
SCORE-P
USER MANUAL

3.1-READEX_BETA (revision 13238M)

Tue Mar 13 2018 13:00:07

SCORE-P LICENSE AGREEMENT

COPYRIGHT ©2009-2014,
RWTH Aachen University, Germany

COPYRIGHT ©2009-2013,
Gesellschaft für numerische Simulation mbH, Germany

COPYRIGHT ©2009-2018,
Technische Universität Dresden, Germany

COPYRIGHT ©2009-2013,
University of Oregon, Eugene, USA

COPYRIGHT ©2009-2018,
Forschungszentrum Jülich GmbH, Germany

COPYRIGHT ©2009-2015,
German Research School for Simulation Sciences GmbH, Germany

COPYRIGHT ©2009-2016,
Technische Universität München, Germany

COPYRIGHT © 2015-2016,
Technische Universität Darmstadt, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following condi-
tions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

* Neither the names of
RWTH Aachen University,
Gesellschaft für numerische Simulation mbH Braunschweig,
Technische Universität Dresden,
University of Oregon, Eugene,
Forschungszentrum Jülich GmbH,
German Research School for Simulation Sciences GmbH,
Technische Universität München, or the
Technische Universität Darmstadt

nor the names of their contributors may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ii

Contents

Page

Contents iii

1 Introduction 1

1.1 About this Document . 2

1.2 Getting Help and Support . 2

1.3 Basics of Performance Optimization . 2

1.4 Score-P Software Architecture Overview . 4

1.5 Acknowledgment . 5

2 Getting Started 7

2.1 Score-P Quick Installation . 7

2.1.1 Prerequisites . 7

2.1.2 General Autotools Build Options . 8

2.1.3 Score-P Specific Build Options . 8

2.2 Instrumentation . 9

2.3 Measurement and Analysis . 10

2.4 Report Examination . 10

2.5 Simple Example . 11

3 Application Instrumentation 13

3.1 Automatic Compiler Instrumentation . 16

3.2 Manual Region Instrumentation . 17

3.3 Instrumentation for Parameter-Based Profiling . 20

3.4 Measurement Control Instrumentation . 21

3.5 Source-Code Instrumentation Enabling Online Access . 21

3.6 Semi-Automatic Instrumentation of POMP2 User Regions . 22

3.7 Preprocessing before POMP2 and OpenMP instrumentation . 23

3.8 Source-Code Instrumentation Using PDT . 23

3.8.1 Limitations . 24

3.9 Enforce Linking of Static/Shared Score-P Libraries . 24

4 Application Sampling 25

CONTENTS

4.1 Introduction . 25

4.2 Prerequisites . 25

4.3 Configure Options . 26

4.3.1 libunwind . 26

4.4 Sampling Related Score-P Measurement Configuration Variables 26

4.5 Use Cases . 27

4.5.1 Enable unwinding in instrumented programs . 27

4.5.2 Instrument a hybrid parallel program and enable sampling 27

4.6 Test Environment . 27

4.6.1 Instrument NAS BT-MZ code . 28

4.6.2 Run instrumented binary . 28

5 Application Measurement 29

5.1 Profiling . 29

5.1.1 Parameter-Based Profiling . 30

5.1.2 Phase Profiling . 30

5.1.3 Dynamic Region Profiling . 31

5.1.4 Clustering . 31

5.1.5 Enabling additional debug output on inconsistent profiles 32

5.2 Tracing . 32

5.3 Filtering . 33

5.3.1 Source File Name Filter Block . 33

5.3.2 Region Name Filter Block . 34

5.4 Selective Recording . 35

5.5 Trace Buffer Rewind . 36

5.6 Recording Performance Metrics . 37

5.6.1 PAPI Hardware Performance Counters . 37

5.6.2 Resource Usage Counters . 37

5.6.3 Recording Linux Perf Metrics . 38

5.6.4 Metric Plugins . 38

5.7 MPI Performance Measurement . 39

5.7.1 Selection of MPI Groups . 39

5.7.2 Recording MPI Communicator Names . 40

5.8 CUDA Performance Measurement . 40

5.9 OpenCL Performance Measurement . 41

5.10 OpenACC Performance Measurement . 41

5.11 Online Access Interface . 42

5.12 Substrate Plugins . 43

6 Usage of scorep-score 45

6.1 Basic usage . 45

iv

CONTENTS

6.2 Additional per-region information . 46

6.3 Defining and testing a filter . 47

6.4 Calculating the effects of recording hardware counters . 48

7 Performance Analysis Workflow Using Score-P 49

7.1 Program Instrumentation . 49

7.2 Summary Measurement Collection . 50

7.3 Summary report examination . 51

7.4 Summary experiment scoring . 51

7.5 Advanced summary measurement collection . 52

7.6 Advanced summary report examination . 54

7.7 Event trace collection and examination . 54

Appendix A Score-P INSTALL 57

Appendix B MPI wrapper affiliation 71

B.1 Function to group . 71

B.2 Group to function . 79

Appendix C Score-P Metric Plugin Example 83

Appendix D Score-P Substrate Plugin Example 85

Appendix E Score-P Tools 89

E.1 scorep . 89

E.2 scorep-config . 90

E.3 scorep-info . 92

E.4 scorep-score . 92

E.5 scorep-backend-info . 92

Appendix F Score-P Measurement Configuration 95

Appendix G Score-P wrapper usage 113

Appendix H Module Documentation 115

H.1 Score-P User Adapter . 115

H.1.1 Detailed Description . 116

H.1.2 Macro Definition Documentation . 117

H.2 type definitions and enums used in Score-P . 135

H.2.1 Detailed Description . 137

H.2.2 Macro Definition Documentation . 137

H.2.3 Typedef Documentation . 138

H.2.4 Enumeration Type Documentation . 139

v

CONTENTS

Appendix I Data Structure Documentation 147

I.1 SCOREP_Metric_Plugin_Info Struct Reference . 147

I.1.1 Detailed Description . 147

I.1.2 Field Documentation . 147

I.2 SCOREP_Metric_Plugin_MetricProperties Struct Reference . 151

I.2.1 Detailed Description . 151

I.2.2 Field Documentation . 151

I.3 SCOREP_Metric_Properties Struct Reference . 152

I.3.1 Detailed Description . 152

I.3.2 Field Documentation . 152

I.4 SCOREP_MetricTimeValuePair Struct Reference . 153

I.4.1 Detailed Description . 153

I.4.2 Field Documentation . 153

I.5 SCOREP_SubstratePluginCallbacks Struct Reference . 153

I.5.1 Detailed Description . 155

I.5.2 Field Documentation . 155

I.6 SCOREP_SubstratePluginInfo Struct Reference . 170

I.6.1 Detailed Description . 171

I.6.2 Field Documentation . 172

Appendix J File Documentation 177

J.1 SCOREP_MetricPlugins.h File Reference . 177

J.1.1 Detailed Description . 177

J.1.2 Macro Definition Documentation . 177

J.1.3 Mandatory functions . 178

J.1.4 Mandatory variables . 178

J.1.5 Optional functions . 178

J.1.6 Optional variables . 179

J.2 SCOREP_MetricTypes.h File Reference . 179

J.2.1 Detailed Description . 180

J.2.2 Enumeration Type Documentation . 180

J.3 SCOREP_PublicHandles.h File Reference . 183

J.3.1 Detailed Description . 183

J.3.2 Enumeration Type Documentation . 183

J.4 SCOREP_PublicTypes.h File Reference . 184

J.4.1 Detailed Description . 186

J.5 SCOREP_SubstrateEvents.h File Reference . 187

J.5.1 Detailed Description . 191

J.5.2 Typedef Documentation . 191

J.5.3 Advice . 191

vi

CONTENTS

J.5.4 Enumeration Type Documentation . 207

J.6 SCOREP_SubstratePlugins.h File Reference . 210

J.6.1 Detailed Description . 211

J.6.2 Macro Definition Documentation . 211

J.6.3 Advice for developers . 211

J.6.4 Functions . 211

J.6.5 Mandatory variable . 212

J.7 SCOREP_User.h File Reference . 212

J.7.1 Detailed Description . 213

J.8 SCOREP_User_Types.h File Reference . 213

J.8.1 Detailed Description . 214

J.8.2 Macro Definition Documentation . 214

J.8.3 Typedef Documentation . 214

Appendix Index 215

vii

Chapter 1

Introduction

This document provides an introduction to Score-P: the Scalable Performance Measurement Infrastructure for
Parallel Codes. It is a software system that provides a measurement infrastructure for profiling, event trace record-
ing, and online analysis of High Performance Computing (HPC) applications. It has been developed within the
framework of the Scalable Infrastructure for the Automated Performance Analysis of Parallel Codes (SILC) project
funded by the German Federal Ministry of Education and Research (BMBF) under its HPC programme and the
Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing
(PRIMA) project,funded by the United States Department of Energy (DOE) with the goals of being highly scalable
and easy to use.

The partners involved in the development of this system within the SILC and PRIMA projects were:

• Forschungszentrum Jülich,

• German Research School for Simulation Sciences,

• Gesellschaft für numerische Simulation mbH,

• Gesellschaft für Wissens- und Technologietransfer der TU Dresden (GWT-←↩

TUD GmbH),

• Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen,

• Technische Universität Dresden,

• Technische Universität München,

• and University of Oregon

The goal of Score-P is to simplify the analysis of the behavior of high performance computing software and to allow
the developers of such software to find out where and why performance problems arise, where bottlenecks may
be expected and where their codes offer room for further improvements with respect to the run time. A number of
tools have been around to help in this respect, but typically each of these tools has only handled a certain subset
of the questions of interest. A software developer who wanted to have a complete picture of his code therefore
was required to use a multitude of programs to obtain the desired information. Most of these utilities work along
similar principles. The first step is usually an instrumentation of the code to be investigated. Next, the instrumented
programs are executed and write out (often very large amounts of) performance data. These data are then finally
graphically displayed and analyzed after the end of the program run. In certain special cases, the visualization and
analysis of the program behavior is also done while the program is running.

A crucial problem in the traditional approach used to be the fact that each analysis tool had its own instrumentation
system, so the user was commonly forced to repeat the instrumentation procedure if more than one tool was to be
employed. In this context, Score-P offers the user a maximum of convenience by providing the Opari2 instrumenter
as a common infrastructure for a number of analysis tools like Periscope, Scalasca, Vampir, and Tau that
obviates the need for multiple repetitions of the instrumentation and thus substantially reduces the amount of work
required. It is open for other tools as well. Moreover, Score-P provides the new Open Trace Format Version 2

http://www.score-p.org
http://www.vi-hps.org/projects/silc
http://www.bmbf.bund.de
http://www.vi-hps.org/projects/prima
http://energy.gov/
http://www.fz-juelich.de/jsc
http://www.parallel.grs-sim.de
http://www.gns-mbh.com
http://www.gwtonline.de
http://www.gwtonline.de
http://www.rz.rwth-aachen.de
http://www.tu-dresden.de/zih
http://www.lrr.in.tum.de
http://nic.uoregon.edu/prl
http://www.lrr.in.tum.de/periscope
http://www.scalasca.org
http://www.vampir.eu
http://www.cs.uoregon.edu/research/tau

CHAPTER 1. INTRODUCTION

(OTF2) for the tracing data and the new CUBE4 profiling data format which allow a better scaling of the tools with
respect to both the run time of the process to be analyzed and the number of cores to be used.

Score-P supports the following programming paradigms:

Multi-process paradigms: • MPI

• SHMEM

Thread-parallel paradigms: • OpenMP

• Pthreads

Accelerator-based paradigms: • CUDA

• OpenCL

• OpenACC

And possible combinations from these including simple serial programs.

1.1 About this Document

This document consists of three parts. This chapter is devoted to a basic introduction to performance analysis in
general and the components of the Score-P system in particular. Chapter 2 is a beginner's guide to using the
Score-P tool suite. It demonstrates the basic steps and commands required to initiate a performance analysis
of a parallel application. In the Chapters 3, 4, and 5, the reader can find more detailed information about the
components of Score-P. Chapter 7 provides a typical workflow of performance analysis with Score-P and detailed
instructions.

1.2 Getting Help and Support

The Score-P project uses various mailing lists to coordinate the development and to provide support to the user
community. An overview of the available mailing lists can be found in 1.1.

You can subscribe to the news@score-p.org and support@score-p.org by ...

Table 1.1: Score-P mailing lists
List Address Subscription Posting Usage
news@score-p.org open core team Important news regarding

the Score-P software, e.g.
announcements of new re-
leases.

support@score-p.org closed anyone Bug reports and general
user support for the Score-P
software.

1.3 Basics of Performance Optimization

Performance optimization is a process that is usually executed in a work cycle consisting of a number of individual
steps as indicated in Figure 1.1.

Thus, the process always begins with the original application in its unoptimized state. This application needs to
be instrumented, i. e. it must be prepared in order to enable the measurement of the performance properties
to take place. There are different ways to do this, including manual instrumentation of the source code by the
user, automatic instrumentation by the compiler, or linking against pre-instrumented libraries. All these options are
available in Score-P.

2

mailto:news@score-p.org
mailto:support@score-p.org

1.3 Basics of Performance Optimization

Instrumented
application

Measurement
data

Performance
information

Performance
report

Code
improvement

potential

Improved
application

Un-optimized
application

Optimized
application

Measurement

Analysis

Presentation Evaluation

Code
optimization

Instrumentation

Figure 1.1: The performance optimization cycle

When the instrumented application obtained in this way is executed, the additional commands introduced during
the instrumentation phase collect the data required to evaluate the performance properties of the code. Depending
on the user's requirements, Score-P allows to store these data either as a profile or as event traces. The user must
keep in mind here that the execution of the additional instructions of course requires some run time and storage
space. Thus the measurement itself has a certain influence of the performance of the instrumented code. Whether
the perturbations introduced in this way have a significant effect on the behavior depends on the specific structure
of the code to be investigated. In many cases the perturbations will be rather small so that the overall results can be
considered to be a realistic approximation of the corresponding properties of the uninstrumented code. However,
certain constructions like regions with very small temporal extent that are executed frequently are likely to suffer
from significant perturbations. It is therefore advisable not to measure such regions.

The next step is the analysis of the data obtained in the measurement phase. Traditionally this has mainly been
done post mortem, i. e. after the execution of the instrumented application has ended. This is of course possible
in Score-P too, but Score-P offers the additional option to go into the analysis in the so-called on-line mode, i. e.
to investigate the performance data while the application is still running. If the collected data are event traces then
a more detailed investigation is possible than in the case of profiles. In particular, one can then also look at more
sophisticated dependencies between events happening on different processes.

The optimization cycle then continues with the presentation of the analysis results in a report. Here it is important
to eliminate the part of the information that is irrelevant for the code optimization from the measured data. The
reduction of the complexity achieved in this way will simplify the evaluation of the data for the user. However, care
must be taken in order not to present the results in a too abstract fashion which would hide important facts from the
user.

The performance report then allows the user to evaluate the performance of the code. One can then either conclude
that the application behaves sufficiently well and exit the optimization cycle with the optimized version of the software
being chosen as the final state, or one can proceed to identify weaknesses that need to be addressed and the
potential for improvements of the code.

In the latter case, one then continues by changing the source code according to the outcome of the previous step
and thus obtains an improved application that then can again be instrumented to become ready for a re-entry into
the optimization cycle.

3

CHAPTER 1. INTRODUCTION

1.4 Score-P Software Architecture Overview

In order to allow the user to perform such an optimization of his code (typically written in Fortran, C, or C++
and implemented in a serial way or using a parallelization via an multi-process, thread-parallel, accelerator-based
paradigm, or a combination thereof), the Score-P system provides a number of components that interact with each
other and with external tools. A graphical overview of this structure is given in Fig. 1.2. We shall now briefly
introduce the elements of this structure; more details will be given in the later chapters of this document.

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based
parallelism

(CUDA, OpenCL,
OpenACC)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling
interrupts

(PAPI, PERF)

Call-path profiles
(CUBE4, TAU)

Online
interface

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter
(PAPI, rusage, PERF, plugins)

Figure 1.2: Overview of the Score-P measurement system architecture and the tools interface.

In order to instrument an application, the user needs to recompile the application using the Score-P instrumentation
command, which is added as a prefix to the original compile and link command lines. It automatically detects the
programming paradigm by parsing the original build instructions and utilizes appropriate and configurable methods
of instrumentation. These are currently:

• compiler instrumentation,

• MPI and SHMEM library interposition,

• source code instrumentation via the TAU instrumenter,

• OpenMP source code instrumentation using Opari2.

• Pthread and OpenCL instrumentation via GNU ld library wrapping.

• CUDA instrumentation via the NVIDIA CUDA Profiling Tools Interface (CUPTI)

• OpenACC instrumentation using the OpenACC Profiling Interface

While the first three of these methods are based on using tools provided externally, the Opari2 instrumenter for
OpenMP programs is a part of the Score-P infrastructure itself. It is an extension of the well known and frequently
used OpenMP Pragma And Region Instrumenter system (Opari) that has been successfully used in the
past in combination with tools like Scalasca, VampirTrace and ompP. The fundamental concept of such a system is a

4

http://www2.fz-juelich.de/jsc/kojak/opari/

1.5 Acknowledgment

source-to-source translation that automatically adds all necessary calls to a runtime measurement library allowing to
collect runtime performance data of Fortran, C, or C++ OpenMP applications. This translation is based on the idea of
OpenMP pragma/directive rewriting. The key innovation in Opari2, as compared to its predecessor, is the capability
to support features introduced in version 3.0 of the OpenMP standard, in particular its new tasking functionality
and OpenMP nesting. Opari used to work by automatically wrapping OpenMP constructs like parallel regions with
calls to the portable OpenMP monitoring interface POMP. In order to reflect the above-mentioned extensions, this
interface also had to be replaced by an enhanced version, POMP2.

