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Executive Summary

This deliverable describes two different parts of the READEX tool development, the tuning
potential analysis and the approach for scenario identification.

The tuning potential analysis is the very first step of the READEX Design Time Analysis
(DTA). It analyses the application with respect to its suitability for the READEX tun-
ing methodology. If insufficient tuning potential is found, READEX terminates advising
the user to apply regular static tuning instead. Two automatic tools have been developed,
scorep-autofilter and readex-dyn-detect. scorep-autofilter measures the granular-
ity of program regions and generates a list of frequently executed regions with too fine gran-
ularity (too short execution time per instance). This list is used to filter out these regions
from instrumentation, thus reducing the instrumentation overhead. readex-dyn-detect first
selects significant regions from the remaining set of regions after filtering. These are regions
coarse grained enough for reconfiguration overhead to be negligible, that are not nested in
other significant regions, and that cover as much as possible of the overall execution time. Fi-
nally, readex-dyn-detect performs dynamism analysis of the significant regions. Variations
in execution time for individual executions of a given significant region and in difference in
compute intensity between significant regions signify dynamism that READEX can exploit.
If this is found, READEX continues to the next steps. If no such READEX exploitable
dynamism is detected, the tool terminates generates a message stating that the application
should be executed without READEX.

The second part of this deliverable describes the final step of the DTA, the approach for sce-
nario identification. In between the tuning potential analysis and the scenario identification,
the Periscope Tuning Framework is used to search for the best possible system configuration
for each runtime situation (rts). The result of this search is stored in a RTS database that
includes information about the context element as well as the best found configuration of
each rts. The database is iterated to group rts’s with identical configurations in scenarios.
This is followed by a grouping of rts’s with similar configurations, using a similarity score
that aggregates the closeness of a set of different system parameters. The clustering limits
the number of scenarios and thus reduces the associated runtime overhead. When the set
of scenarios has been generated, a scenario classifier is defined using a map data structure
to determine the upcoming scenario at runtime. The identifier values are keyed to their re-
spective scenario. Furthermore, a configuration selector is generated for each scenario for use
at runtime to select the configuration of the chosen scenario. The scenario set, the classifier
and the selectors are stored at design time in the Application Tuning Model as a serialised
in-memory representation. It is then read and deserialised at runtime to enable scenario
detection and configuration switching.
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1 Introduction

This deliverable describes two different parts of the READEX tool development, the tuning
potential analysis and the approach for scenario identification. These are the first and last
steps in the READEX Design Time Analysis (DTA) stage. In between the tuning potential
analysis and the scenario identification, the Periscope Tuning Framework (PTF) is used to
search for the best possible system configuration for each runtime situation (rts).

While writing this document it has been assumed that readers are familiar with READEX
deliverable D4.1 Concepts for the READEX Tool Suite [3]. Concepts defined in D4.1 are
consequently not explained in detail here. Note, however, that the rts concept in general
should be understood as the set of multiple executions of the same significant region with
identical context elements (identifiers with values). In D4.1 these are described as individual
rts’s, while they here are linked together to achieve more efficient handling and compact data
structures. See Section 3.1 for details.

This deliverable is organised as follows. Section 2 presents the tools developed for tuning
potential analysis. The section is subdivided into descriptions of a tool for automatic reduc-
tion of instrumentation overhead, for significant region detection, and dynamism analysis.
Section 3 describes the approach developed for scenario identification, mainly subdivided
into the implementations of scenario clustering (grouping of rts’s into Scenarios), scenario
classifier generation, and configuration selector generation. This is followed by a summary in
Section 4.
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2 Tuning Potential Analysis

The first step of Design Time Analysis (DTA) (see Deliverable D4.1) is to analyse the appli-
cation for its suitability for the READEX tuning methodology. If sufficient tuning potential
exists, DTA determines a tuning model which is later on passed to the READEX Runtime
Library (RRL). An application has tuning potential for the READEX methodology if it ex-
poses intra- and/or inter-phase dynamism. Intra-phase dynamism results from variations in
the characteristics of significant regions within a phase, while inter-phase dynamism results
from variations in the execution characteristics of different program phases.

