
READEX Tool Suite – User Guide

April 11, 2018

Contents

1 Workflow 2
1.1 Modules on Taurus . 2

1.1.1 Continuous integration . 2
1.1.2 Beta release . 2

1.2 Application instrumentation . 3
1.2.1 Build application with Score-P . 3
1.2.2 Filtering . 3
1.2.3 Phase region instrumentation . 4
1.2.4 Application tuning parameter instrumentation 4

1.3 Design-time Analysis (DTA) . 5
1.3.1 Tuning Potential Analysis . 5
1.3.2 Specify Criteria for DTA . 6
1.3.3 Tuning Model Creation . 8
1.3.4 Visualization of the Tuning Model . 11

1.4 Runtime Application Tuning (RAT) . 12
1.4.1 Production Run with Tuning Model . 12
1.4.2 Visualise Configuration Switching . 14

A Filtering and Manual Instrumentation 17
A.1 Runtime Filtering . 17
A.2 Compile-time Filtering . 17
A.3 Filtering OpenMP and MPI regions . 18
A.4 Energy Measurements . 18
A.5 Manual Instrumentation . 18

B Application Tuning Parameter (ATP) Library 20
B.1 Instrumentation for ATP library . 20
B.2 Using the ATP Library . 21

C Examples 23
C.1 Runtime Filtering . 23
C.2 MiniMD Phase Region Annotation . 23
C.3 Manual Instrumentation . 25
C.4 Application Tuning Parameter (ATP) Instrumentation 25
C.5 Tuning Potential Analysis . 26

1

1 Workflow

This document describes how to use the READEX tool suite according a simple workflow:

1. Instrument the application with Score-P. (Section 1.2)

2. Perform design-time analysis of application to create tuning model. (Section 1.3)

3. Use the tuning model during the production run of the application for runtime tuning.
(Section 1.4)

1.1 Modules on Taurus

The tools in the READEX tool suite are accessible through modules created either by the
continuous integration process or the beta release of the tool suite. Users in the p readex group
may use either, while those in p readextest can only use the beta release.

Depending on the choice of compilers used for the application (GCC or Intel), load one of
these modules to use the READEX tools that are required to analyse and tune an application
at the different steps in the workflow.

1.1.1 Continuous integration

Load the continuous integration modules on Taurus as follows:

• For gcc/6.3.0 and bullxmpi/1.2.8.4:

module use /projects/p_readex/modules

module load readex/ci_readex_bullxmpi1.2.8.4_gcc6.3.0

• For intel/2017.2.174 and intelmpi/2017.2.174:

module use /projects/p_readex/modules

module load readex/ci_readex_intelmpi2017.2.174_intel2017.2.174

1.1.2 Beta release

Load the beta release modules on Taurus as follows:

• For gcc/6.3.0 and bullxmpi/1.2.8.4:

module load readex/beta_gcc6.3.0_bullxmpi1.2.8.4

• For intel/2017.2.174 and intelmpi/2017.2.174:

module load readex/beta_intel2017.2.174_intelmpi2017.2.174

2

1.2 Application instrumentation

1.2.1 Build application with Score-P

The READEX tool suite is based on instrumenting an application with Score-P. Instrumentation
inserts measurement probes into the source code of the application. This can be done by
the compiler, other software tools, or manually. Detailed documentation on Score-P and the
instrumentation features can be found at www.score-p.org.

1. Modify the application’s makefile for instrumentation with Score-P. Prepend the compilation
with the scorep command. For example,

Replace MPICXX = mpic++ -fopenmp

by MPICXX = scorep --nomemory --mpp=mpi mpic++ -fopenmp

The scorep command switches on compiler instrumentation of program functions as well as
instrumentation of MPI routines and OpenMP regions.

Use --mpp=mpi for MPI applications and --mpp=none for non-MPI applications. Use --nomemory
to disable memory usage instrumentation by Score-P.

2. Build the application. Note that Score-P and the application have to be built with the same
compiler.

3. Run the application as like the uninstrumented version.

Outcome: Compiler instrumentation of the application is performed; upon application
execution, Score-P creates a profile (profile.cubex) file in the scorep-<xyz> directory at the
execution location.

1.2.2 Filtering

The probes inserted in the application through instrumentation add overhead to the application
execution and thus can make any measurements and tuning efforts wasted time. Therefore, it is
essential to make sure that the instrumentation overhead is below a certain limit. Therefore, this
section focuses on giving you advice on the support in Score-P for reducing the measurement
overheads. To measure the overhead, first measure the execution without instrumentation and
then measure it with instrumentation.

To reduce the overhead from instrumentation to an acceptable level,

1. First try to reduce the overhead with runtime and compile time filtering as described in
Sections A.1 and A.2, respectively.

2. You may also remove MPI and OpenMP region instrumentation overhead as described in
Section A.3.

3. Then switch on the energy measurements with HDEEM since it has a much higher over-
head than just time measurements as described in Section A.4. Verify the overhead again.
As an alternative, RAPL can be used for energy measurement, which has lesser over-
head than HDEEM. Note that the energy measurements from RAPL may not be precise
enough. For instance, a reading time less than 40 ms (that is 40 ms function execution
time and 1 ms sampling rate) may result in approximately 2.5% error.

3

http://www.score-p.org

4. If the overhead is still too high, consider manual instrumentation of those regions that are
relevant for the READEX tool suite as described in Section A.5.

Do not proceed to energy tuning if the overhead is too high.

1.2.3 Phase region instrumentation

Specify the phase region: Manually annotate the phase region of the application as shown
below:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

// loop starts

SCOREP_USER_OA_PHASE_BEGIN(REGION_HANDLE, "PHASE_REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)

// loop body (phase region)

SCOREP_USER_OA_PHASE_END(REGION_HANDLE)

// loop ends

A phase region is a repetitive, single-entry and exit region, typically the body of the main
progress loop of the application. If the phase region is not known beforehand, it may be useful
to look at the profile.cubex file generated after running the scorep-autofilter tool with a
performance analysis tool like CUBE.

Example The for-loop body in Integrate::run() is annotated as a phase region as shown
in the example in Section C.2.

1.2.4 Application tuning parameter instrumentation

Specify the application tuning parameters: It is also possible to optionally exploit ap-
plication level tuning using the READEX tool suite. This requires some additional manual
code annotation and instrumentation to pinpoint the parts of the code that can be exploited as
application tuning parameters and annotate them with certain API functions.

This is enabled in READEX using the ATP (Application Tuning Parameter) library and
the procedure for this is described in Section B.1.

4

1.3 Design-time Analysis (DTA)

1.3.1 Tuning Potential Analysis

The first step in the DTA is to detect and analyze the dynamism of the application using
readex-dyn-detect. The tool automatically identifies the significant regions that are subject
to the READEX tuning methodology and generates a report on the potentially exploitable
dynamism in these regions.