Additionally, the user may instrument the code manually with convenient macros provided by Score-P. Score-P also
supports sampling functionality that provides an alternative to direct instrumentation.

During measurement, the system records several performance metrics including execution time, communication
metrics, and optionally hardware counters. Performance data is stored in appropriately sized chunks of a preallo-
cated memory buffer that are assigned to threads on demand, efficiently utilizing the available memory and avoiding
measurement perturbation by flushing the data to disk prematurely.

Without recompilation, measurement runs can switch between tracing and profiling mode. In tracing mode, the
performance events are passed to the tracing back-end of Score-P and are written to files for subsequent post
mortem analysis using Scalasca or Vampir. This backend uses the newly developed Open Trace Format 2 (OTF2),
the joint successor of the Open Trace Format used by Vampir and the Epilog format used by Scalasca. The
Score-P system contains a new library with reading and writing routines for OTF2. Basically, OTF2 is a full merge
of its two predecessors that retains all their features, and it is planned to become the default data source for future
versions of both Vampir and Scalasca. In this way, the user is free to choose between these two complementary
tools to investigate the trace files and may select the one that is more appropriate for the specific question at hand.
As an alternative to writing the trace data to disk and evaluating them post mortem, it is also possible to directly hand
over the data to on-line analysis tools like Periscope. The corresponding interface that allows this on-line access is
also an integral part of Score-P.

In profiling mode, the performance events are summarized at runtime separately for each call-path like in Scalasca.
Additionally, support for phases, dynamic regions and parameter-based profiling has been integrated. The collected
data is passed to the Score-P's profiling back-end CUBE4 for post mortem analysis using Scalasca or TAU or
is used directly through the on-line access interface by Periscope. Also in profiling mode, Score-P supports the
automatic detection of MPI wait states. Usually such inefficiencies are important bottlenecks and are thoroughly
investigated by means of automatic trace analysis and subsequent visual analysis using a time-line representation.
In the case of Score-P wait time profiling, inefficiencies are detected immediately when the respective MPI call is
completed and stored as an additional metric in the call-path profile. In comparison to earlier versions of CUBE, this
new one features a more powerful data model, more flexibility in the specification of system resource hierarchies and
display parameters, and various techniques to enhance the efficiency that result in a much better scaling behavior
of the analysis tool even in a range of tens of thousands of processes.

As a rough guideline for users who are uncertain which of these two modes to employ, we provide a brief compar-
ison of their main advantages and disadvantages. Specifically, tracing mode allows to retain temporal and spatial
connections, and it can reflect the dynamical behavior to an arbitrary precision. Moreover, statistical information
and profiles may be derived from the program traces. On the other hand, the amount of data that is produced in the
tracing mode can become prohibitively large; profiles tend to require much less storage space. In addition, the addi-
tional load that is imposed on the process, and hence the perturbations of the behavior of the code to be analyzed,
are much smaller in profiling mode than in tracing mode. And finally we mention that the accurate synchronization
of the clocks is an important aspect in tracing mode that may cause difficulties.

1.5 Acknowledgment

The development of Score-P was sponsored by a grant from the German Federal Ministry of
Education and Research (Grant No. 01IH08006) within the framework of its High Performance Com-
puting programme and with a grant from the US Department of Energy (Award No. DE-SC0001621). This
support is gratefully acknowledged.

5

https://wiki.alcf.anl.gov/index.php/POMP
http://www.tu-dresden.de/zih/otf
http://www.bmbf.bund.de
http://www.bmbf.bund.de
http://energy.gov/

CHAPTER 1. INTRODUCTION

6

Chapter 2

Getting Started

In order to quickly introduce the user to the Score-P system, we explain how to build and install the tool and look at
a simple example. We go through the example in full detail.

As mentioned above, the three core steps of a typical work cycle in the investigation of the behavior of a software
package can be described as follows:

• Instrumentation of user code: Calls to the measurement system are inserted into the application. This can be
done either fully automatically or with a certain amount of control handed to the software developer.

• Measurement and analysis: The instrumented application is executed under the control of the measurement
system and the information gathered during the run time of this process is stored and analyzed.

• Examination of results: The information about the behavior of the code at run time is visualized and the user
gets the opportunity to examine the reported results.

After building and installing the tool, we shall go through these three steps one after the other in the next sections.
This will be followed by a full workflow example. For getting detailed presentations of available features, see Section
3 for the instrumentation step and Section 5 for the measurement.

2.1 Score-P Quick Installation

The Score-P performance analysis tool uses the GNU Autotools (Autoconf, Automake, Libtool and M4) build system.
The use of Autotools allows Score-P to be build in many different systems with varying combinations of compilers,
libraries and MPI implementations.

Autotools based projects are build as follows:

1. The available compilers and tools available are detected from the environment by the configure script.

2. Makefiles are generated based on the detected compilers and tools.

3. The generated Makefile project is then built and installed.

Score-P will have features enabled or disabled, based on the detection made by the Autotools generated configure
script. The following 2 sub-sections cover mandatory prerequisites as well as optional features that are enabled
based on what is available in the configured platform.

2.1.1 Prerequisites

To build Score-P, C, C++ and Fortran compilers and related tools are required. These can be available as modules
(typically on super-computer environments) or as packages (on most Linux or BSD distributions).

CHAPTER 2. GETTING STARTED

For Debian based Linux systems using the APT package manager, the following command (as root) is sufficient to
build Score-P with minimal features enabled:

apt-get install gcc g++ gfortran mpich2

On Red-Hat and derivative Linux systems running the YUM package manager, in a similar way:

yum install gcc g++ gfortran mpich2

For users of the SuperMUC, it is recommended to load the following modules:

module load ccomp/intel/12.1 fortran/intel/12.1 \
mpi.ibm/5.2_PMR-fixes papi/4.9

2.1.2 General Autotools Build Options

System administrators can build Score-P with the familiar:

mkdir _build
cd _build
../configure && make && make install

The previous sequence of commands will detect compilers, libraries and headers, and then build and install Score-P
in the following system directories:

/opt/scorep/bin
/opt/scorep/lib
/opt/scorep/include
/opt/scorep/share

Users that are not administrators on the target machine may need to install the tool in an different location (due to
permissions). The prefix flag should be specified with the target directory:

../configure --prefix=<installation directory>

For example, in the install/scorep directory on his/her home folder:

../configure --prefix=$HOME/install/scorep

In this case, the user's PATH variable needs to be updated to include the bin directory of Score-P, and the appro-
priate library and include folders specified (with -L and -I) when instrumenting and building applications.

Users of the SuperMUC (after loading the required modules mentioned previously), can issue the following com-
mand to configure Score-P:

../configure --prefix=$HOME/install/scorep --enable-static \
--disable-shared --with-nocross-compiler-suite=intel \
--with-mpi=openmpi --with-papi-header=$PAPI_BASE/include \
--with-papi-lib=$PAPI_BASE/lib

2.1.3 Score-P Specific Build Options

In addition to general options available in all Autotools based build systems, there are Score-P configuration flags.
These can be printed out by passing the --help flag to the configure script.

They are usually self explanatory. Here is a list of them with a short explanation:

• --with-nocross-compiler-suite= (gcc|ibm|intel|
pathscale|pgi|studio)

Specifies the compiler suite to use when not cross-compiling. Selecting one of the options sets all relevant
variables to their expected names. These are CC, FC, F77, as well as the linker, preprocessor, etc.

8

2.2 Instrumentation

• --with-frontend-compiler-suite= (gcc|ibm|intel|
pathscale|pgi|studio)

Similar to the previous configuration flag, but for cross-compiling environments.

• --with-mpi=(mpich2|impi|openmpi) The MPI compiler and runtime suite to use. Currently there
are entries for MPICH2, Intel MPI and Open MPI.

• --with-shmem=(openshmem|openmpi|sgimpt) The SHMEM compiler suite to build this package
in non cross-compiling mode. Usually autodetected. Needs to be in $PATH.

• --with-otf2=(yes|<otf2-bindir>) An already install OTF2 can be specified with this flag. This
is usually not necessary since OTF2 is built together with Score-P. Specify yes if the tool is in your $PATH,
otherwise specify the full path.

• --with-opari2=(yes|<opari2-bindir>) Similar to the previous configuration flag, but for OP←↩

ARI2.

• --with-cube=(yes|<cube-bindir>) Similar to the previous two configuration flags, but for CUBE.

2.2 Instrumentation

Various analysis tools are supported by the Score-P infrastructure. Most of these tools are focused on certain
special aspects that are significant in the code optimization process, but none of them provides the full picture. In
the traditional workflow, each tool used to have its own measurement system, and hence its own instrumenter, so
the user was forced to instrument his code more than once if more than one class of features of the application was
to be investigated. One of the key advantages of Score-P is that it provides an instrumentation system that can be
used for all the performance measurement and analysis tools, so that the instrumentation work only needs to be
done once.

Internally, the instrumentation itself will insert special measurement calls into the application code at specific impor-
tant points (events). This can be done in an almost automatic way using corresponding features of typical compilers,
but also semi-automatically or in a fully manual way, thus giving the user complete control of the process. In general,
an automatic instrumentation is most convenient for the user. However, this approach may lead to too many and/or
too disruptive measurements, and for such cases it is then advisable to use selective manual instrumentation and
measurement instead. For the moment, we shall however start the procedure in an automatic way to keep things
simple for novice users.

To this end, we need to ask the Score-P instrumenter to take care of all the necessary instrumentation of user
and MPI functions. This is done by using the scorep command that needs to be prefixed to all the compile and
link commands usually employed to build the application. Thus, an application executable app that is normally
generated from the two source files app1.f90 and app2.f90 via the command:

mpif90 app1.f90 app2.f90 -o app

will now be built by:

scorep mpif90 app1.f90 app2.f90 -o app

using the Score-P instrumenter.

In practice one will usually perform compilation and linking in separate steps, and it is not necessary to compile all
source files at the same time (e.g., if makefiles are used). It is possible to use the Score-P instrumenter in such a
case too, and this actually gives more flexibility to the user. Specifically, it is often sufficient to use the instrumenter
not in all compilations but only in those that deal with source files containing MPI code. However, when invoking the
linker, the instrumenter must always be used.

When makefiles are employed to build the application, it is convenient to define a placeholder variable to indicate
whether a “preparation'' step like an instrumentation is desired or only the pure compilation and linking. For example,
if this variable is called PREP then the lines defining the C compiler in the makefile can be changed from:

MPICC = mpicc

9

CHAPTER 2. GETTING STARTED

to

MPICC = $(PREP) mpicc

(and analogously for linkers and other compilers). One can then use the same makefile to either build an instru-
mented version with the

make PREP="scorep"

command or a fully optimized and not instrumented default build by simply using:

make

in the standard way, i.e. without specifying PREP on the command line. Of course it is also possible to define the
same compiler twice in the makefile, once with and once without the PREP variable, as in:

MPICC = $(PREP) mpicc
MPICC_NO_INSTR = mpicc

and to assign the former to those source files that must be instrumented and the latter to those files that do not need
this.

2.3 Measurement and Analysis

Once the code has been instrumented, the user can initiate a measurement run using this executable. To this end,
it is sufficient to simply execute the target application in the usual way, i.e.:

mpiexec $MPIFLAGS app [app_args]

in the case of an MPI or hybrid code, or simply:

app [app_args]

for a serial or pure OpenMP program. Depending on the details of the local MPI installation, in the former case the
mpiexec command may have to be substituted by an appropriate replacement.

When running the instrumented executable, the measurement system will create a directory called scorep-Y←↩

YYYMMDD_HHMM_XXXXXXXX where its measurement data will be stored. Here YYYYMMDD and HHMM are the
date (in year-month-day format) and time, respectively, when the measurement run was started, whereas XX←↩

XXXXXX is an additional identification number. Thus, repeated measurements, as required by the optimization
work cycle, can easily be performed without the danger of accidentally overwriting results of earlier measurements.
The environment variables SCOREP_ENABLE_TRACING and SCOREP_ENABLE_PROFILING control whether
event trace data or profiles are stored in this directory. By setting either variable to true, the corresponding data
will be written to the directory. The default values are true for SCOREP_ENABLE_PROFILING and false for
SCOREP_ENABLE_TRACING.

2.4 Report Examination

After the completion of the execution of the instrumented code, the requested data (traces or profiles) is available
in the indicated locations. Appropriate tools can then be used to visualize this information and to generate reports,
and thus to identify weaknesses of the code that need to be modified in order to obtain programs with a better
performance. A number of tools are already available for this purpose. This includes, in particular, the CUBE4
performance report explorer for viewing and analyzing profile data, Vampir for the investigation of
trace information, and the corresponding components of the TAU toolsuite.

Alternatively, the Periscope system may be used to analyze the behaviour of the code on-line during its run time,
i.e. (in contrast to the approaches mentioned above) before the end of the program run.

10

http://www.scalasca.org
http://www.scalasca.org
http://www.vampir.eu
http://www.cs.uoregon.edu/Research/tau/home.php
http://www.lrr.in.tum.de/periscope

2.5 Simple Example

2.5 Simple Example

As a specific example, we look at a short C code for the solution of a Poisson equation in a hybrid (MPI and OpenMP)
environment. The corresponding source code comes as part of the Score-P distribution under the scorep/test/jacobi/
folder. Various other versions are also available - not only hybrid but also for a pure MPI parallelization, a pure
OpenMP approach, and in a non-parallel way; and, in each case, not only in C but also in C++ and Fortran.

As indicated above, the standard call sequence:

mpicc -std=c99 -g -O2 -fopenmp -c jacobi.c
mpicc -std=c99 -g -O2 -fopenmp -c main.c
mpicc -std=c99 -g -O2 -fopenmp -o jacobi jacobi.o main.o -lm

that would first compile the two C source files and then link everything to form the final executable needs to be
modified by prepending scorep to each of the three commands, i.e. we now have to write:

scorep mpicc -std=c99 -g -O2 -fopenmp -c jacobi.c
scorep mpicc -std=c99 -g -O2 -fopenmp -c main.c
scorep mpicc -std=c99 -g -O2 -fopenmp -o jacobi jacobi.o \

main.o -lm

This call sequence will create a number of auxiliary C source files containing the original source code and a number
of commands introduced by the measurement system in order to enable the latter to create the required measure-
ments when the code is actually run. These modified source files are then compiled and linked, thus producing the
desired executable named jacobi.

The actual measurement process is then initiated, e.g., by the call:

mpiexec -n 2 ./jacobi

The output data of this process will be stored in a newly created experiment directory scorep-YYYYMMDD_←↩

HHMM_XXXXXXXX whose name is built up from the date and time when the measurement was started and an
identification number.

As we had not explicitly set any Score-P related environment variables, the profiling mode was active by default.
We obtain a file called profile.cubex containing profiling data in the experiment directory as the result of the
measurement run. This file can be visually analyzed with the help of CUBE.

If we had set the variable SCOREP_ENABLE_TRACING to true, we would additionally have obtained trace data,
namely the so called anchor file traces.otf2 and the global definitions traces.def as well as a subdirectory
traces that contains the actual trace data. This trace data is written in Open Trace Format 2 (OTF2) format. OTF2
is the joint successor of the classical formats OTF (used, e. g., by Vampir) and Epilog (used by Scalasca). A tool
like Vampir can then be used to give a visual representation of the information contained in these files.

11

CHAPTER 2. GETTING STARTED

12

Chapter 3

Application Instrumentation

Score-P provides several possibilities to instrument user application code. Besides the automatic compiler-based
instrumentation (Section 3.1), it provides manual instrumentation using the Score-P User API (Section 3.2), semi-
automatic instrumentation using POMP2 directives (Section 3.6) and, if configured, automatic source-code instru-
mentation using the PDToolkit-based instrumenter (Section 3.8).

As well as user routines and specified source regions, Score-P currently supports the following kinds of events:

• MPI library calls:
Instrumentation is accomplished using the standard MPI profiling interface PMPI. To enable it, the application
program has to be linked against the Score-P MPI (or hybrid) measurement library plus MPI-specific libraries.
Note that the Score-P libraries must be linked before the MPI library to ensure interposition will be effective.

• SHMEM library calls:
Instrumentation is accomplished using the SHMEM profiling interface or the GNU linker for library wrapping.
To enable it, the application program has to be linked against the Score-P SHMEM (or hybrid) measurement
library plus SHMEM-specific libraries. Note that the Score-P libraries must be linked before the SHMEM
library to ensure interposition will be effective.

• OpenMP directives & API calls:
The Score-P measurement system uses the OPARI2 tool for instrumentation of OpenMP constructs. See
the OPARI2 documentation on how to instrument OpenMP source code. In addition, the application must be
linked with the Score-P OpenMP (or hybrid) measurement library.

