event triggered by a grid adaptation in the application.

In Figure 4.3, there are a total of 120 phases. The overall execution is sampled into m tuning
cycles as TC1, TC2, ... TCm. For each TC the intra-phase analysis is repeated and a phase
tuning model is computed. Phase identifiers IDphase have to be provided during the start

3Number of floating point operations per byte accessed in memory.
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Figure 4.3: Sampling the overall signal of the Indeed application.
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of the application as domain knowledge. The phase identifiers enable PTF to distinguish
phases according to their behaviour and to generate more precise scenarios with a phase-
aware classifier for the inter-phase tuning model introduced in Section 2.4.4. A phase-aware
classifier, clphase, uses the phase context in addition to the rts context to partition rts’s into
scenarios with similar characteristics. If no phase identifiers are provided, rts’s in different
phases cannot be distinguished, where even if rts’s have different selectors in their phase
tuning model, they will be merged into a single scenario in the tuning model. The output of
this step is the inter-phase tuning model (Section 2.4).

Intra- and inter-phase analysis will be done in a single program run.

4.1.7 Hints analysis

The hints analysis step will be executed before inter-phase tuning is initiated. The goal
of this analysis is to automatically determine parameters influencing the approach taken in
inter- and intra-phase analysis. One parameter is the frequency of tuning cycles: If changes
in the phase characteristics happen with a certain frequency, e.g., every 100 phases, the
inter-phase analysis can be configured to repeat the intra-phase analysis with this frequency.
An additional parameter is the repetition of experiments to evaluate certain configurations
during intra-phase analysis, which depends on the overall noise in the signal of the execution
time of phases.

Figure 4.3 shows the individual execution times for 120 phases of an application. A certain
variation can be seen in the execution time, which means that the measurements should be
repeated for a few iterations to get a stable value. This step will output the settings for the
inter-phase and intra-phase analysis parameters.

4.1.8 Tuning model generation

The goal of this step is to determine the application tuning model, which is then stored for
later use be the RRL. If multiple application inputs are provided by the user, the DTA stage
will cycle through multiple application executions with different inputs. This will result in
input-specific inter-phase tuning models, which will then be combined into the tuning model.
To distinguish different rts’s for different inputs, application input identifiers are required,
capturing different application characteristics. The final tuning model will now be based on
an input-aware classifier mapping rts’s to scenarios based on the input context, phase context
and region context. The output of this step is the application tuning model.
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4.2 Runtime Application Tuning

This section first presents the overall behaviour of the tuning system during the runtime of
an application in production mode, i.e., during the Runtime Application Tuning (RAT) stage
of the READEX methodology. This is followed by descriptions of the main scenario based
tuning phases in the RAT workflow (Section 4.2.2 through Section 4.2.6). Further details
on the implementation of the scenario detection and switching mechanisms can be found in
Section 5.

4.2.1 RAT overview

Figure 4.4 presents a high-level abstraction state diagram for the different tuning steps per-
formed at runtime. An application run starts with the initialisation of the application and
the underlying system software. The RRL is initialised upon the first event triggered by
the application in the Phase external computation state During initialisation, the RRL reads
the tuning model created during design time and sets up the measurement infrastructure
necessary to perform runtime tuning. In this state all computation not part of the phase
region is executed. The execution time and cost of this application initialisation phase will
be negligible compared to the computation performed during the main progress loop and
thus can be ignored for the tuning.

When the application enters the phase region, i.e., it enters the main progress loop, the
relevant Enter phase event handler is executed. Within the Phase state, the main progress
loop body is executed from where significant and insignificant regions can be called. For
insignificant regions, no tuning will be performed. The region instance is simply executed
using the existing system configuration. When the application enters a significant region,
the relevant Enter significant region event handler is executed before the Significant region
state is entered. The system configuration may thus be changed before the significant region
instance is executed. Upon leaving the Significant region, the relevant Exit significant region
event handler is called before returning to the Phase state.

The application may go through multiple iterations between the Phase state and the Sig-
nificant region state. When the application reaches the end of the main progress loop body
the current phase region instance is exited and the relevant Exit phase tuning actions are
performed. The application then returns to the Phase external computation state and sub-
sequently a new phase will be entered. The exception to this is when the last phase has
been executed, in which case any relevant application post execution is performed before the
application terminates.

Figure 4.5 provides a more detailed view of the control flow of the runtime tuning and its
interaction with the application. As a working example, the simplistic, but still realistic,
program code presented in Listing 2 in Section 2.4.5 is used throughout this section.
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Figure 4.4: Runtime tuning state diagram depicting changes between states of the runtime
library triggered by application events.

4.2.2 Initialization

A run starts when the application (MPI) processes are distributed across the nodes of the
cluster. The application specific tuning model is used to initialise the application and the
RRL. If available, the initialisation step also uses relevant application input data and node
configuration information to determine values of input identifiers. The identifiers and their
values together constitutes the input context elements, as defined in Section 2.5.2.

The node configuration contains information regarding the underlying hardware architecture,
including the number of CPU sockets, the CPU clock frequencies, number of accelerators,
etc. Together with the application input data, this influences the degree of dynamism in
different processes and the identifier values stored in the corresponding context elements will
later be used during scenario detection.

During initialisation, objective measurement procedures are prepared that will be performed
during later phase and significant region execution. The choice of objective function is made
by the user during DTA stage and is typically expected to be either the overall energy
consumption of the application or the energy delay product. Objectives such as total cost
of ownership may also be used in the future. Finally, the initialisation step includes any
application initialisation required prior to starting the main progress loop. In Listing 2, this
would be the initialisation of experiment variables.

4.2.3 Enter phase

Immediately after initialisation the application will start the execution of the main progress
loop, i.e., the phase region of the application, which corresponds to the for-loop in Listing 2.
Each instance of this phase region starts by executing a Enter Phase pre-processor macro,
which is added by the user to mark the beginning of a phase (see Section 4.3). This macro
triggers the event handler for this for the Enter Phase event. As described in Section 2.4,
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phase identifiers may be used to distinguish different behaviour across phases. The event
handler evaluates phase identifiers defined by the tuning model and stores the resulting
context elements for use during subsequent significant region switching.