The readex-dyn-detect tool requires a single phase region, which is to be instrumented as
described earlier in Section 1.2.3.

Perform the following steps to use readex-dyn-detect:

1. Build the application with scorep --online-access --user --thread=none for the man-
ually annotated phase region and add --nocompiler if the application is manually instru-
mented.

2. Run the application with the following environment variables set:

export SCOREP_PROFILING_FORMAT=cube_tuple

export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_L3_TCM

export SCOREP_FILTERING_FILE=<filter_file_name_with_extension>

This will create a tupled profile.cubex file in the scorep-<xyz> directory at the execution
location.

3. Apply the readex-dyn-detect tool on the profile.cubex file as follows:

readex-dyn-detect -t <region_granularity_threshold_in_sec>

-p <phase_region_name>

-c <compute_intensity_variation_threshold>

-v <execution_time_variation_threshold_in_percent>

-w <region_execution_time_weight_wrt_phase_execution_time_in_percent>

-r <Configuration file name without extension>

-f <RADAR_report_file_name>

<path_to_cubex_file>/profile.cubex

The command line options have the following meaning:

-t This threshold specifies the minimal mean execution time of regions that are to be con-
sidered as significant regions. Use a value larger than 0.1 (100 ms).

-p Name of the phase region as given in the instrumentation.

-c This is the required minimal standard deviation of the compute intensities of significant
regions with a weight above the given threshold, such that intra-phase dynamism due
to compute intensity variation is reported.

-v This is the required minimal standard deviation of the execution time of instances of
significant regions in percent of the mean region’s execution time, such that intra-phase
dynamism is reported. It is also used to decide whether inter-phase dynamism exists.
Only if the standard variation of the phase time in percent of the mean phase time is
greater, inter-phase dynamism is reported.

-w This threshold specifies the minimal weight of a region such that any dynamism due to
time variation or compute intensity variation is reported.

-r This is the desired name for the READEX configuration file to be created by readex-dyn-detect

without the file name extension.

5

-f If a file name is given, the report is generated in LATEX form to include it into the RADAR
report.

4. The results of readex-dyn-detect are summarized in readex config.xml in the execution
directory, which is used as an input to PTF. An example of readex config.xml is available
in <PTF installation path>/templates/readex config.xml.default.

Alternatively, the readex config.xml file may be manually created from this template and
used as input for PTF without applying readex-dyn-detect if the significant regions are
already known.

Note: readex-dyn-detect currently ignores MPI and shared memory regions in the signif-
icant regions analysis.

Outcome: The readex config.xml file containing the tuning potential summary, the list
of significant regions, and the intra-phase and inter-phase dynamism due to variation in the
execution time and compute intensity.

Section C.5 presents an example.

1.3.2 Specify Criteria for DTA

The next step of the DTA is to update the readex config.xml file generated by the readex-dyn-detect
tool with additional criteria for the design-time analysis experiments performed by the Periscope
Tuning Framework (PTF). The steps to update the readex config.xml file are as follows:

1. Specify the tuning parameters: READEX currently supports three tuning parameters –
processor core frequency, uncore frequency and the number of OpenMP threads. A minimum
of one tuning parameter must be specified. Specify the ranges (minimum, maximum and
the step size) for the processor core frequency in kHz and for the uncore frequency in 100
million Hz. For OpenMP threads, specify the lower bound and the step size to increment to
the next value.

Example

<tuningParameter>

<frequency>

<min_freq>1200000</min_freq>

<max_freq>2400000</max_freq>

<freq_step>500000</freq_step>

</frequency>

<uncore>

<min_freq>10</min_freq>

<max_freq>30</max_freq>

<freq_step>2</freq_step>

</uncore>

<openMPThreads>

<lower_value>1</lower_value>

<step>2</step>

</openMPThreads>

</tuningParameter>

2. Specify the objectives: Specify at least one objective from Energy, Execution Time, CPU
Energy, Energy Delay Product, Energy Delay Product Squared, CPUEnergy, Total Cost of
Ownership (TCO). The normalized version of each of the objectives can also be specified. The
plugin measures the objective values for all the specified objectives, but tunes the application
only for the objective that is specified first.

6

Example

<objectives>

<objective>Energy</objective>

<objective>NormalizedEnergy</objective>

<objective>Time</objective>

<objective>NormalizedTime</objective>

<objective>EDP</objective>

<objective>NormalizedEDP</objective>

<objective>ED2P</objective>

<objective>NormalizedED2P</objective>

<objective>CPUEnergy</objective>

<objective>NormalizedCPUEnergy</objective>

<objective>TCO</objective>

<objective>NormalizedTCO</objective>

</objectives>

To compute TCO, the CostPerJoule and CostPerCoreHour also needs to be specified.

<Configuration>

<CostPerJoule>0.00000008</CostPerJoule>

<CostPerCoreHour>1.0</CostPerCoreHour>

</Configuration>

3. Specify the energy metrics: Specify the energy plugin name and associated metric names. For
hdeem sync plugin, it’s possible to measure the energy for the whole node or/and two CPUs
respectively. The energy metrics should be specified under <periscope> </periscope>.

Example

<periscope>

<metricPlugin>

<name>hdeem_sync_plugin</name>

</metricPlugin>

<metrics>

<node_energy>hdeem/BLADE/E</node_energy>

<cpu0_energy>hdeem/CPU0/E</cpu0_energy>

<cpu1_energy>hdeem/CPU1/E</cpu1_energy>

</metrics>

</periscope>

To specify the RAPL counter energy plugin x86 energy sync plugin, use the configuration
as follows:

Example

<periscope>

<metricPlugin>

<name>x86_energy_sync_plugin</name>

</metricPlugin>

<metrics>

<node_energy>x86_energy/BLADE/E</node_energy>

<cpu0_energy>x86_energy/CORE0/E</cpu0_energy>

<cpu1_energy>x86_energy/CORE1/E</cpu1_energy>

</metrics>

</periscope>

4. Specify a search algorithm:

7

• To exploit intra-phase dynamism: Specify a search algorithm from exhaustive, random,
individual or genetic search. For the random search strategy, specify the number of
samples (scenarios) that the plugin should limit to. For the individual search, specify
the number of tuning parameter values to keep in the search space. For the genetic
search, specify the population size, the maximum number of generations and the timer
to set an upper limit on the tuning execution time.

• To exploit inter-phase dynamism: Specify the random search strategy and a value that
is high enough to be appropriate for clustering under the samples tag.

The search algorithm should be specified under <periscope> </periscope>.

Example

<periscope>

<searchAlgorithm>

<name>exhaustive</name>

<name>random</name>

<samples>2</samples>

<name>individual</name>

<keep>2</keep>

<name>gde3</name>

<populationSize>10</populationSize>

<maxGenerations>10</maxGenerations>

<timer>20</timer>

</searchAlgorithm>

</periscope>

5. Specify the tuning model file name: The generated tuning model file name can also be
specified under <periscope> </periscope>

Example

<periscope>

<tuningModel>

<file_path>./tuning_model.json</file_path>

</tuningModel>

</periscope>

Optionally, if the Application Tuning Parameter (ATP) library is used, then the details for the
ATP library should be included in the READEX configuration file as outlined in Section B.2.