• Pthread library calls:
The Score-P measurement system uses GNU linker for instrumentation of Pthreads library calls. At the
moment only a few library calls are supported.

The Score-P instrumenter command scorep automatically takes care of compilation and linking to produce an
instrumented executable, and should be prefixed to compile and link commands. Often this only requires prefixing
definitions for CC or MPICC (and equivalents) in Makefiles.

Usually the Score-P instrumenter scorep is able to automatically detect the programming paradigm from the set
of compile and link options given to the compiler. In some cases however, when the compiler or compiler wrapper
enables specific programming paradigm by default (e.g., Pthreads on Cray and Blue Gene/Q systems), scorep
needs to be made aware of the programming paradigm in order to do the correct instrumentation. Please see
scorep --help for the available options.

When using Makefiles, it is often convenient to define a "preparation preposition" placeholder (e.g., PREP) which
can be prefixed to (selected) compile and link commands:

MPICC = $(PREP) mpicc
MPICXX = $(PREP) mpicxx
MPIF90 = $(PREP) mpif90

These can make it easier to prepare an instrumented version of the program with

CHAPTER 3. APPLICATION INSTRUMENTATION

make PREP="scorep"

while default builds (without specifying PREP on the command line) remain fully optimized and without instrumen-
tation.

In order to instrument applications which employ GNU Autotools for building, following instrumentation procedure
has to be used:

1. Configure application as usual, but provide additional argument:

--disable-dependency-tracking

2. Build application using make command with compiler specification variables set as follows:
make CC="scorep <your-cc-compiler>" \

CXX="scorep <your-cxx-compiler>" \\

FC="scorep <your-fc-compiler>" ...

When compiling without the Score-P instrumenter, the scorep-config command can be used to simplify deter-
mining the appropriate linker flags and libraries, or include paths:

scorep-config [--mpp=none|--mpp=mpi|--mpp=shmem] \
[--thread=none|--thread=omp|--thread=pthread] --libs

The --mpp=<paradigm> switch selects which message passing paradigm is used. Currently, Score-P sup-
ports applications using MPI (--mpp=mpi) or SHMEM (--mpp=shmem) and applications without any
message passing paradigm. It is not possible to specify two message passing systems for the same appli-
cation. The --thread=<paradigm> switch selects which threading system is used in Score-P. You may
use OpenMP (--thread=omp), no threading system (--thread=none) or POSIX threading system (
--thread=pthread). It is not possible to specify two threading systems for the same application. However,
you may combine a message passing system with a threading system.

Note

A particular installation of Score-P may not offer all measurement configurations!

The scorep-config command can also be used to determine the right compiler flags for specifying the include
directory of the scorep/SCOREP_User.h or scorep/SCOREP_User.inc header files. When compiling
without using the Score-P instrumenter, necessary defines and compiler instrumentation flags can be obtained by
calling one of the following, depending on the language:

scorep-config --cflags [<options>]
scorep-config --cxxflags [<options>]
scorep-config --fflags [<options>]

If you compile a C file, you should use --cflags. If you use a C++ program, you should use --cxxflags. And
if you compile a Fortran source file, you should use --flags.

With the additional options it is possible to select the used adapter, the threading system and the message pass-
ing system. For each adapter, we provides a pair of flags of the form --adapter, and --noadapter (please
replace adapter by the name of the adapter). This allows to get options for non-default instrumentation possibil-
ities. E.g., --user enables the manual instrumentation with the Score-P user API, the --nocompiler option
disables compiler instrumentation.

Note

Disabling OpenMP measurements with the --noopenmp flag, disables all except parallel regions. Inter-
nally Score-P needs to track events on a per-thread basis and thus needs to be aware of the creation and
destruction of OpenMP threads. Accordingly these regions will also show up in the measurements.

Score-P supports a variety of instrumentation types for user-level source routines and arbitrary regions, in addition
to fully-automatic MPI and OpenMP instrumentation, as summarized in Table 3.1.

14

Table 3.1: Score-P instrumenter option overview
Type of
instrumen-
tation

Instrumenter switch Default
value

Instrumented
routines

Runtime mea-
surement
control

MPI --mpp=mpi/
--mpp=none

(auto) configured by
install

see Sec. 5.7.1

SHMEM --mpp=shmem/
--mpp=none

(auto) configured by
install

–

OpenCL --opencl/
--noopencl

enabled configured by
install

see Sec. 5.9

OpenACC --openacc/
--noopenacc

enabled configured by
install

see Sec. 5.10

OpenMP --thread=omp/
--thread=none
--openmp
--noopenmp

(auto) all parallel con-
structs

–

Pthread --thread=
pthread

(auto) Basic Pthread
library calls

–

Compiler,
Sec. 3.1

--compiler/
--nocompiler

enabled all Filtering, Sec.
5.3

PDT,
Sec. 3.8

--pdt/
--nopdt

disabled all Filtering, Sec.
5.3

POMP2
user re-
gions, Sec.
3.6

--pomp/
--nopomp

disabled manually
annotated

Filtering, Sec.
5.3

Manual,
Sec. 3.2

--user/
--nouser

disabled manually
annotated

Filtering, Sec.
5.3, and selec-
tive recording,
Sec. 5.4

15

CHAPTER 3. APPLICATION INSTRUMENTATION

When the instrumenter determines that MPI or OpenMP are being used, it automatically enables MPI library in-
strumentation or OPARI2-based OpenMP instrumentation, respectively. The default set of instrumented MPI library
functions is specified when Score-P is installed. All OpenMP parallel constructs and API calls are instrumented by
default.

Note

To fine-tune instrumentation of OpenMP regions, use the --opari=<parameter-list> option. For
available parameters please refer to the OPARI2 manual.
Since Score-P version 1.3 there were two variants of internal OpenMP data handling, namely
--thread=omp:pomp_tpd and --thread=omp:ancestry, depending on the functionality available
on the target system. From Score-P version 4 on, due to internal refactorings, we replace the two OpenMP
threading variants by only one: --thread=omp. The possible options are detected at configure time. If
both are available, the ancestry mechanism will be used by default.

By default, automatic instrumentation of user-level source routines by the compiler is enabled (equivalent to spec-
ifying --compiler). The compiler instrumentation can be disabled with --nocompiler when desired, such
as when using PDToolkit, or POMP2 or Score-P user API manual source annotations, are enabled with --pdt,
--pomp and --user, respectively. Compiler, PDToolkit, POMP2 and Score-P user API instrumentation can all
be used simultaneously, or in arbitrary combinations, however, it is generally desirable to avoid instrumentation
duplication (which would result if all are used to instrument the same routines). Note that enabling PDToolkit in-
strumentation automatically enables Score-P user instrumentation, because it inserts Score-P user macros into the
source code.

Sometimes it is desirable to explicitly direct the Score-P instrumenter to do nothing except execute the associated
compile/link command. For such cases it is possible to disable default instrumentation with --nocompiler,
--thread=none, and/or --mpp=none. Although no instrumentation is performed, this can help verify that the
Score-P instrumenter correctly handles the compile/link commands.

Note

Disabling OpenMP in the instrumenter for OpenMP applications will cause errors during program execution if
any event occurs inside of a parallel region.

Each thread model uses a default internal locking mechanism for the Score-P measurement system. For the stan-
dard use case there is no need to specify an explicit locking mode. However, on certain systems or for performance
reasons it might be useful to change the locking mode. For these cases the instrumenter provides the option
--mutex=[omp|pthread|pthread:spinlock|pthread:wrap|none]. Current possibilities are the
OpenMP locking (omp), Pthread mutex (pthread), Pthread spinlock (pthread:spinlock), Pthread mutex, where origi-
nal functions replaced with __real functions (pthread:wrap), and none at all (none). Which of these are available for
a given installation will be determined at configure time.

Note

Not all combinations of thread model and explicit choice of locking are useful. Currently, only the combination
of no locking with a real threading system is overwritten by the thread model default to ensure thread safety.

3.1 Automatic Compiler Instrumentation

Most current compilers support automatic insertion of instrumentation calls at routine entry and exit(s), and Score-P
can use this capability to determine which routines are included in an instrumented measurement.

Compiler instrumentation of all routines in the specified source file(s) is enabled by default by Score-P, or can be
explicitly requested with --compiler. Compiler instrumentation is disabled with --nocompiler.

Note

Depending on the compiler, and how it performs instrumentation, insertion of instrumentation may disable
in-lining and other significant optimizations, or in-lined routines may not be instrumented at all (and therefore
"invisible").

16

3.2 Manual Region Instrumentation

Automatic compiler-based instrumentation has been tested with a number of different compilers:

• GCC (UNIX-like operating systems, not tested with Windows)

• IBM xlc, xlC (version 7 or later, IBM Blue Gene)

• IBM xlf (version 9.1 or later, IBM Blue Gene)

• PGI (on Linux)

• Intel compilers (version 10 or later, Linux)

• SUN Studio compilers (Linux, Fortran only)

In all cases, Score-P supports automatic instrumentation of C, C++ and, Fortran codes, except for the SUN Studio
compilers which only provide appropriate support in their Fortran compiler.

Note

The automatic compiler instrumentation might create a significant relative measurement overhead on short
function calls. This can impact the overall application performance during measurement. C++ applications are
especially prone to suffer from this, depending on application design and whether C++ STL functions are also
instrumented by the compiler. Currently, it is not possible to prevent the instrumentation of specific functions
on all platforms when using automatic compiler instrumentation.
As an exception, the GCC plug-in based function instrumentation supports all filtering features when using the
--instrument-filter flag to the Score-P instrumenter (see Sec. 5.3).

Names provided for instrumented routines depend on the compiler, which may add underscores and other deco-
rations to Fortran and C++ routine names, and whether name "demangling" has been enabled when Score-P was
installed and could be applied successfully.

3.2 Manual Region Instrumentation

In addition to the automatic compiler-based instrumentation (see Section 3.1), instrumentation can be done manu-
ally. Manual instrumentation can also be used to augment automatic instrumentation with region or phase annota-
tions, which can improve the structure of analysis reports. Furthermore, it offers the possibility to record additional,
user defined metrics. Generally, the main program routine should be instrumented, so that the entire execution is
measured and included in the analysis.

Instrumentation can be performed in the following ways, depending on the programming language used.

Fortran:

#include "scorep/SCOREP_User.inc"

subroutine foo
SCOREP_USER_REGION_DEFINE(my_region_handle)
! more declarations

SCOREP_USER_REGION_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)

! do something
SCOREP_USER_REGION_END(my_region_handle)

end subroutine foo

C/C++:

#include <scorep/SCOREP_User.h>

void foo()
{

SCOREP_USER_REGION_DEFINE(my_region_handle)

// more declarations

17

CHAPTER 3. APPLICATION INSTRUMENTATION

SCOREP_USER_REGION_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_REGION_END(my_region_handle)
}

C++ only:

#include <scorep/SCOREP_User.h>

void foo()
{

SCOREP_USER_REGION("foo", SCOREP_USER_REGION_TYPE_FUNCTION
)

// do something
}

Note

When using Fortran, make sure the C preprocessor expands the macros. In most cases, the fortran compiler
invoke the C preprocessor if the source file suffix is in capital letters. However, some compilers provide extra
flags to tell the compiler to use a C preprocessor. Furthermore, it is important to use the C-like #include
with the leading '#'-character to include the SCOREP_User.inc header file. Otherwise, the inclusion may
happen after the C preprocessor ran. As result the fortran compiler complains about unknown preprocessing
directives.

Region handles (my_region_handle) should be registered in each annotated function/subroutine prologue
before use within the associated body, and should not already be declared in the same program scope.

For every region, the region type can be indicated via the region type flag. Possible region types are:

SCOREP_USER_REGION_TYPE_COMMON Indicates regions without a special region type.

SCOREP_USER_REGION_TYPE_FUNCTION Indicates that the region is a function or subroutine

SCOREP_USER_REGION_TYPE_LOOP Indicates that the region is the body of a loop, with the same number of
iterations in all locations.

SCOREP_USER_REGION_TYPE_DYNAMIC Set this type to create a separate branch in the call-tree for every
execution of the region. See Section 5.1.3.

SCOREP_USER_REGION_TYPE_PHASE Indicates that this region belongs to a special phase. See Section
5.1.2.

To create a region of combined region types you can connect two or more types with the binary OR-operator, e.g.:

SCOREP_USER_REGION_BEGIN(handle, "foo",
SCOREP_USER_REGION_TYPE_LOOP |
SCOREP_USER_REGION_TYPE_PHASE |
SCOREP_USER_REGION_TYPE_DYNAMIC)

For function instrumentation in C and C++, Score-P provides macros, which automatically pass the name and
function type to Score-P measurement system. The SCOREP_USER_FUNC_BEGIN macro contains a variable
definition. Thus, compilers that require strict separation of declaration and execution part, may not work with this
macro.

C/C++:

#include <scorep/SCOREP_User.h>

void foo()
{

SCOREP_USER_FUNC_BEGIN()
// do something
SCOREP_USER_FUNC_END()

}

18

3.2 Manual Region Instrumentation

In some cases, it might be useful to have the possibility to define region handles with a global scope. In C/C++, a
region handle can be defined at a global scope with SCOREP_USER_GLOBAL_REGION_DEFINE. In this case,
the SCOREP_USER_REGION_DEFINE must be omitted. The SCOREP_USER_GLOBAL_REGION_DEFINE
must only appear in one file. To use the same global variable in other files, too, declare the global region in other
files with SCOREP_USER_GLOBAL_REGION_EXTERNAL.

File 1:

SCOREP_USER_GLOBAL_REGION_DEFINE(global_handle)

foo()
{

SCOREP_USER_REGION_BEGIN(global_handle, "phase 1",
SCOREP_USER_REGION_TYPE_PHASE)

// do something
SCOREP_USER_REGION_END(global_handle)

}

File 2:

SCOREP_USER_GLOBAL_REGION_EXTERNAL(global_handle)

bar()
{

SCOREP_USER_REGION_BEGIN(global_handle, "phase 1",
SCOREP_USER_REGION_TYPE_PHASE)

// do something
SCOREP_USER_REGION_END(global_handle)

}

Note

These macros are not available in Fortran.

In addition, the macros SCOREP_USER_REGION_BY_NAME_BEGIN(name, type) and SCOREP_US←↩

ER_REGION_BY_NAME_END(name) are available. These macros might introduce more overhead than the
standard macros but can annotate user regions without the need to take care about the handle struct. This might
be useful for automatically generating instrumented code or to avoid global declaration of this variable.

C/C++:

#include <scorep/SCOREP_User.h>

/* Application functions are already instrumented with these two calls. */
void instrument_begin(const char* regionname)
{

/* code added for Score-P instrumentation */
SCOREP_USER_REGION_BY_NAME_BEGIN(regionname, SCOREP_USER_REGION_TYPE_COMMON

)
}

void instrument_end(const char* regionname)
{

SCOREP_USER_REGION_BY_NAME_END(regionname)
}

Fortran:

#include "scorep/SCOREP_User.inc"

subroutine instrument_begin(regionname)
character(len=*) :: regionname
SCOREP_USER_REGION_BY_NAME_BEGIN(regionname, SCOREP_USER_REGION_TYPE_COMMON

)
end subroutine instrument_begin

subroutine instrument_end(regionname)
character(len=*) :: regionname
SCOREP_USER_REGION_BY_NAME_END(regionname)

end subroutine instrument_end

19

CHAPTER 3. APPLICATION INSTRUMENTATION

Note

When using the "BY_NAME" macros in Fortran, be aware of section 12.4.1.1 of the F90/95/2003 standard. If
you pass name through a dummy argument of a subroutine the length len of the character array name must
be exactly the size of the actual string passed. In the Fortran examples above this is assured by len=∗.
To ensure correct nesting, avoid automatic compiler instrumentation for these helper functions.

The source files instrumented with Score-P user macros have to be compiled with -DSCOREP_USER_ENAB←↩

LE otherwise SCOREP_∗ calls expand to nothing and are ignored. If the Score-P instrumenter --user flag is
used, the SCOREP_USER_ENABLE symbol will be defined automatically. Also note, that Fortran source files
instrumented this way have to be preprocessed with the C preprocessor (CPP).

Manual routine instrumentation in combination with automatic source-code instrumentation by the compiler or PDT
leads to double instrumentation of user routines, i.e., usually only user region instrumentation is desired in this case.

3.3 Instrumentation for Parameter-Based Profiling

The Score-P user API provides also macros for parameter-based profiling. In parameter-based profiling, the pa-
rameters of a function are used to split up the call-path for executions of different parameter values. In Score-P
parameter-based profiling is supported for integer and string parameters. To associate a parameter value to a
region entry, insert a call to SCOREP_USER_PARAMETER_INT64 for signed integer parameters, SCOREP_←↩

USER_PARAMETER_UINT64 for unsigned integer parameters, or SCOREP_USER_PARAMETER_STRING for
string parameters after the region entry (e.g. after SCOREP_USER_REGION_BEGIN or SCOREP_USER_FUN←↩

C_BEGIN).