Two automatic tools were developed in READEX to analyse the application’s dynamism and
thus its tuning potential. The first tool, scorep-autofilter, analyses the overhead induced
by Score-P’s compiler instrumentation and generates a Score-P filter file that suppresses
measurement overheads of selected program regions.

The second tool, readex-dyn-detect, analyses the instrumented application and determines
regions suited for the READEX methodology due to their granularity. These regions are
called significant regions. In addition, it analyses the intra- and inter-phase tuning potential,
i.e., the dynamism in the application that can be exploited by runtime tuning.

Section 2.1 presents the automatic computation of the filter file, Section 2.2 outlines the
detection of significant regions and Section 2.3 discusses the identification of the application’s
tuning potential.

2.1 Automatic reduction of instrumentation overhead

The first step of DTA is to reduce the instrumentation overhead induced by Score-P. This is
due to automatic instrumentation by the compiler. For too fine granular regions the overhead
might dominate the execution of the region. The Score-P monitoring system can expunge a
list of regions from measurement. This list of fine granular regions is manually created by
the user. This means that the user has to explore the frequency and execution time of all
regions. Based on these, one can create the filter file with the names of too fine granular
program regions.

For the READEX DTA we implemented an automatic tool to free the user from manually
determining the filter file. The scorep-autofilter tool delves into the measurements for
the program regions and generates a list of frequently executed, too fine granular regions to
reduce the instrumentation overhead.

Figure 1 shows the whole workflow. The first step is to instrument the targeted application
with the Score-P measurement infrastructure. The instrumenter inserts probes around pro-
gram regions that trigger measurements at the enter and exit events. This instrumentation
can be performed automatically by the compiler or manually by the user. Score-P is able
to instrument different region types, such as program functions, MPI calls, and OpenMP
parallel regions.
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Figure 1: Workflow for creating the Score-P filter file with scorep-autofilter.

The scorep-autofilter tool analyses the performance data in the file profile.cubex, which
is generated by Score-P and stores the data in a high level data model, the cube format [4].
This data model is represented by a tree of the region’s call paths. Each node represents a
region on a unique call path and stores the profiling data for this call path, such as visits,
execution time or hardware events. Score-P provides a special API to read this profile format.
In addition to accessing the data per node, it provides access across system entities, such as
nodes of the system, processes or threads.

scorep-autofilter takes a threshold value (in seconds). All regions with a finer granularity
will be filtered. This threshold specification is an optional argument. If no threshold value is
provided, the default value is set to 1 ms.
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Figure 2: scorep-auto-filter architecture.

The granularity of a region is defined as the average execution time of its instances as below:

granularityreg =
tregionincl

instancesexcl
(1)

tincl and instancesexcl are the inclusive execution time and the number of instances of only
this region reg, not counting instances of nested regions and therefore called exclusive.

The tool starts to iterate over all the call path nodes for the instrumented regions. For
each call path node, it computes the granularity, which is defined by Equation (1). If
granularityreg is lower than the threshold, the tool checks the region type of that call path
node in the next step. This is because Score-P can filter only user functions. The name of
the function is then added to the Score-P filter file.

Figure 2 shows the architecture of scorep-autofilter. The application is instrumented
with Score-P and the monitor generates the profile.cubex file which is then input to
scorep-autofilter. The tool itself consists of an Analysis component which accesses the
profile data through the cube interface. The Control Region component determines the region
type and outputs the region names into the scorep.filt file.

We now illustrate the application of scorep-autofilter in the context of the BT-MZ appli-
cation of the NAS Parallel Benchmarks (NPB) [2]. We first instrument BT-MZ with Score-P
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and run the application. A part of the flat profile written into profile.cubex is shown in
Table 1. The six user functions shown have a granularity below 0.56 µs. The measurement
overhead is significant for those regions. The total measurement overhead prolongates one
iteration of the progress loop from 0.99 seconds to 7.05 seconds.