1.3.3 Tuning Model Creation

After updating the readex config.xml file for use by PTF, use the following steps to perform
design-time analysis using PTF as explained using a slurm job script for the miniMD application
as an example.

1. Build the application with instrumentation as discussed in Section 1.2.3 (scorep --online-access

--user) for the instrumented phase region. Additionally, you may optionally use the Score-P
options that are required to specify compile-time filtering, MPP and thread instrumentation
options. Refer to the Score-P documentation for this.

2. Set the number of nodes to at least 2 (line 4), and allocate enough memory per CPU to fit
the application as shown in line 9. In general, if N > 1 nodes are allocated for this job, then
PTF will use one node for the tool’s agents and the remaining N-1 nodes for the application
processes.

8

https://silc.zih.tu-dresden.de/scorep-current.pdf

3. Use the parameter control plugins compatible with Score-P and PTF as shown in line 27,
and set the environment variable with the tuning parameters as shown in line 28.

4. Load the scorep-hdeem sync plugin for energy measurements compatible with the Score-P
built for the READEX toolsuite, and set the environment variables as shown in lines 31–38.

5. Apply PTF on the application with the psc frontend command as shown in lines 40–
48. Specify the instrumented phase region name for the option --phase and the readex
configuration file for --config-file.

• To exploit intra-phase dynamism: Specify the readex intraphase plugin for --tune.

• To exploit inter-phase dynamism: Specify the readex interphase plugin for --tune.

The options --info and --selective-info are only used for debug messages, and are
not mandatory. For more debug output, set the --info=<max info level> between 2 and
7, and --selective-info=<comma separated list of information levels>. For more
information about other options, see psc frontend --help.

This will produce a tuning model in the execution directory under the name specified in the
readex config.xml file, or tuning model.json if unspecified.

1 #!/bin/sh

2

3 #SBATCH --time=5:00:00 # walltime

4 #SBATCH --nodes=2 # number of nodes requested; 1 for PTF and remaining for application run

5 #SBATCH --tasks-per-node=8 # number of processes per node for application run

6 #SBATCH --cpus-per-task=1

7 #SBATCH --exclusive

8 #SBATCH --partition=haswell

9 #SBATCH --mem-per-cpu=2500M # memory per CPU core

10 #SBATCH -J "miniMD_PTF" # job name

11 #SBATCH -A p_readex

12

13 echo "run PTF begin."

14

15 NP=8 # check against --ntasks and tasks-per-node

16

17 module purge

18 module use /projects/p_readex/modules

19 #module load readex/beta_gcc6.3

20 module load readex/ci_readex_bullxmpi1.2.8.4_gcc6.3.0

21

22 INPUT_FILE=in3.data #in.lj.miniMD

23 PHASE=INTEGRATE_RUN_LOOP

24

25 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

26

27 export SCOREP_SUBSTRATE_PLUGINS=rrl

28 export SCOREP_RRL_PLUGINS=cpu_freq_plugin,uncore_freq_plugin

29 export SCOREP_RRL_VERBOSE="WARN"

30

31 module load scorep-hdeem/sync-xmpi-gcc6.3

32 export SCOREP_METRIC_PLUGINS=hdeem_sync_plugin

33 export SCOREP_METRIC_PLUGINS_SEP=";"

34 export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_CONNECTION="INBAND"

35 export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_VERBOSE="WARN"

36 export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

37

38 export SCOREP_MPI_ENABLE_GROUPS=ENV

39

40 psc_frontend --apprun="./miniMD_openmpi_ptf -i $INPUT_FILE"

41 --mpinumprocs=$NP

42 --ompnumthreads=1

43 --phase=$PHASE

9

44 --tune=readex_intraphase

45 --config-file=readex_config.xml

46 --force-localhost

47 --info=7

48 --selective-info=AutotuneAll,AutotunePlugins

49

50 echo "run PTF done."

To use the RAPL counter energy plugin change from lines 31–36 with the following:

1 module load scorep_plugin_x86_energy

2 export SCOREP_METRIC_PLUGINS=x86_energy_sync_plugin

3 export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN=*/E

4 export SCOREP_METRIC_PLUGINS_SEP=";"

5 export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_CONNECTION="INBAND"

6 export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_VERBOSE="WARN"

7 export SCOREP_METRIC_X86_ENERGY_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

A batch job script to apply PTF for design-time analysis and create a tuning model for the
miniMD application is available in

/projects/p_readextest/miniMD/run_ptf.sh

and is submitted as

sbatch run_ptf.sh

For different applications, run ptf.sh can be reused by updating the command to run the
application in --apprun. This script is to be run from the location with the application’s
executable.

Outcome:

• For the readex intraphase tuning plugin:

- A printed summary of the created scenarios, the properties found in each scenario,
the optimum and the worst scenarios for the phase, the measured objective values for
the phase in each scenario, the best configuration for each rts, the static and dynamic
energy savings for the rts’s, and the static energy savings for the whole phase.

- A tuning model.json file containing the list of rts’s that were tuned by the plu-
gin, the scenarios into which they are classified, and the best configuration for each
scenario.

• For the readex interphase tuning plugin:

- A printed summary of the created scenarios, the properties found in each scenario, the
measured objective values for the phase in each scenario, per-cluster results showing
the optimum scenario for all the phases of the cluster as well as the best configuration
for each rts of the cluster, the static and dynamic energy savings for the rts’s, and
the static energy savings for the whole phase.

- A tuning model.json file containing the list of clusters generated by the clustering
algorithm, the set of phases belonging to each cluster, the ranges of the features that
were used for clustering, the list of rts’s that were tuned by the plugin, the scenarios
into which they are classified, and the best configuration for each scenario.

10

Figure 1: Forced Layout graph of the tuning model

1.3.4 Visualization of the Tuning Model

The visualization tool of the tuning model is constructed based on the JavaScript library D3.js.
The tool can be built as the app for macOS, Linux, and Windows, using electron-packager.
The latest source of the visualization tool of the tuning model can be cloned by git clone

https://periscope.in.tum.de/git/visualizationOfTM.git. This source already contains
electron-packager source and configured to build as apps. Electron Packager is a command line
tool and Node.js library that bundles Electron-based application source code with a renamed
Electron executable and supporting files into folders ready for distribution.

Mandatory Library: The tool requires Node.js library to be installed. The library can be
downloaded from https://nodejs.org.