Within the phase region, there are a number of significant and insignificant regions. Plain
code in the phase region itself, such as the num_iterations++ statement in Listing 2, will be
regarded as insignificant. Functions called in the phase region or further down in the function
hierarchy, can be insignificant or significant regions, as outlined in Section 4.1.

4.2.4 Enter significant region

When a significant region is entered, the relevant region identifiers are evaluated by the
event handler according to the tuning model and the corresponding significant region context
elements are stored. Using the total set of context elements, i.e., input, phase, and significant
region context elements, the upcoming significant region scenario is detected and a decision is
made for the corresponding system configuration switching. The detection and decision are
made according to the scenario definitions in the tuning model using classifiers and selectors,
as described in Section 2.2.2 and Section 2.2.3.

If a trade-off between conflicting objectives is required, e.g., between performance and energy
consumption, an evaluation based on Pareto curves may be applied. It is, however, essential
that the overhead of these operations remains minimal. In most cases, it is sufficient to use
the context elements to perform a simple look-up in a table with precomputed values from
DTA.

To be able to further fine-tune and calibrate the tuning model at runtime, a set of objective
measurements are performed during execution. To be able to correlate the measurement
values with the current identifier values, the current set of context elements are stored for
later use when the current phase is exited, as described in Section 4.2.6.

In some rare situations, e.g., if the design time analysis does not cover all possible context
element combinations, a previously unseen rts can be detected. An rts is defined as unseen if
the tuning model classifier is unable to link the current set of context elements with a specific
scenario. This can be handled through a default platform and application configuration or
through the selection of the scenario with context elements closest to the unseen rts.

4.2.5 Exit significant region

After the execution of a significant region, an exit handler is executed, which gathers the
objective measurement results. These are linked with information about the scenario and
configuration used during the execution as well as the context elements that caused the
selection of the scenario. The complete data set is stored for later use as part of a scenario
tuning model calibration. If the executed significant region instance was a previously unseen
rts, the measurements are stored with an additional flag indicating that calibration should
be performed at the next phase exit.
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4.2.6 Exit phase

At the end of a phase region, an exit phase macro triggers the execution of an exit phase event
handler. The main goal here is to perform a calibration of the tuning model. To keep the
overhead as low as possible, this is only done when needed, for example, every ten phases or
if a given objective criteria has been met, e.g., an unexpected increase in energy consumption
for a given significant region.

When executed, the intent of the calibration step is to improve the significant region scenario
detection and switching decision making in later phase regions. The calibration starts by
performing a post processing of the results of the objective measurements gathered during
all significant region executions since the last calibration. This may for instance reveal that
different executions of a given significant region currently placed within the same scenario
consumes significantly different amounts of energy. Such an observation indicates that the
current set of scenarios may be suboptimal and a calibration of the tuning model can be
beneficial. The calibration may include updates of the platform and application configuration
for specific scenarios or changes to the relations between scenario identifier values and scenario
selection. If the calibration is caused by a previously unseen rts, the rts is classified based on
its context elements and the objective measurements performed during its execution. With
this information, a scenario is selected to be used when the rts is encountered next. Depending
on the objective measurement results obtained the next time the rts is encountered, it is either
permanently placed in this scenario or a process is started of testing out alternative scenario
placements over the course of the following execution cycles. A completely new scenario may
also be generated, the circumstances and implications of which will be investigated in detail
in later stages of the READEX project.

An additional calibration target will be the handling of load-imbalances, e.g., due to differing
input characteristics. As much as possible will be handled at design time, for example,
through the specification of domain knowledge as described in Section 4.3. This could include
the exposure of input data that determines the load of individual threads or processes. Using
this information, the expected imbalances can be predicted and counter-measures such as
processor speed adjustments can be used for re-balancing, e.g., as described in Section 3.1.
By incorporating this information into the tuning model during DTA, additional analyses at
runtime are not required.

However, there might be unexpected imbalances that can be caused by hardware performance
differences or unknown or unexpected input, e.g., if no domain knowledge specification is
provided by the user. In this case, the calibration could consist of an evaluation of the
wait states during the last phase execution and an update to the tuning model. This can
make some processes execute faster than others to rebalance execution and minimise CPU
cycles spent waiting for synchronisation. For the wait-state analysis, no global view on the
application execution is required. However, as mentioned in Section 3.4, there might be
cases in which a global synchronisation is required to determine the parameter settings used
throughout the next iteration.
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4.3 Domain knowledge specification

The READEX tuning approach can be supported by domain knowledge specified by the
code developer. An obvious example of domain knowledge is the phase region identifying the
computation of the application phases. The user might also be able to provide additional
identifiers for the significant regions, the phases, and the application input. This would
improve the application tuning model significantly allowing to distinguish rts’s with different
characteristics.

The following list presents the domain knowledge entities that the READEX tool suite will
understand and the way in which this information can be specified through Score-P annota-
tions:

Phase Region: Automatic detection of the phase region is almost impossible without pars-
ing and analysing the source code of the application. The phase region can be a single
routine, a for-loop, a while-loop, or be constructed by jumps. On the other hand,
developers of the code know where the phase region is and can easily provide this infor-
mation. Therefore, READEX will allow the user to specify the phase region as shown
below.

1 #include "SCOREP_User.inc"

2

3 SCOREP_USER_REGION_DEFINE(R1)

4 ! phase region starts

5 for(step=1... max_iter)

6 SCOREP_USER_OA_PHASE_BEGIN(R1, "OP",

SCOREP_USER_REGION_TYPE_COMMON)

7 time=time+dt

8 computation(time)

9 ...

