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Executive Summary

The objective of WP3 is to implement the READEX Run-time Library (RRL). Besides the
RRL architecture implementation, this involves development of efficient scenario detection
and switching mechanisms and the development of an efficient run-time scenario calibration
mechanism. The final RRL architecture was presented in deliverable D3.1. Prototypes of
scenario detection and switching, as well as concepts for runtime calibration, were presented
in deliverable D4.2.

This deliverable describes the final mechanisms for runtime scenario detection and switching,
and runtime scenario calibration.

When a production run of an application starts, the RRL is activated and the Application
Tuning Model generated during Design Time Analysis is imported into the Tuning Model
Manager. When a significant region in the application is entered, the composition of the
current runtime situation is determined through interaction between Score-P and the different
modules of the RRL. The runtime situation is used to determine the upcoming scenario, which
again determines the setting of the different system configuration parameters such as core
and uncore frequency. The actual switching of parameter settings is performed by Parameter
Control Plugins.

If a runtime situation is detected that is not already in the Application Tuning Model, cal-
ibration is activated. A Machine Learning based method is used to quickly find an energy
efficient system configuration for the new runtime situation. Performance Monitoring Coun-
ters are used to monitor hardware events that can be used to determine the configuration.
When a configuration is found, the result is stored by the Tuning Model Manager for future
use.

It is assumed that the reader of this document has already a good understanding of the
READEX concepts from reading previous deliverables such as D4.1, D4.2, and D3.1.
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1 Introduction

The objective of WP3 is to implement the READEX Run-time Library (RRL). Besides the
RRL architecture implementation, this involves development of efficient scenario detection
and switching mechanisms and the development of an efficient run-time scenario calibration
mechanism. The final RRL architecture was presented in deliverable D3.1 [5]. Prototypes of
scenario detection and switching, as well as concepts for runtime calibration, were presented
in deliverable D4.2 [7].

This deliverable describes the final mechanisms for runtime scenario detection and switching,
and runtime scenario calibration. These mechanisms all involve several modules in the RRL
architecture depicted in Figure [} as will be described in the following sections. Where de-
tailed descriptions of mechanisms have already been presented in other deliverables, references
are given to these while mainly an overview is given here.

The deliverable is structured as follows: Section [2] will present details about the implemen-
tation of the scenario detection mechanism. Section [3| presents details about the implemen-
tation of the scenario switching mechanism. In Section [ we will present details about the
implementation of the scenario calibration mechanism.

H2020-FETHPC-2014 5
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Figure 1: Overview of the READEX tool suite showing detailed RRL architecture, including
interconnections with other parts of the READEX platform relevant for the content of this

document.

H2020-FETHPC-2014



READEX D3.2 Deliverable Report

2 Scenario Detection

Runtime detection of the upcoming scenario is a process that involves several modules in
the RRL architecture depicted in Figure [l The tasks of the different modules are described
in the following subsections. Parts of the implementation have previously been presented in
deliverables D3.1 [5, Section 2] and D4.2 [7, Section 2.3].

2.1 Score-P

The READEX project uses Score-P [13], which supports various mechanisms to instrument
parallel applications. This includes

e compiler instrumentation, with support for numerous compilers for various processor
architectures,

e instrumentation for parallelization mechanisms like MPI, OpenMP, CUDA, and Open-
ACC, and

e interfaces for manual instrumentation.

To apply these, Score-P has to be used as a compiler wrapper, e.g., by calling scorep mpicc
instead of mpicc when compiling the program. Whenever an instrumented event is observed
during the execution of the application, Score-P collects basic (timestamp, whether a region
is either entered or exited, which region) and advanced information (e.g., various metrics like
PAPI counters [I]) and calls the registered substrate to process this data. Traditionally, these
substrates are profiling and tracing. In READEX, we extended this functionality to develop
additional substrates as plugins via the Score-P Substrate Plugin Interface [I5]. We use this
interface to call the RRL.