Usage: The tool requires two mandatory files which are generated at the end of DTA. The
files are: tuning model.json and rts.xml. The first one is the tuning model file and the later
contains the execution time information of the rts’s. The tool can be started with the following
command in the source directory:

1 npm start

First, select the tuning model file tuning model.json and the file with the rts’s rts.xml.
You have to select both files in the dialog. The tool checks the extension and assumes that a
file with .json is the tuning model and the extension .xml identifies the rts file.

The tool will then generate the forced layout view of the tuning model. This will look as in
figure 1. For each scenario a circle is generated. The size of the circle represents the weight,
i.e., the aggregated execution times of all rts’s of the scenario as percent of the phase time. The
thickness of the lines represents the similarity of two connected scenarios. Hovering over a circle
triggers a tool tip that gives detailed information about the scenario. Clicking on a scenario
opens individual circles for each rts in this scenario.

The detail about the tool can be found in D2.2 deliverable.

11

https://periscope.in.tum.de/git/visualizationOfTM.git
https://nodejs.org

1.4 Runtime Application Tuning (RAT)

1.4.1 Production Run with Tuning Model

The following steps describe how to use RRL to tune the application during its production
run and compare the execution time and energy consumption with an untuned run of the
application.

1. If Application Tuning Parameters are exploited in the application then the ATP related
instrumentation functions should remain in the code.

2. Use an uninstrumented verion of the application to compare its energy consumption and
execution time against the version tuned with RRL.

3. For the application run tuned with RRL, use the application built for analysis with PTF as
described in Section 1.3.

4. Set the number of nodes to run the application on (line 4), and allocate enough memory per
CPU to fit the application (line 10). Here, the number of nodes required is the same as the
number of nodes on which to run the application.

5. For the untuned run of the application (lines 28–66) perform the following steps:

(a) Disable Score-P profiling and tracing (lines 29 and 30), and set the Score-P substrate
plugins, RRL tuning plugins and the tuning model to empty (lines 31–33).

(b) Before running the uninstrumented version of the application (line 41), start the HDEEM
energy measurements on all nodes (line 37–38) and get the start timestamp (line 39).

(c) After the application run is complete, stop the HDEEM measurements and print the
statistics from all nodes into a file hdeem.out (lines 47–49), and get the end timestamp
(line 43).

(d) Aggregate the energy consumption for the untuned run of the application from hdeem.out

(lines 47–60).

6. For the RRL-tuned run of the application (lines 68–106) perform the following steps:

(a) Disable Score-P profiling and tracing (lines 69 and 70), set the Score-P substrate plugins
to rrl, RRL plugins to the tuning plugins to use (cpu freq plugin and uncore freq plugin

in this example) and the tuning model to the file generated by PTF (lines 71–73).

(b) Before running the RRL-tuned version of the application (line 81), start the HDEEM
energy measurements on all nodes (line 77–78) and get the start timestamp (line 79).

(c) After the application run is complete, stop the HDEEM measurements and print the
statistics from all nodes into a file hdeem.out (lines 87–89), and get the end timestamp
(line 83).

(d) Aggregate the energy consumption for the RRL-tuned run of the application from
hdeem.out (lines 91–105).

1 #!/bin/sh

2

3 #SBATCH --time=2:00:00

4 #SBATCH --nodes=1

5 #SBATCH --ntasks=8

6 #SBATCH --tasks-per-node=8

7 #SBATCH --cpus-per-task=1

12

8 #SBATCH --exclusive

9 #SBATCH --partition=haswell

10 #SBATCH --mem-per-cpu=2500M

11 #SBATCH -J "miniMD_rrl"

12 #SBATCH -A p_readex

13

14 module use /projects/p_readex/modules

15 module load readex/ci_readex_bullxmpi1.2.8.4_gcc6.3.0

16

17 energy_label="Energy"

18 rm -rf host_names.out

19 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 hostname >> host_names.out

20

21 #####

22 # application-specific setup here

23 INPUT_FILE=in3.data #in.lj.miniMD

24 #####

25

26 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

27

28 # start plain run

29 export SCOREP_ENABLE_PROFILING="false"

30 export SCOREP_ENABLE_TRACING="false"

31 export SCOREP_SUBSTRATE_PLUGINS=""

32 export SCOREP_RRL_PLUGINS=""

33 export SCOREP_RRL_TMM_PATH=""

34 export SCOREP_MPI_ENABLE_GROUPS=ENV

35

36 # start measurements

37 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 clearHdeem

38 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 startHdeem

39 start_time=$(($(date +%s%N)/1000000))

40 # run untuned application

41 srun ./miniMD_openmpi_plain -i $INPUT_FILE

42 # stop measurements

43 stop_time=$(($(date +%s%N)/1000000))

44 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 stopHdeem

45 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 sleep 5

46 exec < host_names.out

47 while read host_name; do

48 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 --nodelist=$host_name checkHdeem >> hdeem.out

49 done

50

51 # aggregate energy measurements from HDEEM

52 energy_total=0

53 if [-e hdeem.out]; then

54 exec < hdeem.out

55 while read max max_unit min min_unit average average_unit energy energy_unit; do

56 if ["$energy" == "$energy_label"]; then

57 read blade max_val min_val average_val energy_val

58 energy_total=$(echo "${energy_total} + ${energy_val}" | bc)

59 fi

60 done

61 time_total=$(echo "${stop_time} - ${start_time}" | bc)

62 echo ""

63 echo "Untuned run: Total time = $time_total ms, Total energy = $energy_total J"

64 rm -rf hdeem.out

65 fi

66 # end plain run

67

68 # start RRL-tuned run

69 export SCOREP_ENABLE_PROFILING="false"

70 export SCOREP_ENABLE_TRACING="false"

71 export SCOREP_SUBSTRATE_PLUGINS="rrl"

72 export SCOREP_RRL_PLUGINS="cpu_freq_plugin,uncore_freq_plugin"

73 export SCOREP_RRL_TMM_PATH="tuning_model.json"

74 export SCOREP_MPI_ENABLE_GROUPS=ENV

75

76 # start measurements

77 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 clearHdeem

13

78 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 startHdeem

79 start_time=$(($(date +%s%N)/1000000))

80 # run RRL-tuned application

81 srun ./miniMD_openmpi_ptf -i $INPUT_FILE

82 # stop measurmenents

83 stop_time=$(($(date +%s%N)/1000000))

84 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 stopHdeem

85 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 sleep 5

86 exec < host_names.out

87 while read host_name; do

88 srun -N 1 -n 1 --ntasks-per-node=1 -c 1 --nodelist=$host_name checkHdeem >> hdeem.out

89 done

90

91 # aggregate energy measurements from HDEEM

92 energy_total=0

93 if [-e hdeem.out]; then

94 exec < hdeem.out

95 while read max max_unit min min_unit average average_unit energy energy_unit; do

96 if ["$energy" == "$energy_label"]; then

97 read blade max_val min_val average_val energy_val

98 energy_total=$(echo "${energy_total} + ${energy_val}" | bc)

99 fi

100 done

101 time_total=$(echo "${stop_time} - ${start_time}" | bc)

102 echo ""

103 echo "RRL-tuned run: Total time = $time_total ms, Total energy = $energy_total J"

104 rm -rf hdeem.out

105 fi

106 # end RRL-tuned run

This batch job script is available in

/projects/p_readextest/miniMD/run_rrl.sh

and is submitted as

sbatch run_rrl.sh

For different applications, run rrl.sh can be reused by updating the command to run the
application in lines 41 and 81. This script is to be run from the location with the application’s
executable.