10 SCOREP_USER_OA_PHASE_END(R1)

11 ! phase region ends

12 END for

SCOREP USER REGION DEFINE(R1) defines a user region handle named R1.
The phase region is then surrounded by SCOREP USER OA PHASE BEGIN and
SCOREP USER OA PHASE END. The online access phase region enables external tools to
configure Score-P dynamically when a phase is started. This configuration mechanism
is used in DTA to perform experiments for evaluating different system configurations.

Both, the start and the end of the phase region entail a barrier synchronisation of all
participating processes when an online tool like PTF is connected to Score-P.

Significant Regions: Other regions than the Score-P default regions, i.e., compiler-
instrumented application functions and OpenMP regions, can be defined as user-defined
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regions with Score-P macros and can thus be provided as candidates for significant re-
gions. These macros can enclose arbitrary code and are instrumented automatically.
As a result, the Score-P monitoring library can handle these user-defined regions in the
same way as any other region.

1 #include "SCOREP_User.inc"

2

3 SCOREP_USER_REGION_DEFINE(R1)

4

5 SCOREP_USER_REGION_BEGIN(R1, "OP", SCOREP_USER_REGION_TYPE_COMMON)

6 foo(...);

7 bar(...);

8 SCOREP_USER_REGION_END(R1)

Region Identifiers: As well as the region id and the call path, additional region identifiers
can be used to distinguish runtime situations. These identifiers are specified as Score-P
parameters for parameter-based profiling and can be of type integer and string. The fol-
lowing example demonstrates the use of Score-P parameters in a compiler-instrumented
region.

1 void foo(int64_t myint, uint64_t myuint, char *mystring)

2 {

3 SCOREP_USER_PARAMETER_INT64("myint",myint)

4 SCOREP_USER_PARAMETER_UINT64("myuint",myuint)

5 SCOREP_USER_PARAMETER_STRING("mystring",mystring)

6 // do something

7 }

Phase Identifiers: Phase identifiers characterise the differences of phases and can be pro-
vided in the same way as a region identifier as Score-P parameter that are attached to
the phase region.

Input identifiers: The READEX methodology will not only tune the application for a
single input but will learn from running the application for different inputs. To be
able to distinguish rts’s with different characteristics in these runs, input identifiers are
required. They should identify values from the input that characterise the variations,
such as the grid size of the application domain. Input identifiers could be specified in
the same way as region identifiers based on Score-P parameters.

Application tuning parameters: As outlined in Section 3, the application can provide
tuning parameters that switch the control flow. These tuning parameters are variables
in the application that can take certain values. The address of these variables will be
exposed to the RRL via additional Score-P macros.
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5 READEX Tool Suite: Integrated Architecture

The READEX tool suite will support two major stages as described in Section 4, i.e., the De-
sign Time Analysis (DTA) and the Runtime Application Tuning (RAT) stages. To accomplish
this, the tool suite will consist of two major components: an extension of the Periscope Tun-
ing Framework (PTF, see Section 5.1) used to control the DTA and a new READEX Runtime
Library (RRL, see Section 5.2). A third component, Score-P, will serve as a common infras-
tructure for PTF and the RRL, providing instrumentation and measurement capabilities to
both components.

All tools will be mainly developed in C/C++ to allow for ease of collaborative development
and distribution. A set of early prototypes will be developed and released to spark interest
in the project and minimise risk, as described in Section 5.3. A software quality assurance
plan described in Section 5.4 has been introduced to ensure high quality software is developed
throughout the project.

5.1 Design time analysis with PTF

The DTA stage will be executed by PTF, where the architecture of PTF and its integration
with the RRL is shown in Figure 5.1.

PTF Version 2.0 will be the starting point for the implementation of the DTA. It supports
tuning applications at design time via tuning plugins [12]. The tuning plugins determine best
system configurations for a given tuning aspect based on expert tuning knowledge, standard
search algorithms, and experimental evaluation. Experimental evaluation is based on online
configuration of the RRL through Score-P. The RRL will provide the appropriate mechanisms
for the execution of tuning actions for the rts’s.

The main existing components of PTF are shown in black and orange in Figure 5.1. The
orange components will be extended in READEX. These components are:

The Analysis Component provides analysis strategies for tuning plugins. These strate-
gies can be used to collect performance measurements in the form of performance prop-
erties. New DTA analysis strategies will be provided as required.

Plugin Control triggers the individual steps in the READEX tuning plugins and provides
the required data structures to the plugins.

The Performance Database stores the performance data gathered during the execution
of DTA experiments. Plugins access this information via performance properties.

Search Algorithms provided in PTF and are used to automatically evaluate system con-
figurations from a search space constructed by the tuning plugin.

The Experiments Engine automatically executes experiments to evaluate certain system
configurations. It configures the RRL to assign values for the tuning parameters given
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Figure 5.1: Extensions to PTF implementing READEX DTA.

by the system configuration. The experiment engine will be extended to support rts’s
with their significantly extended context in READEX.

In addition to these base components, PTF will be extended by the addition of READEX
specific components. These are shown in red in Figure 5.1. The following components will
be added to PTF:

DTA Management: will control the overall execution of DTA. For this purpose, it includes
two subcomponents. DTA Process Management will interact with the other PTF
components to execute the workflow presented in Figure 4.1. It will collect required
information via analysis strategies and trigger both tuning cycles and the READEX
tuning plugins. It is responsible for incrementally collecting information about rts’s
into the RTS Database and for triggering the final creation of the tuning model. The
second subcomponent is the RTS Management that will manage the RTS Database.

RTS Database: collects information about the rts’s of significant regions including their
selector.

READEX Tuning Plugins: For each tuning aspect presented in Section 3 a tuning plugin
will be created that determines the best configuration for an rts and the selector. These
tuning plugins will be triggered during intra-phase analysis.

Scenario Identification: constructs the final application tuning mode. It analyses the
rts’s and aggregates them into scenarios with a corresponding classifier according to
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their context and selector. It generates the application tuning model into a file in XML
format.