2.2 Control Center

The Control Center acts as the basic interface between Score-P and the RRL. It instantiates
the different subcomponents of the RRL, namely the RTS Handler, Tuning Model Manager
(TMM), Online Access (OA) Event Receiver, and Calibration. The Control Center receives
information about different events happening during an application run from Score-P and
then decides which component gets which information.

The different interfaces between the Control Center and the other components of the RRL
are shown in Figure Upon approaching a new region, the Control Center receives noti-
fication from Score-P. The Control Center registers the new region with the TMM through
a register_region call. The different region enter, region exit and user parameter events are
forwarded to the Calibration module (interfaces not shown in Figure [2) and the RTS Han-
dler through enter_region, exit_region and user_parameter calls, respectively. The RTS Han-
dler also receives the create location and delete location events through create_location and

H2020-FETHPC-2014 7
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Figure 2: Sequence diagram showing the interfaces between components of RRL used for
scenario detection and scenario switching.

delete_location calls in case of OpenMP applications. The so called Generic Commands [5],
which are generated by PTF through the OA Interface, are redirected to the OA Event Re-
ceiver. The details about the interfaces and working of OA Event Receiver are given in the
Deliverable D3.1 [5].

2.3 RTS Handler

The RTS Handler maintains the current call stack and collects the additional identifiers.
Additional identifiers are specified in the application by annotating them as user parameters,
which are passed by Score-P to the RT'S Handler via the Control Center as user parameter
events. Upon receiving an enter region notification from Score-P during the application run,
the RTS Handler checks with the Tuning Model Manager (TMM) whether the current region
is a significant or an unknown region through the is_significant function. If it is an unknown
region, the calibration mechanism is called and nothing else is done. A detailed description
of the calibration mechanism is given in Section [

H2020-FETHPC-2014 8



READEX D3.2 Deliverable Report

Table 1: Hash maps for storing ATM information.

Name Key Return value  Content

region region_id true / false A list of all significant regions found at
design time.

nidentifiers region_id and number of A list of call_path with region_id and the
call_path identifiers expected number of additional identifiers
for each.
rts set of identifier scenario_id A list of rts’s and the corresponding
values scenario identifier for each.
scenarios scenario_id parameter A list of scenarios and the corresponding

configurations configuration for all tuning parameters.

If the region is significant, then the RTS Handler passes the current call path to the TMM
and asks the TMM for the number of additional identifiers through the get_rts_identifiers call.
The TMM returns the number of additional identifiers that are expected. The RTS Handler
collects these additional identifiers through user parameter events. Once the required addi-
tional identifiers are collected, the RT'S Handler requests a new configuration from the Tuning
Model Manager through the get_current_rts_configuration call and also passes the current call
path to the Tuning Model Manager (TMM). The TMM returns back the configuration for the
requested rts which is then passed to the Parameter Controller through the set_parameters
call by RTS handler. The details about how exit region notifications are handled by the RTS
Handler are given in Subection [3.2

2.4 Tuning Model Manager

During Runtime Application Tuning (RAT), the Tuning Model Manager (TMM) is instan-
tiated by the Control Center at the beginning of the application execution. The TMM then
reads in and deserializes the Application Tuning Model (ATM) generated during Design Time
Analysis (DTA), and stores the information as hash maps for efficient look up at runtime.
Table [I] gives a description of the most important maps.

When the RTS Handler initiates a scenario detection process by asking if the current region
is significant using the is_significant function, the TMM checks if this region is found in the
ATM. The TMM returns information to the RTS Handler of whether the region was found
or not. If the region was not found, runtime calibration is required. If the region was found,
the RTS Handler next sends the current call path to the TMM. With this, the TMM can
look up how many additional identifiers are expected for any rts related to this region and
call path. Note that different call paths and regions may have different numbers of additional
identifiers. For a given call path and region, however, the number of additional identifiers is

H2020-FETHPC-2014 9
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always the same, even though the values of these identifiers may together constitute different
rts’s, and thus result in different scenarios being detected.