Table 1: Performance result of an unfiltered instrumented run of NPB BT-MZ, CLASS=C,
NPROCS=4, 10 iterations.

type visits time [s] time [%] time/visits [µs] region

USR 115,489,792 50.77 13.8 0.44 matmul sub
USR 115,489,792 47.20 12.8 0.41 matvec sub
USR 115,489,792 60.18 16.3 0.52 binvcrhs
USR 68,892,672 25.76 7.0 0.37 exact solution
USR 4,787,200 2.67 0.7 0.56 lhsinit
USR 4,787,200 2.02 0.5 0.42 binvrhs

Then, we apply scorep-autofilter to the generated profile.cubex file as shown here:

scorep-autofilter -t 0.0001 profile.cubex

The threshold value of 0.1 ms is specified by the program argument -t. The -h option
generates help information on the usage of the tool. The tool creates the following Score-P
filter file.

SCOREP REGION NAMES BEGIN

EXCLUDE

add*

binvcrhs*

binvrhs*

copy x face*

copy y face*

...

SCOREP REGION NAMES END

The EXCLUDE section is a rule of the filter file which denotes to exclude the subsequent region
names from Score-P measurements. The remaining regions will be considered as candidates
for significant regions which is explained in the next section.

After creating the filter file, another run of the application should be executed to verify
that the instrumentation overhead was significantly reduced. In this specific example, the
execution time of a single iteration of the progress loop in BT-MZ dropped from 7.05 seconds
to 1.39 seconds.
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2.2 Significant region detection

The second step of DTA determines the significant regions, i.e., regions for which DTA will
determine best configurations and for which the RRL will dynamically switch the configura-
tion.

There are three requirements for regions to become significant regions:

1. The region must be coarse enough so that the reconfiguration overhead is negligible.

2. Significant regions cannot be nested. This is required to make the effect of dynamic
tuning predictable.

3. The selected significant regions should cover as much of the overall execution time as
possible.

The significant region detection as well as the dynamism analysis are implemented in the tool
readex-dyn-detect. It is again based on the profile measurements of Score-P provided in
the cube format discussed in the previous section.

After eliminating the measurements for too fine granular regions based on Score-P’s filtering
mechanism, measurements are typically still provided for a large number of regions. From
those regions, the significant regions have to be selected. The workflow is shown in Figure 3.

The detection of the significant regions and the application’s dynamism depends on the
specification of a phase region (see Deliverable D4.1). The name of the phase region has to
be specified as an argument to readex-dyn-detect. If no phase region is given, the tool
terminates.

The tool first removes all regions that are too fine granular in relation to the reconfiguration
overhead from the list of candidate regions. The user can define a threshold for the minimum
granularity of regions on the command line.

It also removes regions that are not executed as part of the phase region as well as OpenMP
or MPI regions. If, in a later phase of the READEX project, tuning plugins are available for
OpenMP or MPI regions, this decision might be reconsidered. The result of this step is a list
of candidate regions from which the significant regions are selected.

The next step of the work flow is to run an algorithm which selects the significant regions
taking the other two requirements given above, namely that significant regions cannot be
nested and should cover most of the execution time, into account. Listing 1 shows the
algorithm for selecting significant regions which takes the candidate list as input. The list
sig list stores the found significant regions as output.

The algorithm selects only regions that are not dynamically nested, i.e., the execution of a
region will not include an execution of any other significant region. For this purpose, the
transitive closure of the call graph of the application is constructed and stored in the form of
the adjacency matrix adj mat.
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Figure 3: Workflow for the selection of significant regions.
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Listing 1: The selection algorithm for significant regions

1 function select_significant_regions(candidate_list) {

2 sig_list := empty // list of significant regions

3 adj_mat := create_adj_mat_transitive_closure(candidate_list)

4 comp_list := get_strongly_connected_comp(candidate_list)

5 while (component := comp_list.next())

6 if (component has more than one region or is recursive)

7 candidate_list := candidate_list - component

8 end if

9 end while

10

11 while (candidate_list is not empty)