The arrows shown in Figure 5.1 present the data flow between the components. The anal-
ysis services provide the tuning potential, the DTA hints, and the significant regions. The
READEX tuning plugins receive the list of significant regions as well as rts results obtained
in previous tuning cycles. They provide the rts’s that have been found, as well as their se-
lectors, to the DTA Management. The rts information in the RTS Database is inserted by
the DTA Management and used by Scenario Identification for the generation of the tuning
model. Finally, the experiments engine configures Score-P with measurement and tuning
requests for rts’s to evaluate different system configurations.

5.2 Runtime application tuning with the RRL

Figure 5.2 depicts the RRL infrastructure, showing existing and to-be-developed components
in Score-P and the RRL itself, which will be implemented by means of a substrate plugin by
way of a Substrate Plugin Interface. This plugin interface is currently being developed
as part of the project and allows for generic access to measurement data at runtime without
direct integration into Score-P. This approach acts to reduce maintenance and integration
efforts by keeping the RRL as a separate entity. As a substrate plugin, the RRL will thus have
access to all measurement data gathered through various means of instrumentation, where it
can use this information to make switching decisions based on the tuning model created at
design time.

Within the RRL, the following components for scenario detection, switching, and calibration
will be implemented:

Scenario detection will determine the upcoming scenario based on the current rts, e.g.,
by monitoring of significant regions, their call hierarchy, and input parameters, as
well as information on the current phase of the application. The mechanism to be
implemented in the RRL will be generic in order to apply it to any target application.
The scenario detection component will employ the classifiers created during DTA and
stored in the tuning model to map an identified rts to a scenario. The scenario detection
will incorporate information on the application input as well as on the current phase
region into the scenario classification.

A general scenario switching mechanism that can be used across applications will be
developed and included in the RRL. Switching of parameter settings will be performed
via the parameter control plugins that are also employed by the DTA components.
Efficient switching decision making requires a low-overhead mechanism, e.g., a lookup
table that binds parameter settings to a scenario identifier and is generated from the
tuning model developed during DTA. The scenario switching mechanism will also be
employed by PTF for DTA to test different parameter settings for a given rts.
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Figure 5.2: Score-P infrastructure (existing components are coloured black; red components
will be subject to research and development during the READEX project).

Calibration of the tuning model will be performed by a calibration component, which will
be able to adjust the tuning decisions at runtime and eventually feed back the results
into the tuning model at the end of the application run. If required, the calibration
process can perform global inter-process communication operations, e.g., to synchronise
global parameters or to determine global objective values.

In addition to the components of the RRL described above, the READEX project will also
develop new parameter control plugins, which provide a convenient way of switching
parameters of different tuning aspects, as described in Section 3. They will be employed by
both the READEX tuning plugins during DTA and the scenario switching component during
RAT.

5.3 READEX tool suite prototypes

This section describes the different versions of the READEX tool suite prototypes in terms
of their scope and incremental feature implementation. The goal of the project is to release
versions of the READEX tool suite every six months, starting from M12. This approach will
help to identify potential challenges as early as possible so that they can be addressed in a
timely manner. The key deliverables for the tool suite include the following:

• D4.2: Prototype READEX tool suite – M18

• D4.3: READEX tool suite version 2 – M30

• D4.4: Final READEX tool suite – M36

Below, we summarise the different tool-suite prototype versions in terms of their feature
support for software components relevant to the DTA and RAT stages, respectively.
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5.3.1 Pre-alpha version (M12)

A pre-alpha version of the tool-suite prototypes will be released as an implementation of the
basic workflow of the tool-suite. A pre-alpha version in M12 will be kept internal to the
project and will ensure the early availability of a working prototype of the tool-suite.

DTA As a first step for the DTA implementation, a mechanism for significant region anal-
ysis will be implemented along with the support for intra-phase dynamism handling. Tuning
for a single objective, e.g., energy efficiency, will be supported via a READEX tuning plugin.
Region IDs will be used as a classifier to aggregate multiple rts’s into a scenario, i.e., scenario
identification. As a final step towards DTA implementation, a phase tuning model including
the classifier and selector will be implemented, where the selector will specify a single best
configuration for each scenario.

RRL For the first prototype of the RRL, a parameter control plugin will be implemented to
support the tuning actions for the CPU frequency. Based on the tuning model produced by
the DTA stage, a scenario detection mechanism based on the region ID will be implemented.
Once a scenario is detected, the best configuration for the scenario will be selected using the
selector within the tuning model and specified tuning actions will be executed, i.e., scenario
switching. The scenario switching mechanism will be implemented as part of the pre-alpha
release of the tool suite.

5.3.2 Alpha version (M18)

An alpha version of the READEX tool suite will align with D4.2 and will be available in
M18. The alpha version will build on the previous version of the tool suite and will extend
the pre-alpha version in terms of the following features:

DTA In terms of the DTA extensions for the alpha version, additional identifiers such as
region call paths and region parameters will be supported as region identifiers. Additional
READEX tuning plugins will be made available to support tuning for multiple aspects.
Scenario identification and the phase tuning model from the pre-alpha version will be extended
with additional classifiers based on the availability of the additional identifiers, i.e., call path
and region parameters.

RRL The alpha version of the tool suite will include additional parameter control plugins
to support multi-aspect tuning actions. Scenario detection mechanisms will be extended for
new identifiers within the tuning model produced by the DTA stage. In terms of scenario
switching, more complex selectors and switching mechanisms will be implemented, e.g., to
handle multiple tuning aspects.
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5.3.3 Pre-beta version (M24)

A pre-beta version of the prototype will be released internally to the READEX consortium
at M24.

DTA In terms of the DTA stage, inter-phase dynamism will be supported along with the
phase identifiers, in addition to the previously supported intra-phase dynamism and region
identifiers. In terms of support for multiple tuning aspects, the final set of READEX tuning
plugins will be available as part of this prototype. A preliminary version of the domain knowl-
edge specification to leverage user domain knowledge will also be integrated. A phase-aware
tuning model incorporating phase identifiers for scenario identification and more complex
selectors will be supported.