Fortran:

#include "scorep/SCOREP_User.inc"

subroutine foo(i, s)
integer :: i
character (*) :: s

SCOREP_USER_REGION_DEFINE(my_region_handle)
SCOREP_USER_PARAMETER_DEFINE(int_param)
SCOREP_USER_PARAMETER_DEFINE(string_param)
SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",

SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_PARAMETER_INT64(int_param, "myint",i)
SCOREP_USER_PARAMETER_UINT64(uint_param, "myuint",i)
SCOREP_USER_PARAMETER_STRING(string_param, "mystring",s)

// do something

SCOREP_USER_REGION_END(my_region_handle)
end subroutine foo

C/C++:

#include <scorep/SCOREP_User.h>

void foo(int64_t myint, uint64_t myuint, char *mystring)
{

SCOREP_USER_REGION_DEFINE(my_region_handle)
SCOREP_USER_REGION_BEGIN(my_region_handle, "foo",

SCOREP_USER_REGION_TYPE_COMMON)
SCOREP_USER_PARAMETER_INT64("myint",myint)
SCOREP_USER_PARAMETER_UINT64("myuint",myuint)
SCOREP_USER_PARAMETER_STRING("mystring",mystring)

// do something

SCOREP_USER_REGION_END(my_region_handle)
}

In C/C++, only a name for the parameter and the value needs to be provided. In Fortran, the handle must be defined
first with SCOREP_USER_PARAMETER_DEFINE. The defined handle name must be unique in the current scope.
The macro SCOREP_USER_PARAMETER_INT64 as well as the macro SCOREP_USER_PARAMETER_STR←↩

ING need the handle as the first argument, followed by the name and the value.

20

3.4 Measurement Control Instrumentation

3.4 Measurement Control Instrumentation

The Score-P user API also provides several macros for measurement control that can be incorporated in source
files and activated during instrumentation. The macro SCOREP_RECORDING_OFF can be used to (temporarily)
pause recording until a subsequent SCOREP_RECORDING_ON. Just like the already covered user-defined anno-
tated regions, SCOREP_RECORDING_ON and the corresponding SCOREP_RECORDING_OFF must be correctly
nested with other enter/exit events. Finally, with SCOREP_RECORDING_IS_ON you can test whether recording is
switched on.

Events are not recorded when recording is switched off (though associated definitions are), resulting in smaller
measurement overhead. In particular, traces can be much smaller and can target specific application phases (e.g.,
excluding initialization and/or finalization) or specific iterations. Since the recording switch is process-local, and
effects all threads on the process, it can only be initiated outside of OpenMP parallel regions. Switching recording
on/off is done independently on each MPI process without synchronization.

Note

Switching recording on/off may result in inconsistent traces or profiles, if not applied with care. In particular,
if communication is recorded incomplete (e.g. if the send is missing but the corresponding receive event is
recorded) it may result in errors during execution or analysis. Furthermore, it is not possible to switch recording
on/off from within parallel OpenMP regions. We recommend to use the selective recording interface, instead of
the manual on/off switch whenever possible. Special care is required in combination with selective recording
(see Section 5.4, which also switches recording on/off.

3.5 Source-Code Instrumentation Enabling Online Access

The Online Access interface to the measurement system of Score-P allows remote control of measurement and
access to the profile data. The online access interface may not be available on all platforms. To use the Online
Access interface, Score-P must have been built with Online Access (OA) support.

The Online Access module requires the user to specify at least one online access phase. The online access
phase does not show the behavior of a region of type phase as defined in Section 3.2. However, the way to
specify an online access phase is similar to manual region instrumentation. The start and end of the online access
phase defines the interaction points, where new measurement control commands are applied and data requests
are answered.

To insert an online access phase into the code, the user has to insert the macros SCOREP_USER_OA_PHASE←↩

_BEGIN and the corresponding SCOREP_USER_OA_PHASE_END at appropriate locations. These macros must
be

• correctly nested with all regions and

• must be potential global synchronization points.

Common practice is to mark the body of the application's main loop as online access phase, in order to utilize the
main loop iterations for iterative online analysis. Only the measurements collected inside the OA phase could be
configured and retrieved.

Instrumentation can be performed in the following ways, depending on the programming language used.

Fortran:

#include "scorep/SCOREP_User.inc"

subroutine foo
SCOREP_USER_REGION_DEFINE(my_region_handle)
! more declarations

SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)

! do something
SCOREP_USER_OA_PHASE_END(my_region_handle)

end subroutine foo

21

CHAPTER 3. APPLICATION INSTRUMENTATION

C/C++:

#include <scorep/SCOREP_User.h>

void foo()
{

SCOREP_USER_REGION_DEFINE(my_region_handle)

// do something

SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "foo",
SCOREP_USER_REGION_TYPE_COMMON)

// do something

SCOREP_USER_OA_PHASE_END(my_region_handle)
}

3.6 Semi-Automatic Instrumentation of POMP2 User Regions

Note

Since Score-P version 1.4, OpenMP instrumentation using OPARI2 no longer activates POMP2 instrumenta-
tion implicitly. You need to explicitly add the --pomp option to the Score-P instrumenter.

If you manually instrument the desired user functions and regions of your application source files using the POMP2
INST directives described below, the Score-P instrumenter --pomp flag will generate instrumentation for them.
POMP2 instrumentation directives are supported for Fortran and C/C++. The main advantages are that

• being directives, the instrumentation is ignored during "normal" compilation and

• this semi-automatic instrumentation procedure can be used when fully automatic compiler instrumentation is
not supported.

The INST BEGIN/END directives can be used to mark any user-defined sequence of statements. If this block has
several exit points (as is often the case for functions), all but the last have to be instrumented by INST ALTEND.

Fortran:

subroutine foo(...)
!declarations
!POMP$ INST BEGIN(foo)
...
if (<condition>) then

!POMP$ INST ALTEND(foo)
return

end if
...
!POMP$ INST END(foo)

end subroutine foo

C/C++:

void foo(...)
{

/* declarations */
#pragma pomp inst begin(foo)
...
if (<condition>)
{

#pragma pomp inst altend(foo)
return;

}
...
#pragma pomp inst end(foo)

}

At least the main program function has to be instrumented in this way, and additionally, one of the following should
be inserted as the first executable statement of the main program:

Fortran:

22

3.7 Preprocessing before POMP2 and OpenMP instrumentation

program main
! declarations
!POMP$ INST INIT
...

end program main

C/C++:

int main(int argc, char** argv)
{

/* declarations */
#pragma pomp inst init
...

}

By default, the source code is preprocessed before POMP2 instrumentation happens. For more information on the
preprocessing, see Section 3.7.

3.7 Preprocessing before POMP2 and OpenMP instrumentation

By default, source files are preprocessed before the semi-automatic POMP2 instrumentation or the OpenMP con-
struct instrumentation with OPARI2 happens. This ensures, that all constructs and regions that might be contained
in header files, templates, or macros are properly instrumented. Furthermore, conditional compilation directives
take effect, too. The necessary steps are performed by the Score-P instrumenter tool.

Some Fortran compilers do not regard information about the original source location that the preprocessing leaves
in the preprocessed code. This causes wrong source code information for regions from compiler instrumentation,
and manual source code instrumentation. However, these compilers also disregard the source code information left
by OPARI2. Thus, for these compilers the source location information is incorrect anyway.

If the preprocessing is not desired, you can disable it with the --nopreprocess flag. In this case the instrumen-
tation is performed before the preprocessing happens. In this case constructs and regions in header files, macros,
or templates are not instrumented. Conditional compilation directives around constructs may also lead to broken
instrumentation.

Note

If a parallel region is not instrumented, the application will crash during runtime.

The preprocessing does not work in combination with PDT source code instrumentation. Thus, if PDT instrumen-
tation is enabled, it changes the default to not preprocess a source file. If you manually specify preprocessing and
PDT source code instrumentation, the instrumenter will abort with an error.

3.8 Source-Code Instrumentation Using PDT

If Score-P has been configured with PDToolkit support, automatic source-code instrumentation can be used as an
alternative instrumentation method. In this case, the source code of the target application is pre-processed before
compilation, and appropriate Score-P user API calls will be inserted automatically. However, please note that this
feature is still somewhat experimental and has a number of limitations (see Section 3.8.1).

To enable PDT-based source-code instrumentation, call scorep with the --pdt option, e.g.,

scorep --pdt mpicc -c foo.c

This will by default instrument all routines found in foo.c. (To avoid double instrumentation, automatic compiler
instrumentation is disabled when using Source-Code Instrumentation with PDT. However, if you you can enforce
additional compiler instrumentation with --compiler.) The underlying PDT instrumentor supports a set a instru-
mentation options, which can be set like

scorep --pdt="-f <inclusion/exclusion file>" mpicc -c foo.c

23

CHAPTER 3. APPLICATION INSTRUMENTATION

This particular option for example can be used to manually include/exclude specific functions from the instrumen-
tation process. The respective file format is described here. Please check the documentation about the tau_←↩

instrumentor for more valid options.

3.8.1 Limitations

Currently the support for the PDT-based source-code instrumenter still has a number of limitations:

• When instrumenting Fortran 77 applications, the inserted instrumentation code snippets do not yet adhere to
the Fortran 77 line length limit. Typically, it is possible to work around this issue by supplying extra command
line flags (e.g., -ffixed-line-length-132 or -qfixed=132) to the compiler.

• Code in C/C++ header files as well as included code in Fortran (either using the C preprocessor or the
include keyword) will currently not be instrumented.

• Support for C++ templates and classes is currently only partially implemented.

• Advanced TAU instrumentation features such as static/dynamic timers, loop, I/O and memory instrumentation
are not yet supported. Respective entries in the selective instrumentation file will be ignored.

3.9 Enforce Linking of Static/Shared Score-P Libraries

If the Score-P was build with shared libraries and with static libraries, the instrumenter uses the compiler defaults
for linking. E.g. if the compiler chooses shared libraries by default, the instrumenter will link your application with
the shared Score-P libraries. Furthermore, the linking is affected by parameters in the original link command. E.g.
if your link command contains a -Bstatic flag, afterwards appended Score-P libraries are also linked statically.

If you want to override the default and enforce linking of static or dynamic Score-P libraries, you can add the flag
--static or --dynamic for the instrumenter. E.g. a command to enforce static linking can look like:

scorep --static mpicc foo.c -o foo

In this case, the linking against the static version of the Score-P libraries is enforced.

If enforcing static or dynamic linking is not possible on your system, e.g., because no static/dynamic Score-P libraries
are installed, the instrumenter will abort with an error. You can determine whether --static or --dynamic is
available from the output of scorep --help. If the --static or --dynamic flags are not shown, then they
are not available.

24

http://www.cs.uoregon.edu/research/tau/docs/newguide/bk01ch01s03.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/re34.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/re34.html

Chapter 4

Application Sampling

This document describes how to use the sampling options within Score-P.

4.1 Introduction

Score-P supports sampling that can be used concurrently to instrumentation to generate profiles and traces. In the
following, we will describe how sampling differs from instrumentation. Reading this text will help you to interpret
resulting performance data. However, if you are aware of how sampling works, you can skip the preface.

In our context, we understand sampling as a technique to capture the behavior and performance of programs. We
interrupt the running programs at a specified interval (the sampling period) and capture the current state of the
program (i.e., the current stack) and performance metrics (e.g., PAPI). The obtained data is than further stored as
a trace or a profile and can be used to analyze the behavior of the sampled program.

Before version 2.0 of Score-P, only instrumentation-based performance analysis had been possible. Such an instru-
mentation relies on callbacks to the measurement environment (instrumentation points), e.g., a function
enter or exit. The resulting trace or profile presented the exact runtimes of the functions, augmented with perfor-
mance data and communication information. However, instrumentation introduces a constant overhead for each of
the instrumentation points. For small instrumented functions, this constant overhead can be overwhelming.

Sampling provides the opportunity to prevent this overwhelming overhead, and even more, the overhead introduced
by sampling is controllable by setting the sampling rate. However, the resulting performance data is more "fuzzy".
Not every function call is captured and thus the resulting data should be analyzed carefully. Based on the duration
of a function and the sampling period, a function call might or might not be included in the gathered performance
data. However, statistically, the profile information is correct. Additionally, the sampling rate allows to regulate the
trade-off between overhead and correctness, which is not possible for instrumentation.

In Score-P we support both instrumentation and sampling. This allows you for example to get a statistical overview
of your program as well as analyzing the communication behavior. If a sample hits a function that is known to the
measurement environment via instrumentation (e.g., by OPARI2), the sample will show the same function in the
trace and the profile.

4.2 Prerequisites

This version of Score-P provides support for sampling. To enable sampling, several prerequisites have to be met.

• libunwind:
Additionally to the usual configuration process of Score-P, libunwind is needed. libunwind can be
installed using a standard package manager or by downloading the latest version from

http://download.savannah.gnu.org/releases/libunwind/

http://download.savannah.gnu.org/releases/libunwind/

CHAPTER 4. APPLICATION SAMPLING

This library must be available at your system to enable sampling. In our tests, we used the most current stable
version (1.1) as previous versions might result in segmentation faults.

• Sampling Sources:
Sampling sources generate interrupts that trigger a sample. We interface three different interrupt generators,
which can be chosen at runtime.

1. Interval timer:
Interval timers are POSIX compliant but provide a major drawback: They cannot be used for multi-
threaded programs, but only for single-threaded ones. We check for setitimer that is provided by
sys/time.h.

2. PAPI:
We interface the PAPI library, if it is found in the configure phase. The PAPI interrupt source uses
overflowing performance counters to interrupt the program. This source can be used in multi-threaded
programs. Due to limitations from the PAPI library, PAPI counters will not be available if PAPI sampling
is enabled. However, you can use perf metrics. E.g.,
export SCOREP_METRIC_PERF=instructions:page-faults

3. perf:
perf is comparable to PAPI but much more low-level. We directly use the system call. This source
can be used in multi-threaded programs. PAPI counters are available if perf is used as an interrupt
source. Currently we only provide a cycle based overflow counter via perf.

We recommend using PAPI or perf as interrupt sources. However, these also pose a specific disadvantage
when power saving techniques such as DVFS or idle states are active on a system. In this case, a constant
sampling interval cannot be guaranteed. If, for example, an application calls a sleep routine, then the cycle
counter might not increase as the CPU might switch to an idle state. This can also influence the result data.
Such idling times can also be introduced by OpenMP runtimes and can be avoided by setting the block times
accordingly or setting the environment variable OMP_WAIT_POLICY to ACTIVE.

4.3 Configure Options

4.3.1 libunwind

If libunwind is not installed in a standard directory, you can provide the following flags in the configure step:

--with-libunwind=(yes|no|<Path to libunwind installation>)
If you want to build scorep with libunwind but do
not have a libunwind in a standard location, you
need to explicitly specify the directory where it is
installed. On non-cross-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. --with-libunwind is a shorthand
for --with-libunwind-include=<Path/include> and
--with-libunwind-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.

--with-libunwind-include=<Path to libunwind headers>
--with-libunwind-lib=<Path to libunwind libraries>

4.4 Sampling Related Score-P Measurement Configuration Variables

The following lists the Score-P measurement configuration variables which are related to sampling. Please refer to
the individual variables for a more detailed description.

• SCOREP_ENABLE_UNWINDING

• SCOREP_SAMPLING_EVENTS

• SCOREP_SAMPLING_SEP

• SCOREP_TRACING_CONVERT_CALLING_CONTEXT_EVENTS

26

4.5 Use Cases

4.5 Use Cases

4.5.1 Enable unwinding in instrumented programs

Additionally to the instrumentation, you now see where the instrumented region has been called. A pure MP←↩

I instrumentation for example does not tell you which functions have been issuing communications. With unwinding
enabled, this is revealed and stored in the trace or profile.

Instrument your program, e.g. with MPI instrumentation enabled.

scorep mpicc my_mpi_code.c -o my_mpi_application

Set the following environment variables:

export SCOREP_ENABLE_UNWINDING=true
export SCOREP_SAMPLING_EVENTS=

Run your program

mpirun -np 16 ./my_mpi_application

4.5.2 Instrument a hybrid parallel program and enable sampling

In this example you get rid of a possible enormous compiler instrumentation overhead but you are still able to see
statistical occurrences of small code regions. The NAS Parallel Benchmark BT-MZ for example uses small sub
functions within OpenMP parallel functions that increase the measurement overhead significantly when compiler
instrumentation is enabled.

Instrument your program, e.g. with MPI and OpenMP instrumentation enabled.

scorep mpicc -fopenmp my_hybrid_code.c -o my_hybrid_application

Note: If you use the GNU compiler and shared libraries of Score-P you might get errors due to undefined references
depending on your gcc version. Please add --no-as-needed to your scorep command line. This flag will add a
GNU ld linker flag to fix undefined references when using shared Score-P libraries. This happens on systems using
--as-needed as linker default. It will be handled transparently in future releases of Score-P.

Set the following environment variables:

export SCOREP_ENABLE_UNWINDING=true

If you want to use a sampling event and period differing from the default settings you additionally set:

export SCOREP_SAMPLING_EVENTS=PAPI_TOT_CYC@1000000

Run your program

mpirun -np 16 ./my_mpi_application

4.6 Test Environment

Example

27

CHAPTER 4. APPLICATION SAMPLING

4.6.1 Instrument NAS BT-MZ code

cd <NAS_BT_MZ_SRC_DIR>
vim config/make.def

Set add the Score-P wrapper to your MPI Fortran compiler.