12 leaf_region_list := get_leaf_regions(candidate_list)

13 while (leaf := leaf_region_list.next())

14 parents := leaf.get_immediate_parents()

15 Execexclparents := exclusive time of all parents

16 if (Execinclleaf>Exec
excl
parents)

17 sig_list += leaf

18 end if

19 candidate_list := candidate_list - leaf;

20 end while

21 all_parents := sig_list.get_all_parents()

22 candidate_list := candidate_list - all_parents

23 end while

24 }

The selection algorithm first removes the strongly connected components of the call graph.
These are cycles and none of the regions in a cycle can be selected as significant region.

Then, it iterates over the candidate list until the list is empty. In each iteration, it iterates
over the leaf regions of the current list of candidates and decides whether the leaf will be
selected as significant region. The leaf will be selected if its execution time is more than
the summed up exclusive execution times of its parents. Otherwise, it is better to select the
parents because they cover more of the execution time.

After all the leafs were processed and removed from the candidate list, also all the predecessors
of significant regions are removed from the candidate list as well. These cannot be selected
as significant regions, because already selected regions are nested.

Figure 4 shows a call graph as an example for the selection of significant region. (a) presents
the original call graph for the candidate regions. In the first step, the strongly connected
components are removed. The result is shown in (b). Nodes E and G form a cycle and are
removed. Thus, now there are two leaf nodes F and H. Let’s assume that the inclusive time

H2020-FETHPC-2014 12
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Figure 4: Significant region detection for an example call graph. (a) call graph of candidate
regions. (b) Call graph after removal of strongly connected components. (c) Call graph after
removal of significant region F and its parents as well as the non-significant leaf region H.

of F is larger than the summed up exclusive times of B and C. Therefore, the algorithm
selects F as significant region. For the second leaf node, H, we assume that its inclusive time
is less than the exclusive time of D. Therefore, it is not selected as significant region. In (c)
we present the status after the leafs and the parents of the significant regions were removed.
The final node is D which is now a leaf node and will be selected as significant region as well.

readex-dyn-detect takes three arguments related to the detection of significant regions.
These arguments are -t granularity, -p phase region, and the profile.cubex file. The
first is the granularity threshold required for reconfiguration, the second the name of the
phase region, and the last one the input profile.

The structure of a phase in the BT-MZ benchmark is presented in Figure 5. When
readex-dyn-detect is applied with the following command line,

readex-dyn-detect -t 0.001 -p ProgressLoop profile.cubex

it determines the following significant regions: exch qbc, x solve, y solve and z solve. The
function add was already filtered since its granularity was too fine for the instrumentation.
Function compute rhs was not selected since it had a granularity below the given threshold.
The tool selected x solve, y solve, and z solve instead of adi since most of the compute
time was spent in these three routines and more significant regions lead to potentially finer
configuration selection for DTA and RRL.

H2020-FETHPC-2014 13
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Figure 5: Call graph of NPB BT-MZ.

2.3 Dynamism analysis

After detecting the application’s significant region, readex-dyn-detect computes the intra-
and inter-phase dynamism. Dynamism, i.e., dynamically changing characteristics of the ap-
plication, is the requirement for successfully tuning applications with the READEX method-
ology. The tool currently focuses on execution time and compute intensity as main character-
istics. Variation in the execution time of significant regions across rts’ indicates intra-phase
dynamism. Variation in the execution time across rts’ of the phase region indicates inter-
phase dynamism. Furthermore, different compute intensity, i.e., compute vs. memory bound,
of different significant regions also indicates intra-phase dynamism.

The tool can be extended in later project phases if additional tuning relevant characteristics
are identified.

To quantify such dynamism and tuning potential, it is essential to measure the performance
metrics with statistical information in Score-P. Statistical information is provided by Score-P
by requesting the cube-tuple profiling format via the SCOREP PROFILING FORMAT environment
variable. This extended cube format provides the number of samples, minimum, maximum,
average, and deviation instead of a single absolute value for each metric.

The detection of dynamism can be divided into intra-phase dynamism detection and inter-
phase dynamism detection.