RRL In terms of the RRL extensions, a final set of tuning plugins will be made available to
execute multi-aspect tuning actions. Scenario detection at runtime will be extended to handle
phase scenarios, identified within the phase-aware tuning model. For scenario switching, a
global decision making mechanism will be implemented to support more complex selectors
and global synchronisation for tuning actions.

5.3.4 Beta version (M30)

A beta version of the tool-suite will align with D4.3 and will be available in M30.

DTA The DTA component will be extended to support multiple application inputs as an
additional form of application dynamism. Moreover, visualisation capabilities will be provided
to analyse application dynamism along with the tuning potential and hint analysis features.
Scenario identification will be extended to incorporate application input based identifiers. A
final version of the READEX programming paradigm, i.e., domain knowledge specification,
will be integrated. Finally, support for the application tuning model will be available as part
of this version of the tool suite.

RRL For the RRL, the scenario detection mechanism will be extended to support an ap-
plication input based classifier for identification of scenarios. In terms of new features, a
preliminary implementation of the calibration mechanism will be available to optimise the
tuning model at runtime and to support unseen rts’s.

5.3.5 Release candidate (M36)

A final version of the READEX tool suite will align with D4.4 and will be available in M36.
Final versions of the DTA and RRL will be made available as the Release Candidate (RC)
for the READEX tool suite.
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5.4 Software Quality Assurance Plan

This section outlines the common best practices for the development of software products in
the scope of the READEX project. The objective of the software quality assurance plan is
to ensure the following:

• Robustness of software through test-driven development and component reviews.

• Maintainability using automated builds and release management.

• Extensibility with well-defined configuration management.

In the subsequent part of this section, individual components of the software quality assurance
plan will be discussed.

5.4.1 Component Reviews

Component reviews in the context of the READEX project involve assignment of review-
ers (ideally software developers) to the software deliverables. Component reviews have two
primary goals:

• Ensure that the individual functional requirements for a given software component are
met in compliance with the software specification.

• Verify that the required interfaces for a software component are implemented correctly
to avoid any integration problems.

These goals are to ensure that developed software is functional and can be integrated with
other components. Lightweight black-box testing will be used for component reviews.

5.4.2 Test-Driven Development

Test-driven development has become the de facto standard for quality development of soft-
ware products. Software testing cannot guarantee functional correctness but can increase
confidence that systems will perform without failure. Testing can facilitate the debugging
process by locating faults that then can be fixed early in the development process. Test-driven
developments serves two important purposes:

• Detect system errors at an early development stage when they are least expensive to
fix.

• Evaluate whether a program is usable or not. Since testing can only determine the
presence of errors and not the absence of them, developers have to balance the trade-off
between the level of testing and the number of test cases to ensure cost effectiveness.
Well thought out test cases will increase the robustness of the READEX software.
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Testing should be considered an integral part of the software development process throughout
its life cycle. In general, software testing can be employed at various different levels. The
relevant levels for the READEX software development process include the following:

Unit Testing is the lowest level testing of individual units of code, e.g., a function, class, or
package. Individual unit tests are carried out in isolation from other units and verify
that the defined design has been correctly implemented. The READEX component
developer will write and perform unit tests. In the scope of the READEX project,
individual component developers will be responsible for unit testing of their software
components. These unit tests can then be included in the build scripts for the auto-
mated testing during the component reviews.

Integration Testing is the testing of the interfaces between individual components.
READEX component reviewers will be responsible for integration testing. WP4 will be
responsible for the integration testing of the READEX tool-suite. If certain units are
not yet available for testing, stubs will be used to simulate their functionality. Inputs
and outputs may be hard-coded or read from a file. Within the READEX project con-
tinuous integration will be employed using the Jenkins4 Continuous Integration (CI)
system to oversee the integration and flow of development, testing, deployment, and
support. It is envisaged that the Jenkins CI will be employed from the early stage of
the READEX project to facilitate automated build and release management.

Use-case Testing describes testing according to the expected usage of the system. The
application and validation work-package, i.e., WP5, will be responsible for the use-case
testing of the READEX tool suite.

5.4.3 READEX Repositories

Repositories are vital for data management during the lifetime of the READEX project. The
following repositories have been set up for the lifetime of the project:

Source Code Repository: A Git5 repository is used for source code management. Git
allows for sophisticated branching to streamline the development process among the
distributed development teams. The repository will be centralised to ensure project-
wide accessibility. All the relevant software documentation as well as technical and
scientific documents are to be stored in the source code repository.

Application Repository: A separate Git repository will be used to manage applications
of interest. These applications will be used to test the READEX tool-suite.

Data Repository: Since application data may require significant storage space, it will be
managed in a separate data repository, i.e., the project storage on the Taurus system
installed at TU Dresden, which is accessible for all project members.

4https://jenkins-ci.org/
5https://git-scm.com/
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Document Repository: As described in deliverable D7.1, a Sharepoint project has been set
up that contains all presentations as well as management and and other non-technical
documents. The repository is available at https://sharepoint.tu-dresden.de/

projects/readex/ and only accessible for project members.

5.4.4 Build and Release Management

Build and release management is the process of managing software builds, e.g., nightly, weekly,
or fortnightly, and releases from development stage to software release. Due to the distributed
nature of the development model in the READEX project, a unified (possibly automated)
build and release management will be required to seamlessly build, test and integrate var-
ious different components before making an official release. For this purpose, the Jenkins
continuous integration system will be used, as described in Section 5.4.2.

Another important element of the release package is the documentation for all relevant users
of the system, i.e., developers, administrators and end-users. Hence, software release will
include a copyright statement and licensing information as well as documentation on how to
deploy and use the software.

All software releases will be published through the READEX website at http://www.readex.
eu/index.php/dissemination/software/.

5.4.5 Anomaly Management

The detection and handling of software anomalies are an integral part of a software develop-
ment process. The READEX project has defined procedures to manage and resolve anomalies
identified through the test-driven development process described in Section 5.4.2 and beyond
official releases. The procedure will be relevant from the integration phase onward.