MPIF77 = scorep mpif77

Recompile the NAS BT-MZ code.

make clean
make bt-mz CLASS=C NPROCS=128

4.6.2 Run instrumented binary

cd bin
sbatch run.slurm

Batch script example:

#!/bin/bash
#SBATCH -J NAS_BT_C_128x2
#SBATCH --nodes=32
#SBATCH --tasks-per-node=4
#SBATCH --cpus-per-task=2
#SBATCH --time=00:30:00

export OMP_NUM_THREADS=2

export NPB_MZ_BLOAD=0

export SCOREP_ENABLE_TRACING=true
export SCOREP_ENABLE_PROFILING=false
export SCOREP_ENABLE_UNWINDING=true
export SCOREP_TOTAL_MEMORY=200M
export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000
export SCOREP_EXPERIMENT_DIRECTORY=’bt-mz_C.128x2_trace_unwinding’

srun ./bt-mz_C.128

28

Chapter 5

Application Measurement

If an application was instrumented with Score-P, you will get an executable, which you can execute like the uninstru-
mented application. After the application run, you will find an experiment directory in your current working directory,
which contains all recorded data. The experiment directory has the format scorep-YYYYMMDD_HHMM_XXXX←↩

XXXX, where YYYYMMDD and HHMM encodes the date followed by a series of random numbers. You may specify
the name of the experiment directory by setting the environment variable SCOREP_EXPERIMENT_DIRECTO←↩

RY to the desired name of the directory. If the directory already exists, the existing directory will be renamed by
appending a date like above by default. You can let Score-P abort the measurement immediately by setting SC←↩

OREP_OVERWRITE_EXPERIMENT_DIRECTORY to false if the experiment directory already exists. This has
only an effect if SCOREP_EXPERIMENT_DIRECTORY was set too.

In general, you can record a profile and/or a event trace. Whether a profile and/or a trace is recorded, is specified
by the environment variables SCOREP_ENABLE_PROFILING and SCOREP_ENABLE_TRACING. If the value
of this variables is zero or false, profiling/tracing is disabled. Otherwise Score-P will record a profile and/or trace.
By default, profiling is enabled and tracing is disabled.

You may start with a profiling run, because of its lower space requirements. According to profiling results, you may
configure the trace buffer limits, filtering or selective recording for recording traces.

Score-P allows to configure several parameters via environment variables. See Appendix F for a detailed descrip-
tion of how to configure the measurement.

5.1 Profiling

Score-P implements a call-tree based profiling system. Every node in the call tree represent a recorded region.
The edges of the tree represent the caller-callee relationship: The children of a node are those regions, that are
entered/exited within a region. The path from the root to an arbitrary node, represents a call-path. Thus, every node
in the tree identifies also the call-path from the root to itself.

Together with a node, the statistics for the call-path are stored. By default, the runtime and the number of visits
are recorded. Additionally, hardware counters can be configured and are stored for every call-path. User defined
metrics are only stored in those nodes, where the metric was triggered.

For enabling profiling, set the SCOREP_ENABLE_PROFILING environment variable to 1 or true. After the exe-
cution of your application you will then find a file, named profile.cubex in your measurement directory, which
you can display with the CUBE4 with cube-qt profile.cubex. The name of the profile can be changed
through the environment variable SCOREP_PROFILING_BASE_NAME. The extension .cubex will be appended
to the base name you specify in the environment variable SCOREP_PROFILING_BASE_NAME.

By default, Score-P writes the profile in CUBE4 base format. Hereby, for every metric contains one value, usually
only the sum. However, Score-P allows to store the profile in other formats. To change the default format, set the
environment variable SCOREP_PROFILING_FORMAT. Please refer to the description of this variable for possible
values.

Score-P records a call tree profile. The maximum call-path depth that is recorded is limited to 30, by default. This

CHAPTER 5. APPLICATION MEASUREMENT

avoids extremely large profiles for recursive calls. However, this limit can be changed with the environment variable
SCOREP_PROFILING_MAX_CALLPATH_DEPTH.

5.1.1 Parameter-Based Profiling

Parameter-based profiling allows to separate the recoded statistics for a region, depending on the values of one or
multiple parameters. In the resulting call-tree, each occurred parameter-value will create a sub-node of the region.
Every parameter has a parameter name. Thus, if multiple parameters are used, they can be distinguished and split
the call-tree in the order of the parameter events. In the final call-tree it looks like every parameter-name/parameter-
value pair is a separate region.

Currently, the only source for parameter events is manual instrumentation (see Section 3.3).

5.1.2 Phase Profiling

Phase-profiling allows, to group the execution of the application into logical phases. Score-P records a separate
call-tree for every phase in the application. A phase starts when a region of type SCOREP_USER_REGION_T←↩

YPE_PHASE (see Section 3.2) is entered. If the region is exited, the phase is left. If two phases are nested, then
the outer phase is left, when the inner phase is entered. If the inner phase is exited, the outer phase is re-entered.
Figure 5.1 shows the difference in the call-tree if the regions with the names phase1 and phase2 are not of type
SCOREP_USER_REGION_TYPE_PHASE on the left side and the forest if they are of type SCOREP_USER_R←↩

EGION_TYPE_PHASE on the right side.

main

phase1

region1

region1

phase1

region2

region3

phase2

region2

phase2

region3

region2

main

region1 region2

phase1

region2

region3

region1

phase2

region2 region3

Figure 5.1: Call-tree changes when using phases. The left side shows the calltree if no region is of type phase. The
right side shows the call-tree forest with phases.

If the phase consists of multiple partitions, and thus cannot be enclosed by a single code region, all code-regions
that form the phase must have the same region handle. The possibility to define global region handles in C/C++
might be useful for the definition of phases that are have multiple partitions (see Section 3.2).

30

5.1 Profiling

5.1.3 Dynamic Region Profiling

When profiling, multiple visits of a call-path are summarized. However, e.g, for investigations in time-dependent
behavior of an application, each iteration of a main loop (or some other region) should create a separate profile
sub-tree. For such cases, Score-P allows to define regions to by of type dynamic. For dynamic regions, each entry
of the region will create a separate path. For this cause, the Score-P profiling system creates an extra parameter,
named instance. On each visit to a dynamic region, the instance parameter for this call-path is increased and
triggered automatically. Thus, the every visit to a dynamic region generates a separate subtree in the profile.

As an example, let us assume that an application contains the regions foo and main, where main calls foo
three times. A regular profile would show two call-pathes:

• main

• main/foo

If foo is a dynamic region, the profile would contain additional sub-nodes for each visit of foo. The resulting profile
would contain the following call-pathes:

• main

• main/foo

• main/foo/instance=0

• main/foo/instance=1

• main/foo/instance=2

In this case main/foo contains the summarized statistics for all 3 visits, while main/foo/instance=0 con-
tains the statistics for the first visits of the call-path.

Note

The enumeration of the instance is per call-path and not per dynamic region. In particular, if a dynamic region
foo appears in 2 call-paths, it has 2 instance number 0, one in both call-paths. It is not a global enumeration
of the visits to foo but enumerates the visits of foo in a particular call-path from 0 to N.

Currently, the only possibility to define dynamic regions is via the manual region instrumentation, described in
Section 3.2.

Note

Using dynamic regions can easily create very large profiles. Thus, use this feature with care. If you are only
interested in some parts of the application, selective recording (see Section 5.4) might be a memory space
save alternative. Furthermore, you can use clustering (see Section 5.1.4) to reduce the memory requirements.

5.1.4 Clustering

Clustering allows to reduce the memory requirements of a dynamic region, by clustering similar sub-trees into one
cluster. A visualization tool (like CUBE 4) might expand the clusters back to single iterations transparently. You
can enable/disable clustering via the environment variable SCOREP_PROFILING_ENABLE_CLUSTERING. By
default, clustering is enabled.

Currently, clustering is limited to the instances of one node in the call-tree. If a dynamic region appears on several
call-paths, Score-P will only cluster one, and generate separate sub-trees for every iterations in all other call-paths.
By default, Score-P will cluster the instances of that dynamic region call-path that it enters first. If you have only
one call-path where a dynamic region occurs (e.g., if the body of the main loop is the only dynamic region), this
region will be clustered automatically. Otherwise, we recommend to specify the region you want to cluster in the
environment variable SCOREP_PROFILING_CLUSTERED_REGION.

31

CHAPTER 5. APPLICATION MEASUREMENT

Note

If the selected region appears on multiple call-paths, only one of them is clustered. Score-P chooses the
call-path of that regions that it enters first. In particular, if the selected dynamic region is nested into itself, the
outermost occurrence is clustered.

Furthermore, the clustered region must not be inside of a parallel region, but must be at a sequential part of the
program. However, the clustered region may contain parallel regions.

Clustering is a lossy compression mechanism. The accuracy increases if more clusters are available. On the
downside, more clusters require more memory. You can specify the number of clusters you want by setting the
environment variable SCOREP_PROFILING_CLUSTER_COUNT to the number of cluster you want to have. The
default cluster number is 64.

Furthermore, you can enforce a minimal structural similarity of instances of a cluster. Clusters that fit the minimal
structural similarity requirements belong to the same equivalence class. Only instances of the same equivalence
class will be clustered together. If you have more equivalence classes than the number of clusters you specified
in SCOREP_PROFILING_CLUSTER_COUNT, the maximal number of clusters is increased. Thus, you might get
more clusters than you specified.

The minimal structural similarity is defined by the clustering mode which can be set via the environment variable
SCOREP_PROFILING_CLUSTERING_MODE. Please refer to the description of this variable for possible values.

5.1.5 Enabling additional debug output on inconsistent profiles

If the Score-P profiling system detects inconsistencies during measurement, it stops recording the profile and prints
an error message. Examples for reasons of an inconsistent profile are, if the nesting order of function entries and
exits is broken, or events appear for an uninitialized thread. This might indicate an bug of the profile, but typically
the cause is an erroneous instrumentation. E.g. if manual instrumentation is applied, but not all possible exit points
of a function are instrumented.

In order to support debugging of manual instrumentation, or during the development of own automatic instrumenta-
tion techniques, the profile can write additional information about its current state in a textual form into a file. This
output may contain the following information:

• The current call stack of the failing thread

• The profile structure of the failing thread

• The complete profile structure

None of the three entries is guaranteed to appear in the output, it depends on the current state of the profile. It
might not be possible to provide any output at all. Furthermore, the online representation of the profile structure
may differ from the final profile structure.

You can enable this additional output by setting the environment variable SCOREP_PROFILING_ENABLE_CO←↩

RE_FILES to true. Then, if the profile detects an inconsistency, it will write a core file into your measurement
directory. If an inconstant profiles is detected on multiple locations, every location where an inconsistency is detected
will write a core file. Thus, it is not recommended, to enable this feature for large scale runs.

5.2 Tracing

Score-P can write events to OTF2 traces. By setting the environment variable SCOREP_ENABLE_TRACING, you
can control whether a trace is recorded. If the value is 0 or false no trace is recorded, if the value is non-zero or
true, a trace is recorded. If the variable is not specified, Score-P records traces on default. After trace recording
you will find the OTF2 anchor file, named trace.otf2 in the experiment directory, along with the trace data.

32

5.3 Filtering

5.3 Filtering

When automatic compiler instrumentation or automated source code instrumentation with PDT has been used to
instrument user-level source-program routines, there are cases where measurement and associated analysis are
degraded, e.g., by frequently-executed, small and/or generally uninteresting functions, methods and subroutines.

A measurement filtering capability is therefore only supported for compiler instrumented regions, regions instru-
mented with the user API from Score-P (see section 3.2), regions instrumented with the user API from OPARI2 (see
section 3.6), and CUDA device and host activities (see Section 5.8). See section 5.7.1 to restrict the recording of
MPI features and the OPARI2 documentation of --disable to restrict instrumentation of OpenMP directives. This
--disable flag can than be passed on to the OPARI2 invocation with the --opari=<parameter-list>
flag of the Score-P instrumenter. Because PDT instrumentation (Section 3.8) inserts Score-P user API instrumen-
tation those regions can be filtered, too. Regions can be filtered based on their region name (e.g., their function
name) or based on the source file, in which they are defined.

A file that contains the filter definition can be specified via the environment variable SCOREP_FILTERING_FILE.
If no filter definition file is specified, all instrumented regions are recorded. For filtered regions, the enter/exit events
are not recorded in trace and profile.

The filter definition file can contain two blocks:

• One block defines filter rules for filtering regions based on the source files they are defined in.

• One filter block defined rules for region names.

When the filter rules are applied, the source file name filter is evaluated first. If a region is filtered because it appears
in a filtered source file, it cannot be included by the function name filter. If a region was defined in a not-filtered
source file, the region name filter is evaluated. This means, events for a region are not recorded if they are filtered
by the source file filter or the region name filter. Events for a region are recorded if the region is neither filtered by
the source file filter nor by the region name filter. If one of the both filter blocks is not specified, it is equivalent to an
empty filter block.

Beside the two filter blocks, you may use comments in the filter definition file. Comments start with the character '#'
and is terminated by a new line. You may use comments also inside the filter blocks. If a region name or source file
name contains '#', you must escape it with a backslash.

5.3.1 Source File Name Filter Block

The filter block for source file names, must be enclosed by SCOREP_FILE_NAMES_BEGIN and SCOREP_FIL←↩

E_NAMES_END. In between you can specify an arbitrary number of include and exclude rules which are evaluated
in sequential order. At the beginning all source files are included. Source files that are excluded after all rules are
evaluated, are filtered.

An exclude rule starts with the keyword EXCLUDE followed by one or multiple white-space separated source file
names. Respectively, include rules start with INCLUDE followed by one or multiple white-space separated file
names. For the specification of file names, bash-like wild-cards are supported. In particular, the '∗' wild-card
matches an string of arbitrary length, the '?' matches exactly one arbitrary character, or within [] you may specify
multiple options.

Note

Unlike bash, a '∗' may match a string that contains slashes. E.g, you may use the '∗' wild-card for path prefixes.

An example source file filter block could look like this:

SCOREP_FILE_NAMES_BEGIN # This is a comment
EXCLUDE */filtering/filter*
INCLUDE */filter_test.c

SCOREP_FILE_NAMES_END

33

CHAPTER 5. APPLICATION MEASUREMENT

Note

The keywords (SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END, EXCLUDE, and INCL←↩

UDE) are case-sensitive.

The filtering is based on the filenames as seen by the measurement system. Depending on instrumentation method
and compiler the actual filename may contain the absolute path, a relative path or no path at all. The instrumentation
tool tries to create as much absolute paths as possible. Paths are simplified before comparison to a rule. E.g. it
removes path/../, /./ and multiple slashes. You may look up the actual filename in the resulting output of the
measurement.

5.3.2 Region Name Filter Block

The filter block for the region names, must be enclosed by SCOREP_REGION_NAMES_BEGIN and SCOREP←↩

_REGION_NAMES_END. In between you can specify an arbitrary number of include and exclude rules which are
evaluated in sequential order. At the beginning, all regions are included. Regions that are excluded after all rules
are evaluated, are filtered.

Note

Regions that are defined in source files that are filtered, are excluded due to the source file filter. They cannot
be included anymore by an include rule in the region filter block.

An exclude rule starts with the keyword EXCLUDE followed by one or multiple white-space separated region names.
Respectively, include rules start with INCLUDE followed by one or multiple white-space separated expressions. For
the specification of region names, bash-like wild-cards are supported. In particular, the '∗' wild card matches an
string of arbitrary length, the '?' matches exactly one arbitrary character, or within [] you may specify multiple
options.

An example region filter block could look like this:

SCOREP_REGION_NAMES_BEGIN
EXCLUDE *
INCLUDE bar foo

baz
main

SCOREP_REGION_NAMES_END

In this example, all but the functions bar, foo, baz and main are filtered.

The filtering is based on the region names as seen by the measurement system. Depending on instrumentation
method and compiler the actual region name may be mangled, or decorated. Thus, you may want to inspect the
profile to determine the name of a region inside the measurement system.

In some cases, the instrumentation provides mangled names, which are demangled by Score-P. In this cases,
Score-P uses the demangled form for display in profile and trace definitions, and thus, the demangled form should
be used in the filter file. However, The MANGLED keyword marks a filter rule to be applied on the mangled name, if
a different mangled name is available. If no mangled name is available, the rule is applied on the displayed name
instead. The MANGLED keyword must appear inside of an include rule or exclude rule. All patterns of the rule that
follow the MANGLED keyword, are applied to the mangled name, if the mangled name is available.

In the following example, foo and baz are applied to the mangled name, while bar and main are applied on the
displayed name.

SCOREP_REGION_NAMES_BEGIN
EXCLUDE *
INCLUDE bar MANGLED foo

baz
INCLUDE main

SCOREP_REGION_NAMES_END

The displayed name may also be mangled if no demangled form is available. It is not necessary to prepend rules
with the MANGLED keyword if the displayed name is mangled, but only if a mangled name is available that differs
from the displayed name.

34

5.4 Selective Recording

Note

The keywords (e.g., EXCLUDE, INCLUDE, SCOREP_REGION_NAMES_BEGIN, SCOREP_REGION_N←↩

AMES_END, and MANGLED are case-sensitive.
The GCC plug-in based function instrumentation supports all above mentioned filtering features when using
the --instrument-filter flag to the Score-P instrumenter (see Sec. 3.1). The filter file is then used
during compilation time but the use of such a filter file during runtime is still possible. The usage of the filter
during compilation time removes the overhead of runtime filtering.