2.3.1 Intra-phase dynamism

To detect intra-phase dynamism, readex-dyn-detect requires that statistical information
is available for the measured metrics via the cube-tuple format. If statistical data are not
available, the tool exits and prints a message requesting statistical measurements. To take
also the compute intensity of significant regions into account, the total number of instructions
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and L3 (LLC) cache misses need to be measured via PAPI. PAPI measurements are triggered
by the following specification:

export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_L3_TCM

The tool then analyzes for each significant region the variation in the time characteristics. It
computes the standard deviation relative to the mean execution time of the region in percent
(deviationr) and relative to the mean execution time of the phase (deviationp) as described
in Equations (2) and (3) below, respectively. The values characterize how significant the
variation in the execution time is for the region and phase execution respectively.

deviationregr =
dev tregincl

mean tregincl

∗ 100 (2)

deviationregp =
dev tregincl

mean tphaseincl

∗ 100 (3)

The variation is considered significant if it is beyond a threshold vt. To decide whether this
leads to significant dynamism, the tool computes the computational weight of the region, i.e.,
its percentage on the phase execution time, according to the formula.

weight =
tregincl

tphaseincl

∗ 100. (4)

If the region’s time variation is significant and its weight is larger than a threshold vw then
the tool will report intra-phase dynamism due to that significant region.

Another source of intra-phase dynamism is the variation of other characteristics across dif-
ferent significant regions. The tool currently supports a comparison based on the compute
intensity of significant regions. It is based on the number of total retired instructions and
the number of L3 cache misses. The first one is used as a measure for the work done, the
second one for the amount of data transferred between memory and the L3 cache. It should
be noted that this measure of transferred data is of course very coarse, since it does not take
into account all writes to memory as well as for example hardware prefetching.

The more common definition of compute intensity is based on the floating point instructions,
but these cannot be counted on Intel Haswell.

The tool checks all significant regions with a weight above vw. It compares the compute
intensity of those regions and reports intra-phase dynamism if the variation across phase is
larger than a threshold vi.
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Figure 6: Architecture of readex-dyn-detect.

2.3.2 Inter-phase dynamism

Finally, readex-dyn-detect investigates whether there is significant inter-phase dynamism
in the application. This analysis is based on the execution time of the phase region. It
requires the statistical data provided in the cube-tuple format.

The tool computes the relative deviation of the execution times of the phase region
deviationphasep . If this deviation is larger than vt, the tool reports inter-phase dynamism.

2.3.3 The readex-dyn-detect architecture

The architecture of readex-dyn-detect is given in Figure 6. After the second application
run of the improved (with scorep.filt) Score-P instrumented application, the performance
data with the statistical data are generated in cube-tuple format. This file is then fed into the
readex-dyn-detect tool to detect the significant regions and to analyze the tuning potential.

The tool accesses the data via the CUBE interface. The Granularity Analysis component
detects significant regions and inserts them into the Significant Region Table. The Dynamism
Analysis is responsible to determine intra- and inter-phase dynamism. It therefore accesses
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the Significant Region Table and the profile data. After the detection of the tuning potential,
the list of significant regions is output into an XML configuration file. This file stores the
significant regions with the dynamism information as well as the decision of the tool whether
significant dynamism exists.

This configuration file is then forwarded to PTF for the DTA. It is deserialized in PTF and
the significant region information is translated into a list of PTF region objects. This list is
then available to tuning plugins to determine optimized system configurations.
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Figure 7: Placement of Scenario Identification in the overall READEX tuning flow.

3 Approach for Scenario Identification

In the final stage of the Design Time Analysis (DTA), runtime situations (rts’s) with similar
or identical best found configurations are identified before they are clustered into scenarios.
Such a clustering limits the number of scenarios and thus reduces the associated runtime
overheads.