An anomaly is generally defined as an error or bug in any item that does not conform
to the specified requirements or specification. An anomaly or bug can be major and thus
render the system unusable or minor and affect functional use in only a few cases. The
person discovering an anomaly is responsible to report the bug and may choose to directly
provide a fix if possible. The person is responsible for reporting the bug to the respective
work package (WP) leader using the project-internal ticket system, which allows other WP
leaders and developers to be included in the communication if appropriate. The WP leader
is responsible for fixing or reassigning the bug to a developer or other WP leader he thinks
is more appropriate. A timely resolution of anomalies is desirable to mitigate the impact of
the anomaly on the development process and/or the users.
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6 Application Case Study

This section presents an application case study, which provides a supportive statement for
the READEX approach, as outlined in previous sections. Using a model cube benchmark, we
discuss the energy consumption evaluation of a Finite Element Tearing and Interconnecting
(FETI) solver. These solvers are used to solve extremely large systems of linear equations on
HPC clusters. The measured characteristics illustrate the behaviour of various pre-processing
and solve phases related mainly to the CPU frequency.

6.1 FETI methods and their implementations

Partial Differential Equations (PDEs) are often used to describe phenomena such as sheet
metal forming, fluid flow and climate modelling, where the computational approaches taken
to finding the solution to such PDEs involve solving a large system of linear equations.

When scientific applications solve PDEs that are too big to fit in the memory of a single
machine or demand more processing power than a single machine can deliver, Domain De-
composition Methods (DDMs) are required. DDMs are used to divide the original problem
into smaller sub-domains that are distributed across the compute nodes of a HPC cluster.
Without going into too many details, it suffices to say that the decomposition factor H de-
fines both, sub-domain size as well as the total number of sub-domains for a problem of given
size. The size of a problem is determined by the discretization parameter h, which defines
the mesh granularity. Parameter H acts as an important application parameter.

The Finite Element Tearing and Interconnecting (FETI) method forms a subclass of DDM,
as it efficiently blends Conjugate Gradient (CG) iterative solvers and direct solvers. Since the
number of CG iterations is independent of the discretisation parameter h, the FETI method
has both the parallel and numerical scalability to scale to tens of thousands of processors.
IT4Innovations is developing two in-house FETI-based software packages. The first one is
called PERMON [3], the second one is ESPRESO [20]. Both PERMON and ESPRESO focus
on engineering applications.

The two main phases of the FETI method are pre-processing and solve. In the pre-processing
stage, the stiffness matrix K is factorised and the natural coarse space matrix G and coarse
problem matrix GGT are assembled. The latter matrix is also factorised. Both of these
operations are considered to be among the most time consuming and thus among the most
energy consuming operations.

The solver employs the Conjugate Gradient (CG) algorithm, which consists of Sparse Matrix-
Vector Multiplications (SpMV), vector dot products, or AXPY functions. For each iteration,
it is necessary to apply the direct solver twice, i.e., forward and backward solves for the
so-called pseudo inverse action and the coarse problem solution. All these operations are
covered by the basic sparse and dense BLAS Level 1-3 routines, which allows us to explore
their different computational characteristics.
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Figure 6.1: Model 3D linear elastic cube.

6.2 Model problem

As a benchmark, the 3D linear elastic cube was used with the bottom face fixed and the top
one loaded with a surface force, as depicted in Figure 6.1. For these computations, a mesh
is generated and decomposed into sub-domains by the PermonCube benchmark generator.
The parallel mesh generation is controlled by two groups of parameters. The number of
subdomains NS = XY Z is managed by parameters X,Y, Z and similarly the number of
elements per subdomain is given by x, y, z (both considered in the respective axis directions).
The numerical scalability of the FETI method within PERMON is characterised by the
number of iterations decreasing with increasing NS (decreasing H) for the fixed h parameter.
Decomposition into a large number of sub-domains favourably affects the time of factorisation
of K and the pseudo-inverse K+ action. However, it also increases the size of the coarse
problem, whose solution becomes a critical part of this method for a large number of sub-
domains.

6.3 Experimental setup

As described in Section 3, an initial set of tuning parameters has been identified for the
READEX project. Although several parameters have been investigated so far, we will con-
centrate on the CPU frequency for this early-stage case study.

As part of this study, we placed HDEEM measurement functions around individual appli-
cation regions, which allow for energy measurements on the Taurus system at TUD. By
instrumenting the code with HDEEM at appropriate locations, we are able to measure the
energy consumption of either the whole solver or selected regions only. For example, for the
case of the finer grain tuning and measurement, we can place the switching points before
and after the functions of interest to change the frequency and measure the objective value.
Thus, the function names identifying the regions implicitly serve as identifiers for the tuning
of the CPU frequency. The instances of the function executions determine various rts’s. The
sequence of these rts’s forms the application execution, e.g., the pre-processing step followed
by the solve step.
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The measured power consumption of the particular rts’s under the given system configura-
tion are depicted as objective functions and are illustrated in Figures 6.2, 6.3 and 6.4. As
part of this early-stage investigation we aim to indicate a function mapping of rts’s to an
optimal system configuration. Tuning relevant dynamism If the switching of between sys-
tem configurations shows an improvement in the objective function, e.g., a reduction in the
energy consumption when running different regions with different CPU frequencies, in our
FETI solver.

6.4 Preprocessing, solve and overall FETI vs. CPU frequency

The measurements of PERMON’s FETI solver energy consumption on a single compu-
tational node were performed using the Linux CPUFreq utility6 for frequency changing
(cpufreq set frequency()) and HDEEM library version 2.1.5 for the accurate measurements.

The relation of the CPU frequency and the consumed energy for the complete solution of
the problem is shown in Figure 6.2 for (i) the whole FETI (preprocessing and solve), (ii) the
preprocessing stage, and (iii) the CG solver stage. Figure 6.2 also shows standard deviations
based on repeated measurements where the mean values were computed from 10 repetitions.