5.4 Selective Recording

Score-P experiments record by default all events during the whole execution run. If tracing is enabled the event data
will be collected in buffers on each process that must be adequately sized to store events from the entire execution.

Instrumented routines which are executed frequently, while only performing a small amount of work each time they
are called, have an undesirable impact on measurement. The measurement overhead for such routines is large in
comparison to the execution time of the uninstrumented routine, resulting in measurement dilation. Recording these
events requires significant space and analysis takes longer with relatively little improvement in quality. Filtering can
be employed during measurement (described in Section 5.3) to ignore events from compiler-instrumented routines
or user-instrumented routines.

Another possibility is not to record the whole application run. In many cases, only parts of the application are of
interest for analysis (e.g. a frequently performed calculation) while other parts are of less interest (e.g., initialization
and finalization) for performance analysis. Or the calculation itself shows iterative behavior, where recording of one
iteration would be sufficient for analysis. Restricting recording to one or multiple time intervals during measurement
would reduce the required space and overhead. This approach is called selective recording.

Score-P provides two possibilities for selective recording.

• A configuration file can specify recorded regions. The entry and exit of those regions define an interval during
which events are recorded.

• With user instrumentation, the recording can be manually switched on /off. (See Section 3.2).

Switching recording on or off, can result in inconsistent traces or profiles, if not applied with care. Especially,
switching recording on/off manually via SCOREP_RECORDING_ON and SCOREP_RECORDING_OFF from the
Score-P user instrumentation macros is not recommended. Inconsistent traces may result in errors or deadlocks
during analysis, or show unusable data. The consistency is endangered if:

• OpenMP events are missing in one thread while other threads have them. Furthermore, the OpenMP parallel
region events are required if any event inside a parallel region is recorded. To prevent inconsistencies from
incomplete recording of OpenMP events, it is not possible to switch recording on/off from inside a parallel
region

• MPI a communication is only recorded partially, e.g. if a send is missing, but the corresponding receive on
another process is recorded. To ensure recording of complete communication is the responsibility of the user.

• enter/exit events are not correctly nested.

How recording can be controlled through Score-P macros which are inserted in the application's source code, is
explained in Section 3.2. Thus, this section focuses on first possibility, where the user specify recorded regions via
a configuration file. Selective recording affects tracing and profiling.

For selective recording, you can specify one or multiple traced regions. The recording is enabled when a recorded
region is entered. If the region is exited, recording of events is switched off again. If a recorded region is called
inside another recorded region, thus, the recording is already enabled, it will not disable recording of it exits, but
recording will be switched off, if all recorded regions are exited.

For recorded regions only regions from Score-P user instrumentation can be selected. If regions from other instru-
mentation methods are specified in the configuration file for selective recording, they are ignored.

35

CHAPTER 5. APPLICATION MEASUREMENT

For a recorded region, the recording can be restricted to certain executions of that region. Therefor, the enters for a
recorded region are counted, and a particular execution can be specified by the number of its enter. If a recorded
region is called recursively, the recording is only switched off, if the exit is reached, that corresponds to the enter
that enabled recording.

The configuration file is a simple text file, where every line contains the name of exactly one region. Optionally, a
comma-separated list of execution numbers or intervals of execution numbers can be specified. A configuration file
could look like follows:

foo
bar 23:25, 50, 60:62
baz 1

This configuration file would record all executions of foo, the executions 23, 24, 25, 50, 60, 61, and 62 of bar, and
the second (numbering starts with 0) execution of baz.

To apply the selective recording configuration file to a measurement run of your application, set the environment
variable SCOREP_SELECTIVE_CONFIG_FILE to the configuration file and run your instrumented application.
If SCOREP_SELECTIVE_CONFIG_FILE is empty, or the given file cannot be opened, the whole application run
will be recorded (no selective recording will apply).

5.5 Trace Buffer Rewind

Introducing a long-term event-trace recording mode, the trace buffer rewind feature allows to discard the preceding
section of the event trace at certain control points or phase markers. The live decision whether to keep or discard a
section can depend on the presence or absence of certain behaviour patterns as well as on similarity or difference
with other sections.

Based on user regions (see 3.2), three macros are given which control the rewind. These are:

// to define a local region handle based on the function
// SCOREP_USER_REGION_DEFINE(...)

SCOREP_USER_REWIND_DEFINE(regionHandle)
// similar to SCOREP_USER_REGION_BEGIN(...)

SCOREP_USER_REWIND_POINT(regionHandle, "name")
// similar to SCOREP_USER_REGION_END(...)
// w/ additional parameter to control the rewind (yes or no)

SCOREP_USER_REWIND_CHECK(regionHandle, boolean)

The user has to specify whether or not a rewind is requested with a boolean variable in the SCOREP_USER_R←↩

EWIND_CHECK function. There are two different approaches what to do with the rewind region in the trace based
on the boolean variable. If the boolean variable is true, the trace buffer will be reset to an old snapshot and after
that rewind region enter and leave events will be written into the trace buffer to mark the presence of the trace buffer
rewind. This rewind region then looks like a normal user-defined region in the trace. If the variable is false, than no
events of the rewind region are written into the trace, so that the trace buffer looks like the user never instrumented
the code w/ rewind regions. Trace buffer flushes have an impact on the rewind regions, i.e. if a flush occurs all
previous stored rewind points (which are not "checked", i.e. the flush is in between the region) will be deleted and
the SCOREP_USER_REWIND_CHECK function won't write the enter/leave events into the trace independently
from the boolean variable. Wrong nested rewind regions are handled as follows:

SCOREP_USER_REWIND_POINT(point 1, ...);
... do stuff ...
SCOREP_USER_REWIND_POINT(point 2, ...);
... do stuff ...
SCOREP_USER_REWIND_CHECK(point 1, true);
... do stuff ...
SCOREP_USER_REWIND_CHECK(point 2, true);

The check for point 2 would corrupt the trace buffer, so point 2 would be deleted and ignored in the second check.

36

5.6 Recording Performance Metrics

5.6 Recording Performance Metrics

If Score-P has been built with performance metric support it is capable of recording performance counter information.
To request the measurement of certain counters, the user is required to set individual environment variables. The
user can leave these environment variables unset to indicate that no counters are requested. Requested counters
will be recorded with every enter/exit event.

5.6.1 PAPI Hardware Performance Counters

Score-P provides the possibility to query hardware performance counters and include these metrics into the trace
and/or profile. Score-P uses the Performance Application Programming Interface (PAPI) to ac-
cess hardware performance counters. Recording of PAPI performance counters is enabled by setting the environ-
ment variable SCOREP_METRIC_PAPI to a comma-separated list of counter names. Counter names can be any
PAPI preset names or PAPI native counter names.

Example:

SCOREP_METRIC_PAPI=PAPI_FP_OPS,PAPI_L2_TCM

This will record the number of floating point instructions and level 2 cache misses. If any of the requested counters is
not recognized, program execution will be aborted with an error message. The PAPI utility programs papi_avail
and papi_native_avail report information about the counters available on the current platform.

If you want to change the separator used in the list of PAPI counter names, set the environment variable SCORE←↩

P_METRIC_PAPI_SEP to the desired character.

Note

In addition it is possible to specify metrics that will be recorded only by the initial thread of a process. Please
use SCOREP_METRIC_PAPI_PER_PROCESS for that reason.

5.6.2 Resource Usage Counters

Besides PAPI, Resource Usage Counters can be recorded. These metrics use the Unix system call getrusage
to provide information about consumed resources and operating system events such as user/system time, received
signals, and number of page faults. The manual page of getrusage provides a list of resource usage counters.
Please note that the availability of specific counters depends on the operating system.

You can enable recording of resource usage counters by setting the SCOREP_METRIC_RUSAGE environment
variable. The variable should contain a comma-separated list of counter names.

Example:

SCOREP_METRIC_RUSAGE=ru_utime,ru_stime

This will record the consumed user time and system time. If any of the requested counters is not recognized,
program execution will be aborted with an error message.

Note

Please be aware of the scope of displayed resource usage statistics. Score-P records resource usage statis-
tics for each individual thread, if the output while configuring your Score-P installation contains something
like

RUSAGE_THREAD support: yes

Otherwise, the information displayed is valid for the whole process. That means, for multi-threaded programs
the information is the sum of resources used by all threads in the process.

A shorthand to record all resource usage counters is

37

http://icl.cs.utk.edu/papi/

CHAPTER 5. APPLICATION MEASUREMENT

SCOREP_METRIC_RUSAGE=all

However, this is not recommended as most operating systems does not support all metrics.

If you want to change the separator used in the list of resource usage metrics, set the environment variable SCO←↩

REP_METRIC_RUSAGE_SEP to the desired character.

Example:

SCOREP_METRIC_RUSAGE_SEP=:

This indicates that counter names in the list are separated by colons.

Note

In addition it is possible to specify metrics that will be recorded only by the initial thread of a process. Please
use SCOREP_METRIC_RUSAGE_PER_PROCESS for that reason.

5.6.3 Recording Linux Perf Metrics

This metric source uses the Linux Perf Interface to access hardware performance counters. First it is explained how
to specify PERF metrics that will be recorded by every location.

You can enable the recording of PERF performance metrics by setting the environment variable SCOREP_MET←↩

RIC_PERF to a comma-separated list of metric names. Metric names can be any PERF preset names or PAPI
native counter names.

Example:

SCOREP_METRIC_PERF=cycles,page-faults,LLC-load-misses

In this example the number of CPU cycles, the number of page faults, and Last Level Cache Load Misses will be
recorded. If any of the requested metrics is not recognized program execution will be aborted with an error message.
The user can leave the environment variable unset to indicate that no metrics are requested. Use the tool perf
list to get a list of available PERF events.

If you want to change the separator used in the list of PERF metrics, set the environment variable SCOREP_ME←↩

TRIC_PERF_SEP to the desired character.

Example:

SCOREP_METRIC_PERF_SEP=:

This indicates that counter names in the list are separated by colons.

Note

In addition it is possible to specify metrics that will be recorded per-process. Please use SCOREP_METRI←↩

C_PERF_PER_PROCESS for that reason.

5.6.4 Metric Plugins

Metric plugins extend the functionality of Score-P by providing additional counters as external libraries. The libraries
are loaded when tracing or profiling your application. So there is no need to recompile your application or instrument
it manually.

A simple example of a synchronous metric plugin can be found in Appendix C. Every plugin needs to include
SCOREP_MetricPlugins.h. The commands to build the corresponding library of this plugin might look like:

gcc -c -fPIC hello_world.c \
-o libHelloWorld_plugin.so.o ‘scorep-config --cppflags‘

gcc -shared -Wl,-soname,libHelloWorld_plugin.so \
-o libHelloWorld.so libHelloWorld_plugin.so.o

38

5.7 MPI Performance Measurement

Token Module
ALL Activate all available modules
DEFAULT Activate the configured default modules of CG, COLL,

ENV, IO, P2P, RMA, TOPO, XNONBLOCK. This can
be used to easily activate additional modules.

CG Communicators and groups
COLL Collective communication
ENV Environmental management
ERR Error handlers
EXT External interfaces
IO I/O
MISC Miscellaneous
P2P Point-to-point communication
RMA One-sided communication
SPAWN Process management interface (aka Spawn)
TOPO Topology communicators
TYPE MPI Datatypes
XNONBLOCK Extended non-blocking communication events
XREQTEST Test events for tests of uncompleted requests

To enable a metric plugin, add the plugin <PLUGINNAME> to the environment variable SCOREP_METRIC_←↩

PLUGINS and configure the used metrics through the environment variable SCOREP_METRIC_PLUGINNAME.
In the following example we want to use the above HelloWorld plugin. We select two counters metric1
and metric2 from the plugin. Make sure that the metric plugin library is placed in a directory which is part of
LD_LIBRARY_PATH.

SCOREP_METRIC_PLUGINS=HelloWorld_plugin
SCOREP_METRIC_HELLOWORLD_PLUGIN=metric1,metric2

Note

Plugins are not supposed to trigger events (e.g. via MPI, OpenMP, Pthreads or user instrumentation) during
initialization and finalization of the plugin.
A set of open source metric plugins is available at GitHub.

5.7 MPI Performance Measurement

The Message Passing Interface (MPI) adapter of Score-P supports the tracing of most of MPI's 300+ function calls.
MPI defines a so-called 'profiling interface' that supports the provision of wrapper libraries that can easily interposed
between the user application and the MPI library calls.

5.7.1 Selection of MPI Groups

The general Score-P filtering mechanism is not applied to MPI functions. Instead, the user can decide whether
event generation is turned on or off for a group of MPI functions, at start time of the application. These groups are
the listed sub-modules of this adapter. Each module has a short string token that identifies this group. To activate
event generation for a specific group, the user can specify a comma-separated list of tokens in the configuration
variable SCOREP_MPI_ENABLE_GROUPS. Additionally, special tokens exist to ease the handling by the user. A
complete list of available tokens that can be specified in the runtime configuration is listed below.

Note

Event generation in this context only relates to flow and transfer events. Tracking of communicators, groups,
and other internal data is unaffected and always turned on.

Example:

39

https://github.com/score-p

CHAPTER 5. APPLICATION MEASUREMENT

SCOREP_MPI_ENABLE_GROUPS=ENV,P2P

This will enable event generation for environmental management, including MPI_Init and MPI_Finalize, as
well as point-to-point communication, but will disable it for all other functions groups.

A shorthand to get event generation for all supported function calls is

SCOREP_MPI_ENABLE_GROUPS=ALL

A shorthand to add a single group, e.g. TYPE, to the configured default is

SCOREP_MPI_ENABLE_GROUPS=DEFAULT,TYPE

A detailed overview of the MPI functions associated with each group can be found in Appendix B.

A somehow special role plays the XNONBLOCK flag. This flag determines what kind of events are generated by
non-blocking peer-to-peer MPI function calls. If XNONBLOCK is not set, an OTF2_MPI_Send event is created at
the non-blocking send call and an OTF2_MPI_Recv event is recorded when a non-blocking receive request has
completed. If XNONBLOCK is set, an OTF2_Isend event is recorded at the non-blocking send and an OTF2←↩

_IsendComplete event when the event was completed. Furthermore, on a non-blocking receive, it records an
OTF2_IRecvRequest event. On request completion an OTF2_IRecv event is recorded. In both cases the group
P2P must be enabled. Otherwise Score-P records no events for peer-to-peer communication functions.

5.7.2 Recording MPI Communicator Names

The measurement system tracks also the names of MPI communicators to easily identify them later in the analysis.
This is done via the MPI_Comm_set_name call. But there are some restrictions. First, the name of a commu-
nicator is only recorded at the first call to MPI_Comm_set_name for this communicator. Later calls are ignored.
Also this call is only honored when the call was made from the rank which is rank 0 in this communicator. Other
calls from other ranks are ignored. And lastly the name will also be not recorded if the communicator has only one
member.

5.8 CUDA Performance Measurement

If Score-P has been built with CUDA support it is capable of recording CUDA API function calls and GPU activities.
The measurement is based on NVIDIA's CUDA Profiling and Tool Interface (CUPTI), which is an integral part of the
CUDA Toolkit since version 4.1.

Score-P can wrap the NVIDIA compiler (scorep nvcc) to instrument .cu files. If Score-P has been built with the
Intel compiler an additional flag has to be added for instrumentation:

--compiler-bindir=<path-to-intel-compiler-command>

Otherwise the program will not be instrumented, as nvcc uses the GNU compiler by default.

Setting the environment variable SCOREP_CUDA_ENABLE to yes enables CUDA measurement. Please refer to
the description of this variable to enable a particular composition of CUDA measurement features.

CUPTI uses an extra buffer to store its activity records. If the size of this buffer is too small, Score-P will print a
warning about the current buffer size and the number of dropped records. To avoid dropping of records increase the
buffer size via the environment variable SCOREP_CUDA_BUFFER (default: 1M).

Since CUDA toolkit version 5.5 the chunk size for the CUPTI activity buffer can be specified via the environment
variable SCOREP_CUDA_BUFFER_CHUNK (default: 8k). Buffer chunks are allocated whenever CUPTI requests
a buffer (e.g. to record activities on a CUDA stream). SCOREP_CUDA_BUFFER specifies the upper bound of
memory to be allocated for CUPTI activities. Therefore it should be a multiple of SCOREP_CUDA_BUFFER_CH←↩

UNK.