Finally, the TMM receives the complete rts, consisting of all the identifier values (region, call
path, and additional identifiers). This is used as key to the hash map that stores the scenario
id for each rts. Finding this scenario id completes the scenario detection process.

It may happen that the current region is present in the ATM, while the current call path,
or subsequently, the current identifier values, are not. In this case, runtime calibration is
required, and the TMM notifies the RTS Handler of this.

H2020-FETHPC-2014 10



READEX D3.2 Deliverable Report

3 Scenario Switching

Runtime switching of the system configuration according to the detected scenario is a process
that involves several modules in the RRL architecture depicted in Figure[ll The tasks of the
different modules are described in the following subsections. Parts of the implementation
have previously been presented in deliverables D3.1 [5, Section 2] and D4.2 [7l, Section 2.3].

3.1 Tuning Model Manager

As described in Section 2| the TMM deserializes the ATM into hash maps (Table , one of
which holds the system configuration for each scenario. The scenario detection process ends
when the id for the upcoming scenario is found. This id is then used for hash map look up
to find the system configuration that constitutes the scenario. This information is passed to
the RTS Handler in response to its get_current_rts_configuration call.

A final task of the TMM is to store the configuration of rts’s that have been calibrated at
runtime. Upon receiving a new rts and its configuration from the RTS Handler (see Section
for details), a new entry in the hash map that stores system configurations is generated.
The id for this entry is used to make a new entry also in the hash map storing rts’s. Here, the
identifier values of the new rts are used as key to select this id value. Finally, if the calibrated
rts was coming from a previously unseen region, the region is also added to the hash map
listing the significant regions.

3.2 RTS Handler

During scenario detection, if the region entered is detected to be significant by the RTS
Handler, the RTS Handler gets a new configuration from the Tuning Model Manager for
the generated rts (see Section [2| for details). This configuration is passed to the Parameter
Controller, which sets the configuration through the respective Parameter Control Plugins
(PCP) by calling the set_parameter function of the PCP.

Upon receiving an exit region event, the RT'S Hander checks if the current region was set up
for calibration. If yes, it requests the configuration for the currently exited region from the
Calibration module by calling the request_configuration function. Once the RTS handler gets
back the configuration from the calibration module, it passes this configuration to the TMM
through the store_configuration call. TMM stores the new configfuration for the respective
rts. If the region was not set up for calibration, then the Parameter Controller is informed
that it might want to unset the current configuration. However, the actual decision whether
or not the configuration gets unset is left to the Parameter Controller.

H2020-FETHPC-2014 11
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3.3 Parameter Controller

The Parameter Controller takes care of the loading, setting and finalizing the PCPs. It
gets a configuration to apply from the RTS Handler. The Parameter Controller supports
two different modes: reset and no-reset. The first mode maintains a configuration stack.
Whenever a new configuration is set, the previous configuration is pushed onto this stack.
When the corresponding unset occurs, the element is removed from the stack and the previous
configuration is set.

If the no-reset mode is selected, the current configuration stays active until a new config-
uration is set. The unset is ignored. The behavior of the no-reset mode is configurable
using an environment variable named SCOREP_RRL_CHECK_IF RESET. The no-reset mode is
managed by a so called configuration manager, which has two different implementations each
for the two possible values of the environment variable SCOREP_RRL_CHECK_IF RESET, which
are “no-reset” or "reset”. By default, "reset” mode is enabled. The implementation of the
configuration manager that manages the ”"reset” mode, saves the previous configurations on
stack and changes the current configuration back to the previous configuration from the top
of the stack on the exit of a region. The other implementation, which manages the "no-reset”
mode, does not keep track of the previous configurations on stack as it leaves the current
configuration set until a next configuration arrives.

3.4 Parameter Control Plugin

The PCPs perform the configuration of different hardware and system software resources.

Each plugin is loaded, initialized, and used by the Parameter Controller. The RRL defines
an interface which allows the users to build their own PCPs.