When the scenarios are generated, a classifier is created so that the observed rts’s can be
mapped onto their respective scenario. Moreover, a configuration selector is generated for
each scenario. The runtime system uses the configuration selector to select the best config-
uration for a given user objective. Information about the set of scenarios, the classifier and
selectors, determined at design time is stored in the Application Tuning Model (ATM) as a
serialised in-memory representation. The ATM is read and deserialised at runtime to enable
scenario detection and switching. Figure 7 shows the placement of the Scenario Identification
module in the overall READEX tuning flow.

The following sections describe the implementation of scenarios, classifiers and configuration
selectors in detail.

3.1 Linked Runtime Situations

One of the main pillars of DTA is to use the extensive tuning possibilities of PTF to find
the best possible system configuration for each rts. In Section 2.1.4 of Deliverable 4.1 an rts
is defined as an instance of a significant region during execution [3]. This definition is very
fine-grained, leading to the generation of a very large number of rts’s. For example, consider
individual executions of a significant region with identical identifier values within a nested
loop. This will result in a number of rts’s equal to the number of loop iterations. For all
practical purposes these rts’s are identical, and can therefore be handled together.
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Figure 8: The call tree of a sample application. Only the salient part of the tree is shown.

In order to reduce the number of rts’s to be handled individually, we introduce the concept of
linked rts’s. A linked rts is the set of multiple executions of the same significant region with
identical context elements. In the set of all rts’s, denoted RTS, a linked rts is thus seen as a
single rts. For the sake of clarity, we continue to refer to these rts’s using the same name and
abbreviation as before. Wherever rts is used in this document it is thus to be understood as
a linked rts. Due to the coarser granularity of linked rts’s, fewer rts’s are created. Ultimately,
this means that we can group rts’s more quickly and create a more compact application
tuning model.

3.2 Tuning Results Data Structure

Once PTF has completed its search for the best system configuration for a given rts, the
result is stored by an rts object in an RTS Database. When all the rts’s have been stored
in the RTS database, a scenario identification module (see Figure 7) will retrieve the data
stored from this database to group rts’s into distinct scenarios. This is possible because the
rts’s stored in the database contain context element information in addition to the best found
configurations. Other information such as measured objective values, and as part of future
work, Pareto optimal configurations with corresponding objective values are also stored. The
number of occurrences of a given rts, that is, the number of times it is encountered during
profiling, can also be included. This information is important for advanced scenario genera-
tion, which will be developed later in the READEX project. Figure 8 displays the application
call tree of a sample application where the insignificant regions ComputeChemicalPotential
and ComputeLocalPotential both call the significant Laplace compute function. Although
both of the insignificant regions call the same Laplace function, their callpaths differ. Hence,
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RTS Database std::list<RTS*>

RegionName

CallPath

std::map<std::string,
TuningResult>

Frequency

STATE

Laplace

main-
>ComputeChemicalPotntial-

>Laplace

<T>

1200

Threads 12

TuningResult

TuningResult

Figure 9: An expanded view of an example rts. The best found system configuration for this
particular rts is when the tuning parameter, CPU Freq is set to 1.2 GHz and the number of
threads is 12.

the two calls are considered as two independent rts’s and PTF will search for the best con-
figuration for each one and store the results in the RTS Database.

Figure 9 gives an expanded view of example data that can be stored by an rts object in
the RTS Database. The identifiers (RegionName, Callpath, and STATE) with their assigned
values represents the context elements. A map data structure is used to map a system
configuration onto a tuning result. In this simple example, only two tuning parameters are
stored, the CPU frequency and the number of CPU threads but an arbitrary number of tuning
parameters can be stored. Deliverable D4.1 describes 17 different tuning parameters [3], which
may be included in future versions.

3.3 Grouping of rts’s into Scenarios

A scenario is a collection of rts’s with the same or similar best found configuration. In this
section we describe grouping of rts’s with identical best found configuration, before we discuss
how rts’s with similar best found configurations are handled. The notion of similarity will
be specified together with the description of the grouping.