Taking into consideration the energy savings using static tuning in Figure 6.2, we can see that
the total saved energy for the whole FETI computation (i.e, the difference between energy
used with default frequency 2.5 GHz and minimum energy used with frequency 1.7 GHz) is
≈ 10%. This is true if the solve runtime is similar to preprocessing time, which is the case of
a small problem used in this study.

If we need to solve the problem more precisely or we need to solve time dependent problems,
the preprocessing stage becomes negligible as it is performed only once at the start of the
simulation and hence, the solve stage will start to dominate. In the solve stage, we can see
from Figure 6.2 that the improvement in energy efficiency between using the default frequency
2.5 GHz and the best-found CPU frequency at 1.6 GHz, is ∼ 13%.

Comparing the best static tuning frequency 1.7 GHz to the dynamic frequency tuning with
(i) 1.6 GHz for the solve phase and (ii) 2.1 GHz for the preprocessing phase, we can see
that the dynamic switching approach provides only a 0.6% and 0.4% reduction in energy
consumption, respectively. To achieve an improvement to energy efficiency, we we further
investigate dynamic tuning at the finer grain of CG kernels.

6.5 CG kernels of the FETI solver

In order to further evaluate the dynamism in the FETI solvers we have performed energy
consumption measurements of the main kernels of the solve phase, as shown in Figure 6.3.
These kernels are: (i) Preconditioner action (lumped MLv or Dirichlet MDv), (ii) Operator
action Fv, (iii) Projector action Pv, and (iv) vector operations (AXPY). For the measured
operations, we have employed the following libraries: PETSc for MLv, the MKL for MDv,

6CPUfreq: https://www.kernel.org/doc/Documentation/cpu-freq/index.txt
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Figure 6.2: Dynamism evaluation for FETI solver for model problem with X=4; Y=3; Z=2;
x = y = z=52; NS=24; number of elements NE=140,608; primal dimension NP=10,719,144;
kernel dimension NK=144; 62 CG iterations (Red - default setting, Blue - best static con-
figuration and associated energy savings, Green - best dynamic configuration and associated
energy savings).
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Table 7: Static and dynamic tuning savings of the FETI solve stage and both pre-conditioners.
Overall savings are computed from the absolute savings and the runtime percentage. Dynamic
savings are relative to the static tuning results.

Action Runtime
Static Tuning Optimal

Frequency
Dynamic Tuning

Saving Overall Saving Overall

MLv 10% 3.2% 0.32% 2.1 GHz 3.1% 0.31%
Fv with ML 80% 12% 9.6% 1.6 GHz 1% 0.8%

MDv 40% 13% 5.2% 1.2 GHz 4% 1.6%
Fv with MD 50% 12% 6% 1.6 GHz 1% 0.5%

Pv 6% 2% 0.12% 2.3 GHz 1% 0.06%
AXPY 4% 13% 0.52% 1.2 GHz 6% 0.52%

Total overall savings:
with ML 10.56% 1.69%
with MD 11.84% 2.68%

PETSc + MUMPS Cholesky for Fv, PETSc + SuperLU DIST for Pv, and the MKL for
vector operations. The optimal frequencies and the improvement to energy efficiency achieved
for the individual kernels compared to running with the best-found static configuration, i.e,
1.7 GHz, are shown in Table 7.

In order to evaluate the overall potential of the dynamic tuning inside a single iteration of the
FETI CG solver, we have to take into account the execution times of the respective kernels.
For example, although the vector operations can save up to 13%, this saving is small since
it takes less than 4% of a single iteration runtime. The most time-consuming regions are
the matrix-vector multiplications carried out by both the Fv operator and the Dirichlet pre-
conditioner MDv as they each account for 50% and 40% of the overall runtime, respectively.
The projector runtime is highly problem-dependant and is mostly influenced by the problem’s
number of sub-domains. For the problem used in our tests, its runtime is small. In order to
measure its effect, we would have to run it on tens or hundreds of nodes. However, from our
experience on large runs, the projector can take between 1-10% of the runtime.

The energy consumption characteristics of the projector operator will grow with the size
of the coarse problem matrix. However, for this particular test case, performing dynamic
tuning for this region does not yield any significant savings and is, therefore, an example of
an insignificant region. As an example of application input parameter, the total number of
sub-domains defines the projector size and its behaviour.

In Table 7 we summarise the overall savings achieved by the static and dynamic tuning. This
table shows that based on the best-found static configuration we can save additional 2.68%
by dynamic tuning of the CPU frequency as a single system parameter.
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Figure 6.3: Dynamism evaluation of the solve phase, the CG solver in FETI:
Fv, Pv,MLv,MDv and BLAS1 (vector) operations for model problem with X=4; Y=3; Z=2;
x = y = z=52; NS=24; number of elements NE=140,608; primal dimension NP=10,719,144;
kernel dimension NK=144; 62 CG iterations (Red - default setting, Blue - best static con-
figuration and associated energy savings, Green - best dynamic configuration and associated
energy savings).
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6.6 Local Dense and Sparse BLAS evaluation

We have also analysed the performance of the local Matrix-Vector and Matrix-Matrix multi-
plications with dense and sparse matrices, i.e. BLAS 2 and 3 and Sparse BLAS 2 and 3 rou-
tines. As input data, we have assembled a FEM block diagonal symmetric positive semidefi-
nite stiffness matrices K. Here, we have employed sparse MM and sparse MV from PETSc,
dense MM and dense MV from Intel MKL.

Figure 6.4 illustrates the completely different behaviour of BLAS 2 and BLAS 3 routines
with regards to power consumption. In case of the memory-bound dense Matrix-Vector
multiplication, the minimum in energy consumption is reached for the lowest frequency of 1.2
GHz. In contrast to that, for the dense Matrix-Matrix multiplication the minimum in energy
consumption is reached for the highest frequency of 2.5 GHz as it is more computationally
intensive. A similar situation has been observed for sparse BLAS 2 and BLAS 3 routines,
where the minimum of energy for sparse Matrix-Vector multiplication is reached for the lower
frequency of 1.5 GHz while the minimum of energy for sparse Matrix-Matrix multiplication
is reached for a higher frequency of 2.3 GHz.