40

5.9 OpenCL Performance Measurement

Note

Make sure to call cudaDeviceReset() or cudaDeviceSynchronize() before the exit of the pro-
gram. Otherwise GPU activities might be missing in the trace.
For CUDA 5.5 there is an error in CUPTI buffer handling. The last activity in a CUPTI activity buffer (SC←↩

OREP_CUDA_BUFFER_CHUNK) gets lost, when the buffer is full. To avoid this issue specify SCOREP_←↩

CUDA_BUFFER_CHUNK as large as necessary to store all CUDA device activities until the CUDA device is
synchronized with the host. In CUDA 6.0 this issue is fixed and CUPTI does not request buffers for individual
streams any more.
Score-P supports CUDA monitoring since CUDA toolkit version 4.1. Make sure that the Score-P installation
has configured CUDA support. The configure summary should contain the line:

CUDA support: yes

If not, for most systems it is sufficient to specify the CUDA toolkit directory at Score-P configuration time:

--with-libcudart=<path-to-cuda-toolkit-directory>

Otherwise check the configure help output to specify the location of the CUDA toolkit and CUPTI libraries and
include files:

../configure --help=recursive | grep -E "(cuda|cupti)"

CUDA device and host activities can be filtered by name at runtime using the Score-P filter file (see Section 5.3).
Filtering does not remove CUDA activities inserted by Score-P or CUDA data transfers inserted as RDMA events. If
a kernel is filtered, no kernel launch properties activated in SCOREP_CUDA_ENABLE using kernel_counter
are inserted for this kernel. GPU idle time is not affected by kernel filtering.

5.9 OpenCL Performance Measurement

If Score-P has been built with OpenCL support it is capable of recording OpenCL API function calls.

Setting the environment variable SCOREP_OPENCL_ENABLE to yes enables OpenCL measurement. Please
refer to the description of this variable to enable a particular composition of OpenCL measurement features.

OpenCL measurement uses an extra buffer to store its activity records. If the size of this buffer is too small, Score-P
will print a warning about the current buffer size and the number of dropped records. To avoid dropping of records
increase the buffer size via the environment variable SCOREP_OPENCL_BUFFER (default: 1M). Memory in bytes
for the OpenCL command queue buffer can be adjusted by setting the environment variable SCOREP_OPENCL←↩

_BUFFER_QUEUE (default: 8k).

5.10 OpenACC Performance Measurement

If Score-P has been built with OpenACC support it is capable of recording OpenACC regions as well as activities
such as enqueuing kernels, data uploads, and data downloads. OpenACC activities that are implicitly generated by
the compiler are attributed with acc_implicit.

To enable OpenACC measurement in Score-P the user has to:

• Build and install shared libraries of Score-P (use --enable-shared option when configuring Score-P).

• Set the environment variable ACC_PROFLIB to specify the OpenACC profiling library.
Example:

export ACC_PROFLIB=<path_to_scorep_installation>/lib/libscorep_adapter_openacc_event.so

• Set the environment variable SCOREP_OPENACC_ENABLE to yes. Please refer to the description of this
variable to enable a particular composition of OpenACC measurement features.

41

CHAPTER 5. APPLICATION MEASUREMENT

Note

Score-P supports OpenACC monitoring, if the respective OpenACC compiler implements the OpenACC pro-
filing interface that is part of the OpenACC standard since version 2.5. Make sure that the Score-P installation
has configured OpenACC support. The configure summary should contain the line:

OpenACC support: yes

5.11 Online Access Interface

Online Access (OA) is an interface to the measurement system of Score-P allowing online analysis capable tools to
configure and retrieve profile measurements remotely over sockets.

The Online Access interface implements a client-server paradigm, where Score-P acts as a server accepting con-
nections from the remote tool. During the initialization, the OA module of the Score-P creates one socket for each
application process. The network addresses and the ports of these sockets are published at the registry service
and could be later queried by the remote tool. The hostname and the port of the registry service should be speci-
fied via the SCOREP_ONLINEACCESS_REG_HOST and SCOREP_ONLINEACCESS_REG_PORT environment
variables, respectively. After publishing the socket addresses and ports, the OA module will accept connections.
Once the connection is established the OA module will suspend the application execution and wait for requests.
The format of the requests is plain text following the syntax below:

<request> = <metric_configuration> | <execution> | <retrieval>
<metric_configuration> = BEGINREQUESTS GLOBAL <request_type>

ENDREQUESTS
<request_type> = MPI | EXECUTION_TIME |

METRIC <metric_specification>
<metric_specification> = PERISCOPE <periscope_metric_code> |

PAPI "<papi_counter_name>" |
PERF <perf_counter_name>" |
RUSAGE "<rusage_metric_name>" |
PLUGIN "<metric_plugin_name>" "<plugin_metric_name>" |
OTHER "metric_name"

<execution> = TERMINATE | RUNTOSTART | RUNTOEND
<retrieval> = GETSUMMARYDATA

where

• BEGINREQUESTS indicates the beginning of the request list,

• ENDREQUESTS indicates the end of the request list,

• GLOBAL indicates that the following measurement request is applied to all locations,

• MPI requests mpi wait states analysis,

• EXECUTION_TIME requests execution time,

• METRIC indicates the begin of the metric request,

• PERISCOPE <periscope_metric_code> requests a metric by the Periscope internal code,

• PAPI <papi_counter_name> requests a PAPI hardware counter metric by the counter name,

• PERF <perf_counter_name> requests a PERF hardware counter metric by the counter name,

• RUSAGE <rusage_counter_name> requests a Resource Usage Counter metric by the counter name,

• PLUGIN "<metric_plugin_name>" "<plugin_metric_name>" requests a metric sup-
ported by the specified metric plugin,

• OTHER <metric_name> requests a metric, to be defined in Score-P definition system, specified by the
name,

• TERMINATE requests termination of the application,

• RUNTOSTART requests Score-P to run the beginning of the OA phase,

42

5.12 Substrate Plugins

• RUNTOEND requests Score-P to run the end of the OA phase,

• GETSUMMARYDATA requests retrieval of the profile data.

When the GETSUMMARY request is received, the OA module will transform the call-path profile into a flat profile
and send the data back to the remote tool. The flat profile is sent in two parts, where the first part carries the region
definition data and the second part carries profile measurements. Each part starts with the key word MERGED_R←↩

EGION_DEFINITIONS or FLAT_PROFILE and followed by the number of the entries and the buffer containing
the data.

5.12 Substrate Plugins

Substrate plugins extend the functionality of Score-P by providing additional backends. The libraries are loaded
when your application is started and Score-P is initialized. So there is no need to recompile your application or
instrument it manually.

A simple example of a backend can be found in Appendix D. Every plugin needs to include SCOREP_Substrate←↩

Plugins.h and define its name via SCOREP_SUBSTRATE_PLUGIN_ENTRY(<name>). The same name must be
used with the prefix scorep_substrate_ as library name. The commands to build the corresponding library of
this plugin might look like:

gcc -c -fPIC print_regions.c \
-o libscorep_substrate_PrintRegions.so.o ‘scorep-config --cppflags‘

gcc -shared -Wl,-soname,libscorep_substrate_PrintRegions.so \
-o libscorep_substrate_PrintRegions.so libscorep_substrate_PrintRegions.so.o

To enable a substrate plugin, add the plugin <PLUGINNAME> to the environment variable SCOREP_SUBSTR←↩

ATE_PLUGINS. In the following example we want to use the above PrintRegions plugin. Make sure that the
substrate plugin library is placed in a directory which is part of LD_LIBRARY_PATH.

SCOREP_SUBSTRATE_PLUGINS=PrintRegions

Note

Multiple substrate plugins can be loaded by listing them SCOREP_SUBSTRATE_PLUGINS=foo,bar, the
default separator ',' can be changed by setting the environment variable SCOREP_SUBSTRATE_PLUGIN←↩

S_SEP.
Developers of plugins are highly encouraged to use environment variables in their plugins with the naming
scheme SCOREP_SUBSTRATE_<substrate name>_<variable>, e.g., SCOREP_SUBSTRAT←↩

E_PRINTREGIONS_VERBOSE

43

CHAPTER 5. APPLICATION MEASUREMENT

44

Chapter 6

Usage of scorep-score

scorep-score is a tool that allows to estimate the size of an OTF2 trace from a CUBE4 profile. Furthermore, the
effects of filters are estimated. The main goal is to define appropriate filters for a tracing run from a profile.

The general work-flow for performance analysis with Score-P is:

1. Instrument an application (see Section 3).

2. Perform a measurement run and record a profile (see Section 5). The profile already gives an overview what
may happen inside the application.

3. Use scorep-score to define an appropriate filter for an application Otherwise the trace file may become too
large. This step is explained in this Chapter.

4. Perform a measurement run with tracing enabled and the filter applied (see Section 5.2 and Section 5.3).

5. Perform in-depth analysis on the trace data.

6.1 Basic usage

To invoke scorep-score you must provide the filename of a CUBE4 profile as argument. Thus, the basic
command looks like this:

scorep-score profile.cubex

The output of the command may look like this (taking an MPI/OpenMP hybrid application as an example):

Estimated aggregate size of event trace: 20MB
Estimated requirements for largest trace buffer (max_buf): 20MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 24MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=24MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region
ALL 19,377,048 786,577 27.48 100.0 34.93 ALL
USR 16,039,680 668,320 0.36 1.3 0.53 USR
OMP 3,328,344 117,881 26.92 98.0 228.37 OMP
COM 9,024 376 0.20 0.7 532.17 COM

The first line of the output gives an estimation of the total size of the trace, aggregated over all processes. This
information is useful for estimating the space required on disk. In the given example, the estimated total size of the
event trace is 20MB.

The second line prints an estimation of the memory space required by a single process for the trace. The memory
space that Score-P reserves on each process at application start must be large enough to hold the process' trace

CHAPTER 6. USAGE OF SCOREP-SCORE

in memory in order to avoid flushes during runtime, because flushes heavily disturb measurements. In addition to
the trace, Score-P requires some additional memory to maintain internal data structures. Thus, it provides also an
estimation for the total amount of required memory on each process. The memory size per process that Score-P
reserves is set via the environment variable SCOREP_TOTAL_MEMORY. In the given example the per process
memory should be larger than 24MB.

Beginning with the 6th line, scorep-score prints a table that show how the trace memory requirements and
the runtime is distributed among certain function groups. The column max_tbc shows how much trace buffer
is needed on a single process. The column time(s) shows how much execution time was spend in regions of
that group in seconds, the column % shows the fraction of the overall runtime that was used by this group, and the
column time/visit(us) shows the average time per visit in microseconds.

The following groups exist:

• ALL: Includes all functions of the application

• OMP: This group contains all regions that represent an OpenMP construct

• MPI: This group contains all MPI functions

• SHMEM: This group contains all SHMEM functions

• PTHREAD: This group contains all Pthread functions

• CUDA: This group contains all CUDA API functions and kernels

• OPENCL: This group contains all OpenCL API functions and kernels

• OPENACC: This group contains all OpenACC API functions and kernels

• MEMORY: This group contains all libc and C++ memory (de)allocation functions

• COM: This group contains all functions, implemented by the user that appear on a call-path to any functions
from the above groups, except ALL.

• USR: This group contains all user functions except those in the COM group.

6.2 Additional per-region information

For a more detailed output, which shows the data for every region, you can use the -r option. The command could
look like this.

scorep-score profile.cubex -r

This command adds information about the used buffer sizes and execution time of every region to the table. The
additional lines of the output may look like this:

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

COM 24 4 0.00 0.0 67.78 Init
COM 24 4 0.00 0.0 81.20 main
USR 24 4 0.12 2.0 30931.14 InitializeMatrix
COM 24 4 0.05 0.8 12604.78 CheckError
USR 24 4 0.00 0.0 23.76 PrintResults
COM 24 4 0.01 0.2 3441.83 Finish
COM 24 4 0.48 7.7 120338.17 Jacobi

The region name is displayed in the column named region. The column type shows to which group this region
belongs. In the example above the function main belongs to group COM required 24 bytes per process and used 0
s execution time. The regions are sorted by their buffer requirements.

By default scorep-score uses demangled function names. However, if you want to map data to tools which use
mangled names you might want to display mangled names. Furthermore, if you have trouble with function signatures
that contain characters that also have a wildcard meaning, defining filters on mangled names might be easier. To
display mangled names instead of demangled names, you can use the -m flag, e.g.

46

6.3 Defining and testing a filter

scorep-score profile.cubex -r -m

Note

The -m flag takes only effect if you display region names. In particular it means that the -m flag is only effective
if also the -r is specified.
In some cases, the same name is shown for the mangled and the demangled name. Some instrumentation
methods, e.g. user instrumentation, provide only a demangled name. For C-compilers mangled and deman-
gled names are usually identical. Or the demangling might have failed and only a mangled name is available.
In these cases we show always the one name that is available.

6.3 Defining and testing a filter

For defining a filter, it is recommended to exclude short frequently called functions from measurement, because
they require a lot of buffer space (represented by a high value under max_tbc) but incur a high measurement
overhead. Furthermore, for communication analysis, functions that appear on a call-path to MPI functions and
OpenMP constructs (regions of type COM) are usually of more interest than user functions of type USR which do
not appear on call-path to communications. MPI functions and OpenMP constructs cannot be filtered. Thus, it is
usually a good approach to exclude regions of type USR starting at the top of the list until you reduced the trace to
your needs. Section 5.3 describes the format of a filter specification file.

If you have a filter file, you can test the effect of your filter on the trace file. Therefor, you need to pass a -f followed
by the file name of your filter. E.g. if your filter file name is myfilter, the command looks like this:

scorep-score profile.cubex -f myfilter

An example output is:

Estimated aggregate size of event trace: 7kB
Estimated requirements for largest trace buffer (max_buf): 1806 bytes
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 5MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=5MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region
- ALL 2,093 172 5.17 100.0 30066.64 ALL
- MPI 1,805 124 4.20 81.3 33910.31 MPI
- COM 240 40 0.84 16.3 21092.44 COM
- USR 48 8 0.12 2.4 15360.71 USR

* ALL 1,805 124 4.20 81.3 33910.31 ALL-FLT
- MPI 1,805 124 4.20 81.3 33910.31 MPI-FLT
+ FLT 288 48 0.97 18.7 20137.15 FLT

Now, the output estimates the total trace size an the required memory per process, if you would apply the provided
filter for the measurement run which records the trace. A new group FLT appears, which contains all regions that
are filtered. Under max_tbc the group FLT displays how the memory requirements per process are reduced.
Furthermore, the groups that end on -FLT, like ALL-FLT contain only the unfiltered regions of the original group.
E.g. USR-FLT contains all regions of group USR that are not filtered.

Furthermore, the column flt is no longer empty but contain a symbol that indicates how this group is affected by
the filter. A '-' means 'not filtered', a '+' means 'filtered' and a '*' appears in front of groups that potentially can be
affected by the filter.

You may combine the -f option with a -r option. In this case, for each function a '+' or '-' indicates whether the
function is filtered.

47

CHAPTER 6. USAGE OF SCOREP-SCORE

6.4 Calculating the effects of recording hardware counters

Recording additional metrics, e.g. hardware counters may significantly increase the trace size, because for many
events additional metric values are stored. In order to estimate the effects of these metrics, you may add a -c
followed by the number of metrics you want to record. E.g.

scorep-score profile.cubex -c 3

would mean that scorep-score estimates the disk and memory requirements for the case that you record 3
additional metrics.

48

Chapter 7

Performance Analysis Workflow Using Score-P

This chapter demonstrates a typical performance analysis workflow using Score-P. It consist of the following steps:

1. Program instrumentation (Section 7.1)

2. Summary measurement collection (Section 7.2)

3. Summary report examination (Section 7.3)

4. Summary experiment scoring (Section 7.4)

5. Advanced summary measurement collection (Section 7.5)

6. Advanced summary report examination (Section 7.6)

7. Event trace collection and examination (Section 7.7)

The workflow is demonstrated using NPB BT-MZ benchmark as an example. BT-MZ solves a discretized version of
unsteady, compressible Navier-Stokes equations in three spatial dimensions. It performs 200 time-steps on a reg-
ular 3-dimensional grid using ADI and verifies solution error within acceptable limit. It uses intra-zone computation
with OpenMP and inter-zone communication with MPI. The benchmark can be build with a predefined data class
(S,W,A,B,C,D,E,F) and any number of MPI processes and OpenMP threads.

NPB BT-MZ distribution already prepared for this example could be obtained from here.

7.1 Program Instrumentation

In order to collect performance measurements, BT-MZ has to be instrumented. There are various types of instru-
mentation supported by Score-P which cover a broad spectrum of performance analysis use cases (see Chapter 3
for more details).

In this example we start with automatic compiler instrumentation by prepending compiler/linker specification variable
MPIF77 found in config/make.def with scorep:

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS
#---
Items in this file may need to be changed for each platform.
#---
...
#---
The Fortran compiler used for MPI programs
#---
#MPIF77 = mpif77
Alternative variants to perform instrumentation
...
MPIF77 = scorep mpif77
This links MPI Fortran programs; usually the same as ${MPIF77}
FLINK = $(MPIF77)
...

http://www.vi-hps.org/upload/material/general/VIHPS-tutorial-exercise.tgz

CHAPTER 7. PERFORMANCE ANALYSIS WORKFLOW USING SCORE-P

After the makefile is modified and saved, it is recommended to return to the root folder of the application and
clean-up previously build files:

% make clean

Now the application is ready to be instrumented by simply issuing the standard build command:

% make bt-mz CLASS=W NPROCS=4

After the command is issued, the make command should produce the output similar to the one below:

cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory ’BT-MZ’
cd ../sys; cc -o setparams setparams.c -lm
../sys/setparams bt-mz 4 W
scorep mpif77 -c -O3 -fopenmp bt.f
[...]
cd ../common; scorep --user mpif77 -c -O3 -fopenmp timers.f
scorep mpif77 -O3 -fopenmp -o ../bin.scorep/bt-mz_W.4 \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin.scorep/bt-mz_W.4
make: Leaving directory ’BT-MZ’

When make finishes, the built and instrumented application could be found under bin.scorep/bt-mz_W.4.