Outcome:

- The total execution time and energy consumption of the untuned run of the application
and the run tuned by RRL are printed for comparison.

1.4.2 Visualise Configuration Switching

There are two ways of visualising the configuration switching:

1. A visualization plugin that shows the RRL perspective to the switching, i.e. the configu-
ration that is supposed to be applied. It can be used during DTA and RAT.

2. The Score-P asynchronous plugins that show what actually happens in the processor.
They can just be applied during RAT.

14

Figure 2: Vampir trace showing the switching of CPU FREQUENCY, UN-
CORE FREQUENCY and NUMTHREADS for Blasbench benchmark

Using the visualisation plugin Since visualization is implemented as a synchronous plugin,
Score-P supports this only in profiling mode, so to get the metrics in trace, tracing has to be
set.

export SCOREP_ENABLE_TRACING=true

1. Set the environment variables to specify the metric plugin from RRL for visualization of
tuning parameters as metrics in Vampir.

export SCOREP_METRIC_PLUGINS="scorep_substrate_rrl"

2. Set the environment variable to specify the tuning parameters which need to be added to
trace. For the hardware and software tuning parameters, names of the PCPs are used. All
of the hardware and software parameters can be loaded by simply setting the environment
variable to “*”. Application Tuning Parameters (ATP) need to be explicitly specified. To
load ATPs, the value should be set equal to ’ATP/<atp name>’ where atp name is the name
of the ATP. The prefix ’ATP/’ is required to recognize the ATPs.

export SCOREP_METRIC_SCOREP_SUBSTRATE_RRL="ATP/<atp_name>, <pcp_name>"

For example, the environment variables to specify the RRL as metric plugin and view the
processor core frequency switching in trace in Vampir can be set as follows:

export SCOREP_METRIC_PLUGINS="scorep_substrate_rrl"

export SCOREP_METRIC_SCOREP_SUBSTRATE_RRL="cpu_freq_plugin"

An example trace showing the switching of different configurations during RAT is given in
Figure 2. The Score-P tracing is enabled and the visualization plugin is applied during the RAT
phase for Blasbench benchmark which traces all the tuning parameters specified through pa-
rameter control plugins. The tuning parameters in Figure 2 are named as CPU FREQUENCY,
UNCORE FREQUENCY and NUMTHREADS. The visualization plugin shows the configura-
tions which have been set through RRL. To confirm that these configurations are actually set
in the processor, Score-P asynchronous plugins, which are explained next, can be used.

15

Figure 3: Vampir trace showing the PAPI TOT CYC and UNC C CLOCKTICKS recorded
using the Score-P asynchronous PAPI and uncore plugin respectively

Using the asynchronous Score-P sampling plugins To use the asynchronous PAPI and
uncore plugin, and to visualize the processor core and uncore frequencies, please add the fol-
lowing lines to your script:

module load scorep-uncore

module load scorep-apapi

export SCOREP_ENABLE_TRACING=true

export SCOREP_ENABLE_PROFILING=false

export SCOREP_METRIC_PLUGINS="apapi_plugin,upe_plugin"

export SCOREP_METRIC_APAPI_PLUGIN="PAPI_TOT_CYC"

export SCOREP_METRIC_APAPI_INTERVAL_US=10000

export SCOREP_METRIC_UPE_PLUGIN="hswep_unc_cbo0::UNC_C_CLOCKTICKS"

export UPE_INTERVAL_US=10000

export SCOREP_EXPERIMENT_DIRECTORY=<location_for_trace_file>

The trace file generated will be placed in the folder specified by SCOREP EXPERIMENT DIRECTORY.
This can be viewed using Vampir.

Figure 3 shows the trace for the APAPI TOT CYC and UNC C CLOCKTICKS traced
using the asynchronous PAPI and uncore plugins respectively. Both the traces presented in
Figure 2 and Figure 3 are obtained in the same RAT run of Blasbench benchmark. The
APAPI TOT CYC trace in Figure 3 confirms the trace of CPU FREQUENCY in Figure 2.
The APAPI TOT CYC trace in Figure 3 shows that for region ”!$omp parallel@main.cpp”
the frequency is first set to 2.5GHz according to the CPU FREQUECY set by RRL but then
goes down to zero whereas the CPU FREQUENCY shown in Figure 2 stays at 2.5GHz for
the entire duration of ”!$omp parallel@main.cpp” region. The reason for this difference is that
this is an omp parallel region and the Master thread goes to sleep while waiting for other
threads to finish. The UNC C CLOCKTICKS trace in Figure 3 also confirms that the value of
UNCORE FREQUENCY is set as instructed by RRL.

Details about the plugins can be found at: https://github.com/score-p/scorep_plugin_
apapi and https://github.com/score-p/scorep_plugin_uncore.

16

https://github.com/score-p/scorep_plugin_apapi
https://github.com/score-p/scorep_plugin_apapi
https://github.com/score-p/scorep_plugin_uncore

A Filtering and Manual Instrumentation

A.1 Runtime Filtering

The first way to reduce the instrumentation overhead is to suppress the measurements done by
Score-P for instrumented regions. This is called runtime filtering of regions. READEX provides
the scorep-autofilter tool that inspects a generated profile and creates a filter file for guiding
runtime filtering. This file includes the names of too fine-granular regions that are dominated
by the measurement overhead.

1. Apply the scorep-autofilter tool on the profile.cubex file as follows:

scorep-autofilter -t <region_granularity_threshold_in_sec>

-f <filter_file_name_without_extension>

<path_to_cubex_file>/profile.cubex

Choose a value to use as a threshold, for example 100 ms (-t 0.1) for regions to be considered
for the significant region analysis. This will create a filter file with .filt extension. The
user of the tool-suite can decide the value of the threshold depending on the amount of
instrumenation overhead that they wish to retain for the analysis of regions in the application.
The higher the threshold value, the lower will be the number of significant regions and the
resulting instrumentation overhead.

2. It is advisable but not required to rerun the application and scorep-autofilter to detect
additional fine granular regions that were missed in the previous step because their execution
time was increased by the measurement overhead of nested regions. This requires that the
environment variable SCOREP FILTERING FILE is to be set to the filter file name (including
the .filt extension) before rerunning the application.

Apply scorep-autofilter to the new profile. Be careful not to overwrite the current filter
file. Copy the newly found region names into the original filter file.

Repeat this step until no more regions were found.