Currently the following plugins are available:

Dynamic Voltage and Frequency Scaling (DVFS),

Uncore Frequency Scaling (UFS),

Energy Performance Bias (EPB),
e MPI,

e OpenMP.

A detailed description of the different PCPs can be found in Deliverable D1.1 [6].

3.5 Switching Visualization

Figure [1] shows the architecture of the READEX tool suite with the switching visualization
module. This module is implemented as a metric plugin. It uses the metric plugin interface

H2020-FETHPC-2014 12
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provided in Score-P to add the tuning parameters as metrics in Vampir [2] 3] traces and to
get the tuning parameter values from RRL. The user can select these metrics in Vampir and
visualize the switching pattern for each metric.

The metric plugin has to be loaded wusing the Score-P environment variable
SCOREP_METRIC_PLUGINS and the user can specify if all of the tuning parameters, or
only selected ones, need to be added to the Vampir trace. The tuning parameters
that the user wants to visualize can be specified using the Score-P environment variable
SCOREP_METRIC_SCOREP_SUBSTRATE RRL. Any of the hardware, software and application tun-
ing parameters can be chosen for visualization.

Figure [3] illustrates the switching of the CPU frequency and uncore frequency performed by
RRL while tuning CPU frequency “CPU_FREQ” and uncore frequency “UNCORE_FREQ”
for the Kripke benchmark. As can be seen in the Figure [3] the Vampir plots show the value
of the tuning parameters for each region.

0s 20s 40s 60 s  80s 100 s 120's 140's 160 s

Masterthread:0 NN NI NIRRT

MPI Rank 0, Values of Metric "CPU_FREQ" over Time

2.90M

2.70M
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e
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Figure 3: CPU_FREQ and UNCORE_FREQ switchings by RRL during Kripke run-time
tuning

Further details about how to use the switching visualization metric plugin are given in De-
liverable D4.3 [11].
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4 Scenario Calibration

During RAT, we differentiate between known and unknown runtime situations (rts’s). Known
rts’s describe those which have been encountered during DTA. So the optimal configuration
for the rts’s is known. However, unknown rts’s describe those which have not been encoun-
tered during DTA. This might happen because some additional identifiers change, or simply
because the application took an alternative code path. The goal of the calibration is to handle
these unknown rts’s during RAT.

The challenge lies in finding a good configuration in a short time. Searching for the opti-
mal configuration as done during DTA is not feasible as it would significantly degrade the
performance of the application. To avoid this we use a Machine Learning based method to
determine a good configuration for an unseen rts. Using this method we can split the cali-
bration in a training part and a detecting part. The training is done once per HPC system
as described below. During RAT the trained model is used to detect a good configuration as
described in Section Once a configuration is found, it is stored in the TMM.

In difference to the DTA, we try to find a good configuration only in terms of core and
uncore frequency. Adding the search for an optimal number of OpenMP threads would
further increase the already large space of possible optimal configurations during training.

4.1 Training

Each Machine Learning algorithm needs a data basis, also called feature vector, to learn
from. For supervised learning, an optimization criterion and a target vector are needed as
well. In our case, the optimization criterion is to reduce the energy consumption of certain
program functions. To do so, we change the frequency of the processor core and uncore,
which represents the target vector. The training examples are generated by different energy
optimal frequencies for monitored program functions. As feature vector, we use the hardware
performance measurement counters (PMCs) as the data basis to learn from and predict a
good configuration.

PMCs are CPU registers that can be used to count different hardware events, like executed
instructions, cache accesses, and branch predictions. Each counter counts either a pre-defined
event or an event that is specified in the accompanying control register. Within the control
register, the event name and an umask can be specified. While the former indicates a class
of events, e.g., the number of cache lines written to L2, the latter describes the event more
precisely, e.g., which cache coherence state the lines have to have to be counted. Modern pro-
cessor architectures are equipped with counters that measure events related to the processing
units and core-related caches, and counters that observe the behavior of shared components
within the uncore [I4]. A detailed description for core and uncore counters on the Intel
Haswell-EP platform can be found in [4, Chapter 18] and [10], respectively.