3.3.1 Grouping rts’s with Identical Configuration

In order to detect identical system configurations and cluster the rts’s into scenarios, we
iterate over the rts’s objects from the RTS Database. A new scenario is then created using
the system configuration from the rts object, if and only if a scenario with an identical tuning
parameter does not already exist. Upon the instantiation of a scenario object, the scenario
is assigned a unique id. In parallel, the classifier map data structure described in Section 3.4

H2020-FETHPC-2014 20



READEX D2.1-Deliverable

is generated linking rts context elements with scenarios. Should a scenario with an identical
system configuration exist, the corresponding scenario object is used and the classifier is
updated with a link from the new rts to this existing scenario id.

3.3.2 Grouping rts’s with Similar Configuration

To illustrate the grouping of rts’s with similar configurations, let us consider the example of
two rts’s that have best found clock frequency settings of 1.2 GHz and 1.3 GHz, respectively.
Although these values are different, they may be close to each other with respect to energy
consumption or another user-defined objective function. For example, two frequencies are
close if the penalty in energy consumption for an rts is small if 1.2 GHz is used instead of
its best found frequency of 1.3 GHz. Thus, instead of treating the two rts’s with best found
clock frequency of 1.2 GHz and 1.3 GHz as different scenarios, which may lead to increased
scenario detection and switching overhead at runtime, we group them together in the same
scenario.

Clustering rts’s with identical best found configurations is rather straightforward. Unfor-
tunately, the same approach cannot be taken with respect to grouping rts’s with similar
configurations. When grouping rts’s with similar configurations, we are looking for config-
urations that are within the vicinity of each other. This can be challenging since we have
identified 17 different system parameters [3], each potentially having their own definition of
what its vicinity is.

Finding rts’s with similar configuration requires that rts’s with identical configurations have
already been grouped so that we are only left with rts’s that are not identical. An already
generated group of rts’s with identical configurations are here handled as an individual un-
grouped rts. The motivation for the additional grouping of rts’s with similar configuration
is to reduce switching overheads. In order to group rts’s with similar configuration, we com-
pute a similarity score, Sc, which is later used together with a predefined grading scale to
effectively group rts’s with a similar score.

One important aspect of the similarity score computation is that it is directly associated with
the user-defined objective function. This indicates that if the user decides to tune his or her
application for performance or energy consumption, the weight of the individual scores are
changed accordingly. For example, in situations where the objective function is to tune for
performance, tuning parameters that influence the performance are given a higher score, as
opposed to tuning parameters that do not impact the performance as much, which are thus
given a lower score.

In order to compute the similarity score for an rts, we iterate over the tuning configuration
using the following formula:

Sc =

tp∑
i=0

wi · si (5)
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where w is a weight score associated with the tuning parameter type, s is the score associated
with the tuning parameter value and tp is the number of tuning parameters. Once the simi-
larity score has been computed for each rts, it is used for comparison across other ungrouped
rts’s. The weights and score ranges for different tuning parameters will be defined based on
expert designer knowledge, combined with experiments performed on a given platform using
micro benchmarks. This will reveal both the cost of switching a parameter from one value to
another, and the expected influence of a given parameter on the total objective value. Later
in the READEX project we will also investigate the possibility of using the results of multiple
PTF tuning experiments to reveal the penalty of using a suboptimal parameter value, for
example a clock frequency of 1.2 GHz instead of the best found 1.3 GHz.

As an illustrative example, we assume that we have three tuning parameters, CPU core clock
frequency (F ), the number of OpenMP threads (T ) and the uncore frequency (U). Moreover,
we also assume that the user-defined objective function is to tune for maximum performance.
Based on the given objective function, we start by weighting the various tuning parameters
types, where for example F = 0.7, T = 0.2, U = 0.1. Next, we iterate over the different
tuning parameter values, according to (5), and grade them based on their value on a scale
from one to ten, where one is the lowest score and ten is the best score. We prefix the
score scale for tuning parameter values that are range-based, such as clock frequency. In this
particular example, the highest clock frequency would be given a score of ten, while the lowest
clock frequency would be given a score of one. Similarly, the same score would be applied to
the number of OpenMP threads and to the uncore frequency. This way, the similarity score
of two rts’s may be close to each other even if some tuning parameters are quite different, as
long as the tuning parameters with high weight are close. Iterating over all rts’s, those that
are close, according to the predefined scale, are grouped into the same scenario.