Outcome: A filter file with .filt extension containing the application regions that Score-P
will not measure.

Section C.1 presents an example.

A.2 Compile-time Filtering

Runtime filtering only suppresses the measurements while the overhead for the probes is still
there. You can apply the filter file also during instrumentation of the application to suppress
the insertion of probes for the given regions. Please check the Score-P user manual for details
on how to perform compile-time filtering. It is advisable that the user do this whenever possible
since each existing instrumentation interrupts the program flow during its execution.

In order to apply compile time filtering using intel compiler additional option needs to
specified for scorep-autofilter:

scorep-autofilter -t <region_granularity_threshold_in_sec>

-f <filter_file_name_without_extension>

-i <intel_filter_file_name_without_extension>

<path_to_cubex_file>/profile.cubex

This will create a filter file that can be used by Intel compiler to disable filtering. This filter
file can be passed to compiler using -tcollect-filter=<intel filter file name> option.

17

A.3 Filtering OpenMP and MPI regions

You can remove instrumentation of MPI routines and OpenMP regions as follows:

• Filtering OpenMP regions: To skip the instrumentation of OpenMP regions, the
option --thread=none should be used. As a side-effect, no instrumented regions should
occur inside of parallel regions. Otherwise, a runtime error will occur. Instead of switching
off instrumentation of all OpenMP regions, you can also disable regions selectively via

--opari="--disable=omp:single,master,atomic,critical,barrier"

This will instrument parallel regions and nested instrumented regions would be handled
as expected by Score-P.

• Filtering MPI regions: To disable measurements for MPI routines, you can add the
following line to your batch script:

export SCOREP_MPI_ENABLE_GROUPS=ENV

It suppresses instrumentation for all MPI routines except MPI Init, MPI Finalize and
other environment routines. These are required during DTA with the Periscope Tuning
Framework.

A.4 Energy Measurements

Due to the overhead of energy measurements on Taurus with hdeem for application profiling
with Score-P of about 5 ms, it is necessary to check the overhead when the energy measurements
are switched on.

For energy measurements, load the hdeem module compatible with the compiler that was
used to build the READEX tool suite.

module load scorep-hdeem/sync-xmpi-gcc6.3

(or)

module load scorep-hdeem/sync-hdeem2.2.5-intelmpi-intel2017

Load the scorep-hdeem sync plugin that is compatible with the Score-P built for the
READEX toolsuite, and set the following environment variables:

export SCOREP_METRIC_PLUGINS=hdeem_sync_plugin

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_CONNECTION="INBAND"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_VERBOSE="WARN"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

If the overhead for hdeem measurements for the application regions is more than a few
percent, you need to switch to manual instrumentation of important coarse-granular regions as
explained in Section A.5.

A.5 Manual Instrumentation

If none of the other filtering methods is successful in reducing the overhead to an acceptable
level, then manually annotate regions where most of the computation time is spent. You can
find these regions with a standard profiler. It is also recommended to instrument the parents
of all the significant regions up until the main caller in the hierarchy. This is an optional step
which will allow the annotated regions to be used as identifiers for runtime situations.

18

1. Build the application with additional options to disable compiler instrumentation
(--nocompiler) and to enable user region instrumentation (--user).

2. Manually annotate coarse granular application regions or any other regions that are of interest
for tuning using SCOREP USER REGION DEFINE inside the function definition as shown below:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

SCOREP_USER_REGION_BEGIN(REGION_HANDLE, "REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)

// application region

SCOREP_USER_REGION_END(REGION_HANDLE)

Note: You also have to instrument the main routine.
Section C.3 presents an example.

19

B Application Tuning Parameter (ATP) Library

As explained earlier, it is also possible to optionally exploit application level tuning using the
READEX tool suite. This requires some additional manual code annotation and instrumenta-
tion to pinpoint the parts of the code that can be exploited as application tuning parameters
and annotate them with certain API functions. Note that the ATP library can only be used to
exploit intra-phase dynamism.

B.1 Instrumentation for ATP library

1. Include the atplib.h header file in the source code.

2. Declare the parameter in the source code using ATP PARAM DECLARE function. Each pa-
rameter must contain a unique name, type, default value, and domain name (uses default
domain if domain name is NULL):

ATP_PARAM_DECLARE("PARAM_NAME", ATP_PARAM_TYPE_RANGE, DEFAULT_VALUE, "DOMAIN_NAME");

Available ATP parameter types are:

• ATP PARAM TYPE RANGE - defines a range with min, max and step values

• ATP PARAM TYPE ENUM - defines an array of all possible values

3. Add values to the parameter using ATP ADD VALUES. The second parameter is an array of
values added to the parameter, the third parameter is the number of values added.

ATP_ADD_VALUES("PARAM_NAME", {1,5,1}, 3, "DOMAIN_NAME");

• If parameter type is range, the number of values should be 3 and the values array
should contain {min value, max value, step}.
• If the parameter type is enum, then the values array should contain all the possible

values that the parameter can have, and the number of values parameter indicates
how many values are in this array.

4. Add the call for parameter value assignment. Assigns the parameter value to control variable.
The value is assigned by RRL. In case no value is available to RRL, the default parameter
value defined in ATP is used:

ATP_PARAM_GET("PARAM_NAME", &control_variable, "DOMAIN_NAME");

5. Add constraint to the parameters of domain "DOMAIN NAME" (optional):

ATP_CONSTRAINT_DECLARE("CONSTRAINT_NAME", "expr", "DOMAIN_NAME");

• The constraint is expressed in the form of a character string "expr" which contains
a logical expression of how parameters in this domain are constrained (see example
in Section C.4).

• Any ATP parameters declared in the application can be used in the constraint as
long as they belong to the same domain as the constraint.

• Multiple constraints can be defined for the same domain.

20

• If the domain name is not specified (NULL) the constraint will apply to parameters
in the default domain.

Section C.4 presents an example.

B.2 Using the ATP Library

1. Build the application by linking with the ATP library (-latp) .

2. Specify a search algorithm for the ATP library from among exhaustive atp and individual atp

strategies. This is done by adding sections in the READEX configuration file (readex config.xml)
used as input for PTF during DTA as shown below:

<periscope>

<atp>

<searchAlgorithm>

<name>exhaustive_atp</name>

<name>individual_atp</name>

</searchAlgorithm>

</atp>

</periscope>

For the individial strategy, the keep factor is always 1. Updating/extending the READEX
configuration file was explained in detail in Section 1.3.2.

3. Running the application: there are two phases for running the application with ATP:

• parameter collection phase - parameters, constraints and explorations defined in ap-
plication are collected and saved for the tuning system to explore.

• parameter exploration phase - declaration functions are turned off and the tuning sys-
tem can explore the parameter combinations by providing parameter values through
the ATP PARAM GET function.

There are two ATP modes available that allow to enable which phases will be used in the
application, although the parameter collection phase needs to be run at least once for the
application to allow parameter collection and ATP configuration file creation.