The purpose of the learning algorithm is to use these counters to predict the most energy
efficient configuration of the processor frequency for a specific region. However, as there is

H2020-FETHPC-2014 14
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only a limited number of PMCs available to measure the different events, it is not possible to
collect all events at the same time. Hence, we need to find the appropriate core and uncore
events. This is described in Section {.1.1] Afterwards, we use them to train our Neural
Network, which is explained in Section

4.1.1 Selecting Relevant Performance Events

Suitable hardware events are those that contribute to a decision about the optimal frequencies.
However, to gain the most accurate information, we need to filter out redundant information.
For example, each L1 cache miss can also be defined as a L2 cache access. Therefore, only
one of them needs to be measured, if at all.

Yoo [16] proposes the Correlation-based Feature Selection from Hall [§] to choose events
without redundant information. Hall proposed a Merit to select features that correlate with
the target vector but not with each other:

k@
VEk+ k(k =177
Tef - .. Correlation between target vector (c) and

Merit =

feature vector (f)
Tef ... average of 7¢f
r¢f ... Correlation between feature (f) and feature vector (f)
Trf ... average of s

k... Number of features

For continuous class data, like the core frequency, Hall recommends the Pearson correlation
for r:

z,y ... Input vectors
Oz, 0y ... Standard deviation of x and y

n ... Length of the vectors x and y

However, the Pearson correlation is a linear correlation coefficient, but performance events
might not correlate linearly with the optimal frequency as the energy consumption does not
exhibit a linear correlation with the frequency. To relax the linearity criteria, we use Kendalls
7 [12] to calculate the correlation between the different feature vectors or the different feature
vectors and the target vector. Kendalls 7 returns values between —1 and 1, where 1 indicates
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similarity (e.g., both values are rising) and —1 dissimilarity (e.g., one value is rising, while
the other one is falling). As we are interested in both, values that are similar and dissimilar,
but not in values that are not correlated at all, we use

rey = |7(2,y)] (3)
x,y ... Input vectors

7(z,y) ... Kendall’s 7 for x and y

Using the Merit we are now able to select relevant performance events for the training of a
learning algorithm. To generate the input vectors for the learning algorithm, we remeasure
the relevant events to generate new feature vectors.

4.1.2 The Learning Algorithm

For the implementation of the learning algorithm we chose Neural Networks (NN). Neural
networks try to mimic the human brain, where computational units often referred to as
neurons combine input values to produce an output value. Usually, the computed output
value may be channeled to other neurons, depending on the number of layers incorporated
by the NN [9].

Our aim is to collect feature vectors for a given configuration of the processor frequency that
result in the lowest energy consumption. Moreover, in the training step, this data will be
normalized by the runtime of the region and used as input to the NN. The optimal processor
frequency for each region will be used as output.

4.2 Detection

Once the NN is trained, we can use it to find a good configuration for different application
during RAT. The RRL loads the NN during initialisation. If an unknown rts is detected
during RAT, the calibration is invoked. The RRL collects the relevant performance events of
this rts at a default frequency. Once the rts is finished, the performance events are divided
by the duration of the rts and passed to the calibration, which feeds them into the NN. The
resulting frequencies are then passed to the TMM and stored for another occurrence of this
rts.
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5 Summary

The previous sections described the final implementations of the scenario detection, sce-
nario switching, and calibration mechanisms used during Runtime Application Tuning by
the READEX tool suite. As shown, there is close interaction between Score-P and various
modules in the READEX Runtime Library to enable dynamic adaptation of the system con-
figuration in order to improve the energy efficiency of applications during production runs.
The calibration mechanism gives READEX the ability to handle runtime situations that were
not encountered during Design Time Analysis.

The mechanisms described in this deliverable are implemented as part of the Beta prototype
of the READEX tool suite, as described in deliverable D4.3.
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