In other words, for applications intensively and equally using (dense) BLAS 2 and 3 oper-
ations, we can improve energy consumption by ∼ 20% by dynamically switching between
optimised configurations. The savings for sparse BLAS 2 and 3 are not negligible and of
course depend on the structure of the sparse matrix. While not depicted in this report, the
behaviour of BLAS 1 routines is similar to BLAS 2 routines.
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Figure 6.4: Relation of consumed energy and frequency (Intel MPI, gcc, O3) for 100x sparse
Matrix-Vector multiplication Kv (Sparse BLAS 2) for blocks with 243 elements, 10x dense
Matrix-Vector multiplication Kv (BLAS 2) for blocks with 163 elements, 1x sparse Matrix-
Matrix multiplication KK (Sparse BLAS 3) for blocks with 243 elements, 1x dense Matrix-
Matrix multiplication KK (BLAS 3) for blocks with 163 elements (Red - default setting,
Green - best dynamic configuration and associated energy savings)
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7 Summary

In this deliverable, we have presented the fundamental concepts of the READEX approach
and have specifically presented the two-stage READEX methodology of Design Time Analysis
(DTA) and Runtime Application Tuning (RAT). Along with this, we have described the
concept of a tuning model and how this model is generated as the final outcome of the DTA
stage of the READEX methodology. We have described in an abstract manner how the
tuning model is subsequently employed by the RAT stage to guide dynamic runtime tuning
of the HPC stack through the READEX Runtime Library (RRL), which will be developed
as part of the project. We also describe how the fundamental concepts of the READEX
methodology can be applied to define a tuning potential metric, which is central to the
overall READEX methodology. Moreover, we have shown how the fundamental READEX
concepts can be expanded to include the central idea of inter- and intra-phase dynamism
as well as the concept of handling a multiplicity of application inputs. By presenting a
formal mathematical description of the READEX concepts for the first time, one of the
central aims is to minimise ambiguity in their definitions, to improve common understanding
and communication between the project partners as well as to support the development of
READEX DTA and RAT methodologies and software components throughout the lifetime
of the project.

In our description of READEX-relevant tuning parameters, we have distinguished between
three different levels of the HPC stack, i.e., hardware parameters, system software param-
eters, and application-level parameters. The tuning parameters that we have so far identi-
fied as being relevant to READEX include processor core and uncore frequencies, MPI and
OpenMP runtime parameters as well as application-specific parameters. It has been con-
tinuously emphasised throughout that all of these tuning parameters can be influenced at
runtime, a characteristic that is fundamental to the READEX approach. While all of the
tuning parameters we describe in this deliverable are considered relevant to READEX, fur-
ther investigations are required to confirm that the impact they have on the energy efficiency
of applications in production mode is significant enough to warrant inclusion in the READEX
tool suite.

We have followed our description of READEX concepts and tuning parameters with a de-
scription of the DTA and RAT approaches, which includes a detailed description of the
workflows of each stage. In terms of the DTA stage we have specifically described the key
steps of instrumentation, significant region detection, tuning model prediction, intra- and
inter-phase analysis, hints analysis and tuning model computation, each of which are funda-
mental to the DTA workflow and will feature as software implementations in the READEX
tool suite. Likewise, for the RAT stage, we have specifically described the key steps of ini-
tialisation, phase entry and exit and significant region entry and exit. When describing the
overall READEX approach, we have described how the tuning approach can be supported
by domain knowledge, specified by a target application developer or user. It is anticipated
that the user/developer will be able to provide additional identifiers for significant regions,
phases, and application input that will aid the READEX tool suite during analysis.
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We have detailed how the tool suite will leverage two major software components: an ex-
tension of the existing Periscope Tuning Framework (PTF) used to control the DTA stage
and a new READEX Runtime Library (RRL), which will be linked to the target application
during the RAT stage. We have also described how Score-P will serve as a common infras-
tructure for PTF and the RRL, providing instrumentation and measurement capabilities to
both components. In addition to a high-level description of how this software infrastructure
will serve the READEX tool suite, we have provided an architectural description of the soft-
ware components, including the extensions that will be implemented during the READEX
project. On top of this, we have provided a description and release plan for READEX tool
suite prototypes as well as a plan to ensure software quality throughout the development
phases of the project.

Finally, we have described an application case study that centres on the PERMON and
ESPRESSO applications, which focus on Finite Element Tearing and Interconnecting meth-
ods, used widely in the engineering domain. As part of this case study, we have already
carried out energy consumption measurements as a function of tuned processor frequency on
the Taurus system using instrumented versions of each of these applications. On top of these
early stage results, we have also identified potential dynamism in each of the applications,
which can be exploited in the READEX methodology as well as application-specific tuning
parameters that we hope to target in the near term of the project.

In developing the READEX methodology and tool suite, it is also worth finally mentioning its
limitations from the perspective of both methodology and design. Firstly, the tool suite will
target only C/C++ and Fortran applications. Since the majority of HPC applications are
written in these languages and since READEX is mainly targeting the HPC community, this
is not regarded as a severe limitation. By the nature of the fundamental theoretical concepts
outlined in this deliverable, it is clear that the tool suite can only aid in the improvement of
performance and energy efficiency if the the target application exhibits some form of phase-
like dynamic behaviour, i.e., what we have referred to as phase dynamism in this deliverable.
Likewise, the tool suite will need to have access to various identifiers that can help to properly
expose and characterise this dynamism. Finally, there is the challenge of carrying out the
DTA and RAT stages at different scales on a given HPC system and, if this is viable at all, to
find out what amount of flexibility is required for doing so. To determine this more clearly,
and to surmount any challenges, will require further investigations during the early stages of
the project.
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