• DTA mode:

– Includes both ATP phases.

– ATP EXECUTION MODE environment variable should be set to DTA.

– It is necessary to run the application in DTA mode at least once in order to
generate the ATP description file. The name and location of ATP descrip-
tion file can be set by ATP DESCRIPTION FILE environment variable, if it is
not set ATP description file will be created in current working directory as
ATP description file.json.

– Starts with parameter collection phase: parameter, constraint and exploration
declaration functions are executed only once.

– Second time the same parameter declaration is executed it triggers the end of
parameter collection phase, generates ATP description file and begins the explo-
ration phase.

– ATP PARAM GET assigns parameter values decided by RRL (In the first phase
default value is used).

21

• RAT mode:

– Only parameter exploration phase is running.

– ATP EXECUTION MODE environment variable should be unset or set to RAT.

– Declaration functions are shut down, only ATP PARAM GET function is working.

– Details of parameters are loaded from ATP description file.

22

C Examples

C.1 Runtime Filtering

Apply scorep-autofilter as follows:

scorep-autofilter -t 0.1 -f scorep scorep-*/profile.cubex

The file scorep.filt contains the region names to be filtered enclosed between
SCOREP REGION NAMES BEGIN and SCOREP REGION NAMES END, as shown below:

SCOREP_REGION_NAMES_BEGIN

EXCLUDE

Atom::Atom()

Atom::~Atom()

...

SCOREP_REGION_NAMES_END

A script to repeat the identification of too fine-granular regions for the miniMD application
is available in

/projects/p_readextest/miniMD/run_saf.sh

and is executed as

sh run_saf.sh

For different applications, run saf.sh can be reused by updating the line to execute the
application. This script requires do scorep autofilter single.sh that is present in the same
directory.

C.2 MiniMD Phase Region Annotation

void Integrate::run(Atom &atom, Force* force, Neighbor &neighbor,

Comm &comm, Thermo &thermo, Timer &timer)

{

int i, n;

comm.timer = &timer;

timer.array[TIME_TEST] = 0.0;

int check_safeexchange = comm.check_safeexchange;

mass = atom.mass;

dtforce = dtforce / mass;

#pragma omp parallel private(i,n)

{

SCOREP_USER_REGION_DEFINE(R1)

for(n = 0; n < ntimes; n++)

{

SCOREP_USER_OA_PHASE_BEGIN(R1, "INTEGRATE_RUN_LOOP", 2)

#pragma omp barrier

x = &atom.x[0][0];

v = &atom.v[0][0];

f = &atom.f[0][0];

xold = &atom.xold[0][0];

nlocal = atom.nlocal;

initialIntegrate();

#pragma omp barrier

23

#pragma omp master

timer.stamp();

if((n + 1) % neighbor.every)

{

#pragma omp barrier

comm.communicate(atom);

#pragma omp master

timer.stamp(TIME_COMM);

#pragma omp barrier

}

else

{

{

if(check_safeexchange)

{

#pragma omp master

{

double d_max = 0;

for(i = 0; i < atom.nlocal; i++)

{

double dx = (x[3 * i + 0] - xold[3 * i + 0]);

if(dx > atom.box.xprd) dx -= atom.box.xprd;

if(dx < -atom.box.xprd) dx += atom.box.xprd;

double dy = (x[3 * i + 1] - xold[3 * i + 1]);

if(dy > atom.box.yprd) dy -= atom.box.yprd;

if(dy < -atom.box.yprd) dy += atom.box.yprd;

double dz = (x[3 * i + 2] - xold[3 * i + 2]);

if(dz > atom.box.zprd) dz -= atom.box.zprd;

if(dz < -atom.box.zprd) dz += atom.box.zprd;

double d = dx * dx + dy * dy + dz * dz;

if(d > d_max) d_max = d;

}

d_max = sqrt(d_max);

if((d_max > atom.box.xhi - atom.box.xlo) || \

(d_max > atom.box.yhi - atom.box.ylo) || \

(d_max > atom.box.zhi - atom.box.zlo))

printf("Warning: Atoms move further than your subdomain size, \

which will eventually cause lost atoms.\n" \

"Increase reneighboring frequency or choose a different processor grid\n" \

"Maximum move distance: %lf; Subdomain dimensions: %lf %lf %lf\n", \

d_max, atom.box.xhi - atom.box.xlo, \

atom.box.yhi - atom.box.ylo, \

atom.box.zhi - atom.box.zlo);

}

}

#pragma omp master

timer.stamp_extra_start();

comm.exchange(atom);

comm.borders(atom);

#pragma omp master

{

timer.stamp_extra_stop(TIME_TEST);

timer.stamp(TIME_COMM);

}

if(check_safeexchange)

for(int i = 0; i < 3 * atom.nlocal; i++) atom.xold[i] = atom.x[i];

}

#pragma omp barrier

neighbor.build(atom);

#pragma omp barrier

#pragma omp master

timer.stamp(TIME_NEIGH);

}

force->evflag = (n + 1) % thermo.nstat == 0;

force->compute(atom, neighbor, comm, comm.me);

#pragma omp master

24

timer.stamp(TIME_FORCE);

if(neighbor.halfneigh && neighbor.ghost_newton)

{

comm.reverse_communicate(atom);

#pragma omp master

timer.stamp(TIME_COMM);

}

v = &atom.v[0][0];

f = &atom.f[0][0];

nlocal = atom.nlocal;

#pragma omp barrier

finalIntegrate();

#pragma omp barrier

if(thermo.nstat) thermo.compute(n + 1, atom, neighbor, force, timer, comm);

SCOREP_USER_OA_PHASE_END(R1)

}

} //end OpenMP parallel

}

This example is also available on Taurus in

/projects/p_readextest/miniMD/integrate.cpp

C.3 Manual Instrumentation

main()

{

...

integrate.run(...);

...

}

void Integrate::run(...)

{

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

SCOREP_USER_REGION_BEGIN(REGION_HANDLE, "REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)

// application region

SCOREP_USER_REGION_END(REGION_HANDLE)

}

Example For the miniMD application, manually annotate ForceLJ::compute halfneigh()

and its parents Integrate::run() and main() as significant regions as shown in the following
files respectively:

/projects/p_readextest/miniMD/force_lj.cpp

/projects/p_readextest/miniMD/integrate.cpp

/projects/p_readextest/miniMD/ljs.cpp

C.4 Application Tuning Parameter (ATP) Instrumentation

void foo(){

int atp_cv;

...

ATP_PARAM_DECLARE("solver", ATP_PARAM_TYPE_RANGE, 1, "DOM1");

int solver_values[3] = {1,5,1};

//{1,5,1} means a range with a minimum value of 1, a maximum one of 5 and an increment of 1

ATP_ADD_VALUES("solver", solver_values, 3, "DOM1");

25

ATP_PARAM_GET("solver", &atp_cv, "DOM1");

switch (atp_cv){

case 1:

// choose algorithm 1

break;

case 2:

// choose algorithm 2

break;

...