The same configuration will be used for each resulting scenario. This results in an overhead
for those rts’s that could have used an even better configuration. On the other hand, too many
scenarios result in a more complex ATM and more frequent switching between configurations,
which also has an overhead. Furthermore, the overhead of grouping two rts’s is not only
related to how similar their configurations are. For instance, if an rts only occurs once during
the execution of an application, the overall overhead of using a suboptimal configuration is
insignificant. These types of trade-offs are handled by the similarity score algorithm and
particularly the score range that can be extended for rts’s that occur seldom. They are also
taken into account when the common configuration is selected for a given scenario.

As part of the runtime calibration mechanism, scenarios generated as described in this sub-
section may be split and regrouped if the measured objective values do not correspond to the
DTA measured values.

3.4 Scenario Classifier Generation

The scenario classifier is used at runtime to determine the upcoming scenario based on the
current context elements (identifier and their values). We implement a map data structure
where concatenations of rts identifier values are keyed to their respective scenario ids. For
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example, if the callpath is the only identifier, it is used as a key. The map data structure is
built and populated during DTA. Once the map has been successfully built, an in-memory
representation of the map is saved to disk for later use at runtime. The Cereal framework [1]
is used for the serialisation.

At runtime, the map is deserialised by the Tuning Model Manager (TMM), which is a module
of the READEX Runtime Library (RRL) that acts as a mediator between DTA and the
Runtime Application Tuning (RAT). Figure 7 shows how the ATM is used to connect and
transfer information between DTA and RAT.

3.5 Configuration Selector Generation

The configuration selector is used at runtime to select which configuration to use, that is,
which tuning parameter settings to apply. This will be based on the upcoming scenario
determined by the classifier. If the scenario consists of rts’s with identical configurations, these
parameter settings are used directly. If the scenario holds rts’s with similar configurations,
parameter settings are selected at design time according to the principles outlined in Section
3.3.2.

In its simplest form the selector is implemented as a function that returns the selected sce-
nario’s system configuration and other associated values based on parameters that are passed
to the function. This is possible because the selector maps a scenario id onto a system
configuration, which like the classifier is serialised during the latter stages of DTA.

Later in the READEX project more advanced configuration selector generation mechanisms
will be developed. Evaluation of switching overhead will be considered as well as Pareto
optimal configurations found for a given scenario. This can require individual selectors for
each scenario.
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4 Summary

In this deliverable, we have presented the READEX tools developed for tuning potential
analysis and for scenario identification. Both are important parts of the Design Time Anal-
ysis stage, its first and last step, respectively. We have described how the two automatic
tools scorep-autofilter and readex-dyn-detect are used for automatic reduction of in-
strumentation overhead, for significant region detection, and dynamism analysis. The final
result of this process is first and foremost a conclusion regarding whether sufficient dynamism
is present in the application for READEX to exploit. If so, the step also outputs a set of sig-
nificant regions that are coarse grained enough for reconfiguration overhead to be negligible,
that are not nested in other significant regions, and that cover as much as possible of the
overall execution time.

When the tuning potential analysis is finished the Periscope Tuning Framework is used to
search for the best possible system configuration for each runtime situation (rts). An rts is
here understood as the set of multiple executions of the same significant region with identi-
cal context elements (identifiers with values). The result of this search is stored in an RTS
Database used as input to the scenario identification. In this deliverable we have described
how rts’s are grouped into scenarios according to similarity of their best found system config-
urations. Furthermore, we have described how scenario classifiers and configuration selectors
are generated and how they, together with the scenario set, are stored in the Application
Tuning Model as a serialised in-memory representation. The ATM is later read and deseri-
alised at runtime to enable scenario detection and configuration switching. In the deliverable
we have described how the grouping of rts’s in scenarios, and use of efficient classifiers and
selectors reduce the scenario detection and switching overhead at runtime.
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