}

int atp_ms;

ATP_PARAM_DECLARE("mesh", ATP_PARAM_TYPE_RANGE, 40, "DOM1");

int mesh_values[3] = {0,120,10};

ATP_ADD_VALUES("mesh", mesh_values, 3, "DOM1");

ATP_PARAM_GET("mesh", &atp_ms, "DOM1");

ATP_CONSTRAINT_DECLARE("const1", "(solver = 1 && 0 <= mesh 40) ||

(solver = 2 && 50 <= mesh <= 80) ||

(solver > 2 && mesh = 120)", "DOM1")

if ((atp_ms > 1) && (atp_ms <= 40)) {

// algorithm for mesh size 1

}

if ((atp_ms > 40) && (atp_ms <= 80)) {

// algorithm for mesh size 2

}

if (atp_ms == 120) {

// algorithm for mesh size 3

}

C.5 Tuning Potential Analysis

1. The miniMD application with manually annotated phase region is built for readex-dyn-detect
as follows:

make openmpi PREP="scorep --online-access --user --thread=none"

2. When miniMD is run with in2.data as its input file and readex-dyn-detect is applied on
the resulting tupled profile.cubex as follows, the function ForceLJ::compute halfneigh()

is identified as the significant region.

readex-dyn-detect -t 0.001 -p INTEGRATE_RUN_LOOP -c 10 -v 10 -w 10 scorep-<xyz>/profile.cubex

Here, readex-dyn-detect takes the granularity for the region as 1 ms with -t 0.001. The
option -p INTEGRATE RUN LOOP is given to the tool to identify the phase region from the
profile.cubex call tree. The three options -c 10 -v 10 -w 10 define thresholds for the
compute intensity variation (absolute value), time deviation in % of the mean region time
and weight of the region (%) which is execution time w.r.t. phase time.

A script to perform steps 1 and 2 for the miniMD application is available in

/projects/p_readextest/miniMD/run_rdd.sh

and is executed as

sh run_rdd.sh

26

For different applications, run rdd.sh can be reused by updating the line to execute the
application. This is to be run from the location with the application’s executable and the filter
file name considered to be scorep.filt.
The following lines are printed as part of the output by readex-dyn-detect for miniMD:

1 ...

2 Significant regions are:

3

4 void Comm::borders(Atom&)

5 void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 0; int GHOST_NEWTON = 1]

6 void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 1; int GHOST_NEWTON = 1]

7 void Neighbor::build(Atom&)

8

9

10 Significant region information

11 ==============================

12 Region name Min(t) Max(t) Time Dev.(%Reg) Ops/L3miss Weight(%Phase)

13

14 void Comm::borders(Atom&) 0.001 0.001 2.6 109 0

15 void ForceLJ::compute_hal 0.013 0.014 2.9 97 68

16 void ForceLJ::compute_hal 0.016 0.016 0.0 91 1

17 void Neighbor::build(Atom 0.047 0.048 0.7 332 23

18

19

20 Phase information

21 =================

22 Min Max Mean Dev.(% Phase) Dyn.(% Phase)

23

24 0.0138626 0.0664566 0.020337 72.731 258.612

25

26 ...

27

28 SUMMARY:

29 ========

30

31 Inter-phase dynamism due to variation of the execution time of phases

32

33 No intra-phase dynamism due to time variation

34

35 Intra-phase dynamism due to variation in the compute intensity of the following important significant

36 regions

37

38 void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 0; int GHOST_NEWTON = 1]

39

40 void Neighbor::build(Atom&)

The printed output above for the miniMD application can be divided into three parts:
First, lines 2–7 list the names of the significant regions computed from the detection algo-

rithm. For details of the algorithm, please see deliverable D2.1.
Secondly, lines 10–26 show the profile statistic output for the detected significant regions

and phase region. This section consists of two parts. The significant region information presents
the minimum and the maximum of the execution time for each significant region as well as the
aggregated execution time for the region. It also prints the time deviation in % with respect to
its mean value. The Ops/L3miss column prints the absolute compute intensity value. In the
last column, Weight(%Phase), is the execution time with respect to phase time.

After that, the tool summarises the statistics information for the phase region. It shows the
minimum, maximum, and mean values of the execution time spent on the phase region as well
as the aggregated execution time for the phase. The Dev.(% Phase) column prints the time
deviation w.r.t. the phase mean execution time. The last column, Dyn.(% Phase), prints the
variation between minimum and maximum execution time w.r.t. the mean execution time of
the phase.

27

Finally, the tool prints the summary results of the dynamism analysis (lines 28–40). First, if
the standard deviation of the phase is larger than the variation threshold, then the tool indicates
having inter-phase dynamism due to variation of the execution time of phases. Otherwise, the
application does not have inter-phase dynamism. For miniMD, the variation is larger than the
threshold. So the tool detects inter-phase dynamism for miniMD.

The tool compares Weight(%Phase) with the given threshold given by the user. If a sig-
nificant region has enough weight and its time deviation w.r.t. region is more than the time
deviation threshold given via -v, the tool detects intra-phase dynamism for these significant
region(s) due to time variation. For miniMD, there are two significant regions having weights
larger than the given threshold (> 10%):

void ForceLJ::compute_halfneigh(Atom&, Neighbor&, int) [with int EVFLAG = 0; int GHOST_NEWTON = 1]

void Neighbor::build(Atom&)

But neither of them has a time deviation greater than 10%. So the tool does not detect
intra-phase for miniMD due to time deviation.

The tool computes the variation of the compute intensity for the set of detected significant
regions having a minimum weight of 10%. For miniMD the variation value is larger than
the provided threshold of compute intensity specified with -c. So the tool detects intra-phase
dynamism due to the variation in the compute intensity characteristic and lists the region names
that exhibit intra-phase dynamism.

28

	Workflow
	Modules on Taurus
	Continuous integration
	Beta release

	Application instrumentation
	Build application with Score-P
	Filtering
	Phase region instrumentation
	Application tuning parameter instrumentation

	Design-time Analysis (DTA)
	Tuning Potential Analysis
	Specify Criteria for DTA
	Tuning Model Creation
	Visualization of the Tuning Model

	Runtime Application Tuning (RAT)
	Production Run with Tuning Model
	Visualise Configuration Switching

	Filtering and Manual Instrumentation
	Runtime Filtering
	Compile-time Filtering
	Filtering OpenMP and MPI regions
	Energy Measurements
	Manual Instrumentation

	Application Tuning Parameter (ATP) Library
	Instrumentation for ATP library
	Using the ATP Library

	Examples
	Runtime Filtering
	MiniMD Phase Region Annotation
	Manual Instrumentation
	Application Tuning Parameter (ATP) Instrumentation
	Tuning Potential Analysis