7.2 Summary Measurement Collection

Now instrumented BT-MZ is ready to be executed and to be profiled by Score-P at the same time. However before
doing so, one has an opportunity to configure Score-P measurement by setting Score-P environment variables. For
the complete list of variables please refer to Appendix F.

The typical Score-P performance analysis workflow implies collecting summary performance information first and
then in detail performance exploration using execution traces. Therefore Score-P has to be configured to perform
profiling and tracing has to be disabled. This is done by setting corresponding environment variables:

% export SCOREP_ENABLE_PROFILING=1
% export SCOREP_ENABLE_TRACING=0

Performance data collected by Score-P will be stored in an experiment directory. In order to efficiently manage
multiple experiments, one can specify a meaningful name for the experiment directory by setting

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum

After Score-P is prepared for summary collection, the instrumented application can be started as usual:

% cd bin.scorep
% export OM_NUM_THREADS=4
% mpiexec -np 4 ./bt-mz_W.4

The BT-MZ output should look similar to the listing below:

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) BT-MZ MPI+OpenMP Benchmark

Number of zones: 4 x 4
Iterations: 200 dt: 0.000800
Number of active processes: 4

Use the default load factors with threads
Total number of threads: 16 (4.0 threads/process)

Calculated speedup = 15.78

Time step 1
[... More application output ...]

50

7.3 Summary report examination

After application execution is finished, the summary performance data collected by Score-P is stored in the experi-
ment directory bin.scorep/scorep_bt-mz_W_4x4_sum. The directory contains the following files:

• scorep.cfg - a record of the measurement configuration used in the run

• profile.cubex - the analysis report that was collated after measurement

7.3 Summary report examination

After BT-MZ finishes execution, the summary performance data measured by Score-P can be investigated with
CUBE or ParaProf interactive report exploration tools.

CUBE:

% cube scorep_bt-mz_W_4x4_sum/profile.cubex

ParaProf:

% paraprof scorep_bt-mz_W_4x4_sum/profile.cubex

Both tools will reveal the call-path profile of BT-MZ annotated with metrics: Time, Visits count, MPI message statis-
tics (bytes sent/received). For more information on using the tool please refer to the corresponding documentation
(CUBE, ParaProf).

7.4 Summary experiment scoring

Though we were able to collect the profile data, one can mention that the execution took longer in comparison to un-
instrumented run, even when the time spent for measurement start-up/finalization is disregarded. Longer execution
times of the instrumented application is a sign of high instrumentation/measurement overhead. Furthermore, this
overhead might result in large trace files and buffer flushes in the later tracing experiment if Score-P is not properly
configured.

In order to investigate sources of the overhead and to tune measurement configuration for consequent trace collec-
tion with Score-P, scorep-score tool (see Section 6 for more details about scorep-score) can be used:

% scorep-score scorep_bt-mz_W_4x4_sum/profile.cubex
Estimated aggregate size of event trace (total_tbc):

990247448 bytes
Estimated requirements for largest trace buffer (max_tbc):

256229936 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid
intermediate flushes
or reduce requirements using file listing names of USR regions
to be filtered.)
flt type max_tbc time % region

ALL 256229936 5549.78 100.0 ALL
USR 253654608 1758.27 31.7 USR
OMP 5853120 3508.57 63.2 OMP
COM 343344 183.09 3.3 COM
MPI 93776 99.86 1.8 MPI

The textual output of the tool generates an estimation of the size of an OTF2 trace produced, should Score-P be run
using the current configuration. Here the trace size estimation could be also seen as a measure of overhead, since
both are proportional to the number of recorded events. Additionally, the tool shows the distribution of the required
trace size over call-path classes. From the report above one can see that the estimated trace size needed is equal
to 1 GB in total or 256 MB per MPI rank, which is significant. From the breakdown per call-path class one can see
that most of the overhead is due to user-level computations. In order to further localize the source of the overhead,
scorep-score can print the breakdown of the buffer size on per-region basis:

51

http://www.scalasca.org/download/documentation/documentation.html
http://www.cs.uoregon.edu/Research/tau/docs/paraprof/index.html

CHAPTER 7. PERFORMANCE ANALYSIS WORKFLOW USING SCORE-P

% scorep-score -r scorep_bt-mz_W_4x4_sum/profile.cubex
[...]

flt type max_tbc time % region
ALL 256229936 5549.78 100.0 ALL
USR 253654608 1758.27 31.7 USR
OMP 5853120 3508.57 63.2 OMP
COM 343344 183.09 3.3 COM
MPI 93776 99.86 1.8 MPI
USR 79176312 559.15 31.8 binvcrhs_
USR 79176312 532.73 30.3 matvec_sub_
USR 79176312 532.18 30.3 matmul_sub_
USR 7361424 50.51 2.9 binvrhs_
USR 7361424 56.35 3.2 lhsinit_
USR 3206688 27.32 1.6 exact_solution_
OMP 1550400 1752.20 99.7 !$omp implicit barrier
OMP 257280 0.44 0.0 !$omp parallel @exch_qbc.f
OMP 257280 0.61 0.0 !$omp parallel @exch_qbc.f
OMP 257280 0.48 0.0 !$omp parallel @exch_qbc.f

The regions marked as USR type contribute to around 32% of the total time, however, much of that is very likely
to be measurement overhead due to frequently-executed small routines. Therefore, it is highly recommended to
remove these routines from measurements. This can be achieved by placing them into a filter file (please refer to
Section 6.3 for more details about filter file specification) as regions to be excluded from measurements. There is
already a filter file prepared for BT-MZ which can be used:

% cat ../config/scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
binvcrhs*
matmul_sub*
matvec_sub*
exact_solution*
binvrhs*
lhs*init*
timer_*

One can use scorep-score once again to verify the effect of the filter file :

% scorep-score -f ../config/scorep.filt scorep_bt-mz_W_4x4_sum
Estimated aggregate size of event trace (total_tbc):

20210360 bytes
Estimated requirements for largest trace buffer (max_tbc):

6290888 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid
intermediate flushes
or reduce requirements using file listing names of USR regions
to be filtered.)

Now one can see that the trace size is reduced to just 20MB in total or 6MB per MPI rank. The regions filtered out
will be marked with "+" in the left-most column of the per-region report.

7.5 Advanced summary measurement collection

After the filtering file is prepared to exclude the sources of the overhead, it is recommended to repeat summary
collection, in order to obtain more precise measurements.

In order to specify the filter file to be used during measurements, the corresponding environment variable has to be
set:

% export SCOREP_FILTERING_FILE=../config/scorep.filt

It is also recommended to adjust the experiment directory name for the new run:

% export SCOREP_EXPERIMENT_DIRECTORY=\
scorep_bt-mz_W_4x4_sum_with_filter

Score-P also has a possibility to record hardware counters (see Section 5.6.1) and operating system resource
usage (see Section 5.6.2) in addition to default time and number of visits metrics. Hardware counters could be
configured by setting Score-P environment variable SCOREP_METRIC_PAPI to the comma-separated list of P←↩

API events (other separator could be specified by setting SCOREP_METRIC_PAPI_SEP):

52

7.5 Advanced summary measurement collection

% export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS

Note

The specified combination of the hardware events has to be valid, otherwise Score-P will abort execution.
Please run papi_avail and papi_native_avail in order to get the list of the available PAPI generic
and native events.

Operating system resource usage metrics are configured by setting the following variable:

% export SCOREP_METRIC_RUSAGE=ru_maxrss,ru_stime

Additionally Score-P can be configured to record only a subset of the mpi functions. This is achieved by setting
SCOREP_MPI_ENABLE_GROUPS variable with a comma-separated list of sub-groups of MPI functions to be
recorded (see Appendix B):

% export SCOREP_MPI_ENABLE_GROUPS=cg,coll,p2p,xnonblock

In case performance of the CUDA code is of interest, Score-P can be configured to measure CUPTI metrics as
follows (see Section 5.8):

% export SCOREP_CUDA_ENABLE=gpu,kernel,idle

In case performance of the OpenCL code is of interest, Score-P can be configured to measure OpenCL events as
follows (see Section 5.9):

% export SCOREP_OPENCL_ENABLE=api,kernel,memcpy

When the granularity offered by the automatic compiler instrumentation is not sufficient, one can use Score-←↩

P manual user instrumentation API (see Section 3.2) for more fine-grained annotation of particular code segments.
For example initialization code, solver or any other code segment of interest can be annotated.

In order to enable user instrumentation, an --user argument has to be passed to Score-P command prepending
compiler and linker specification:

% MPIF77 = scorep --user mpif77

Below, the loop found on line ... in file ... is annotated as a user region:

#include "scorep/SCOREP_User.inc"
subroutine foo(...)

! Declarations
SCOREP_USER_REGION_DEFINE(solve)
! Some code...
SCOREP_USER_REGION_BEGIN(solve, "<solver>", \

SCOREP_USER_REGION_TYPE_LOOP)
do i=1,100
[...]

end do
SCOREP_USER_REGION_END(solve)
! Some more code...

end subroutine

This will appear as an additional region in the report.

BT-MZ has to be recompiled and relinked in order to complete instrumentation.

% make clean
% make bt-mz CLASS=W NPROCS=4

After applying advanced configurations described above, summary collection with Score-P can be started as
usual:

% mpiexec -np 4 ./bt-mz_W.4

53

CHAPTER 7. PERFORMANCE ANALYSIS WORKFLOW USING SCORE-P

7.6 Advanced summary report examination

After execution is finished, one can use scorep-score tool to verify the effect of filtering:

% scorep-score scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex
Estimated aggregate size of event trace (total_tbc):

20210360 bytes
Estimated requirements for largest trace buffer (max_tbc):

6290888 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid
intermediate flushes
or reduce requirements using file listing names of USR regions
to be filtered.)
flt type max_tbc time % region

ALL 6290888 241.77 100.0 ALL
OMP 5853120 168.94 69.9 OMP
COM 343344 35.57 14.7 COM
MPI 93776 37.25 15.4 MPI
USR 672 0.01 0.0 USR

The report above shows significant reduction in runtime (due to elimination of the overhead) not only in USR regions
but also in MPI/OMP regions as well.

Now, the extended summary report can be interactively explored using CUBE:

% cube scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex

or ParaProf:

% paraprof scorep_bt-mz_W_4x4_sum_with_filter/profile.cubex

7.7 Event trace collection and examination

After exploring extended summary report, additional insight into performance of BT-MZ can be gained by performing
trace collection. In order to do so, Score-P has to be configured to perform tracing by setting corresponding variable
to true and disabling profile generation:

% export SCOREP_ENABLE_TRACING=true
% export SCOREP_ENABLE_PROFILING=false

Additionally it is recommended to set a meaningful experiment directory name:

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace

After BT-MZ execution is finished, a separate trace file per thread is written into the new experiment directory. In
order to explore it, Vampir tool can be used:

% vampir scorep_bt-mz_W_4x4_trace/traces.otf2

Please consider that traces can become extremely large and unwieldy, because the size of the trace is proportional
to number of processes/threads (width), duration (length) and detail (depth) of measurement. When the trace is too
large to hold in the memory allocated by Score-P, flushes can happen. Unfortunately the resulting traces are of little
value, since uncoordinated flushes result in cascades of distortion.

Traces should be written to a parallel file system, e.g., to /work or /scratch which are typically provided for this
purpose.

54

http://www.vampir.eu/tutorial/manual

Appendices

Appendix A

Score-P INSTALL

*
* This file is part of the Score-P software (http://www.score-p.org)

*
* Copyright (c) 2009-2013,

* RWTH Aachen University, Germany

*
* Copyright (c) 2009-2013,

* Gesellschaft fuer numerische Simulation mbH Braunschweig, Germany

*
* Copyright (c) 2009-2014, 2016,

* Technische Universitaet Dresden, Germany

*
* Copyright (c) 2009-2013,

* University of Oregon, Eugene, USA

*
* Copyright (c) 2009-2017,

* Forschungszentrum Juelich GmbH, Germany

*
* Copyright (c) 2009-2013,

* German Research School for Simulation Sciences GmbH, Juelich/Aachen, Germany

*
* Copyright (c) 2009-2013,

* Technische Universitaet Muenchen, Germany

*
* This software may be modified and distributed under the terms of

* a BSD-style license. See the COPYING file in the package base

* directory for details.

*

Score-P INSTALL GUIDE
=====================

This file describes how to configure, compile, and install the Score-P
measurement infrastructure. If you are not familiar with using the
configure scripts generated by GNU autoconf, read the "Generic
Installation Instructions" section below; then return here. Also,
make sure to carefully read and follow the platform-specific
installation notes (especially when building for the Intel Xeon Phi
platform).

Quick start
===========

In a nutshell, configuring, building, and installing Score-P can be as
simple as executing the shell commands

mkdir _build
cd _build
../configure --prefix=<installdir>
make
make install

APPENDIX A. SCORE-P INSTALL

If you don’t specify --prefix, /opt/scorep will be used.

Depending on your system configuration and specific needs, the build
process can be customized as described below.

Note Score-P requires a case sensitive file system to build correctly.

Configuration
=============

The configure script in this package tries to automatically determine
the platform for which Score-P will be compiled in order to provide
reasonable defaults for backend (i.e., compute-node) compilers,
MPI compilers, and, in case of cross-compiling environments, frontend
(i.e., login-node) compilers.

Depending on the environment it is possible to override the platform
defaults by using the following configure options:

--with-machine-name=<default machine name>
The default machine name used in profile and trace
output. We suggest using a unique name, e.g., the
fully qualified domain name. If not set, a name
based on the detected platform is used. Can be
overridden at measurement time by setting the
environment variable SCOREP_MACHINE_NAME.

Score-P requires a full compiler suite with language support for C99,
C++98, Fortran 77, and Fortran 90. The following section describes how
to select supported compiler suits.

In non-cross-compiling environments, the compiler suite used to build
the backend parts can be specified explicitly if desired. On Linux
clusters it is currently recommended to use this option to select a
compiler suite other than GCC.

--with-nocross-compiler-suite=(gcc|ibm|intel|pgi|studio)
The compiler suite used to build this package in
non-cross-compiling environments. Needs to be in $PATH.
[Default: gcc]

Note: if you select ’pgi’, CXX will be set to ’pgc++’, which is
PGI’s default C++ compiler. If you have a PGI compiler installation
prior to 16.1, you might want to use ’pgCC’ instead if your MPI and
SHMEM compiler wrappers use this one. To select pgCC, please add
’CXX=pgCC’ to your configure line.

In cross-compiling environments, the compiler suite used to build the
frontend parts can be specified explicitly if desired.

--with-frontend-compiler-suite=(gcc|ibm|intel|pgi|studio)
The compiler suite used to build the frontend parts of
this package in cross-compiling environments. Needs to
be in $PATH.
[Default: gcc]

The MPI compiler, if in $PATH, is usually autodetected. If there are
several MPI compilers in $PATH the user is requested to select one
using the configure option:

--with-mpi=(bullxmpi|hp|ibmpoe|intel|intel2|intel3|intelpoe|lam| \
mpibull2|mpich|mpich2|mpich3|openmpi|platform|scali| \
sgimpt|sun)
The MPI compiler suite to build this package in non
cross-compiling mode. Usually autodetected. Needs to be
in $PATH.

Note that there is currently no consistency check if backend and MPI
compiler are from the same vendor. If they are not, linking problems
(undefined references) might occur.

58

The SHMEM compiler, if in $PATH, is usually autodetected. If there are
several SHMEM compilers in $PATH the user is requested to select one
using the configure option:

--with-shmem=(openshmem|openmpi|sgimpt)
The SHMEM compiler suite to build this package in
non cross-compiling mode. Usually autodetected.
Needs to be in $PATH.

If a particular system requires to use compilers different to those
Score-P currently supports, please edit the three files
vendor/common/build-config/platforms/platform-*-user-provided to your
needs and use the following configure option:

--with-custom-compilers
Customize compiler settings by 1. copying the three
files
<srcdir>/vendor/common/build-config/platforms/platform-*-user-provided
to the directory where you run configure <builddir>,
2. editing those files to your needs, and 3. running
configure. Alternatively, edit the files under <srcdir>
directly. Files in <builddir> take precedence. You are
entering unsupported terrain. Namaste, and good luck!

On cross-compile systems the default frontend compiler is IBM XL for
the Blue Gene series and GCC on all other platforms. The backend
compilers will either be automatically selected by the platform
detection (IBM Blue Gene series) or by the currently loaded
environment modules (Cray X series). If you want to customize these
settings please use the configure option ’--with-custom-compilers’ as
described above.

Although this package comes with recent versions of the OTF2 and Cube
libraries as well as the OPARI2 instrumenter included, it is possible
to use existing installations instead. Here, the --without option
means ’without external installation’, i.e., the component provided
with the tarball will be used:

--with-otf2[=<otf2-bindir>]
Use an already installed and compatible OTF2 library
(v2.0 or newer). Provide path to otf2-config.
Auto-detected if already in $PATH.

--with-cubew[=<cubew-bindir>]
Use an already installed and compatible cubew
library. Provide path to cubew-config.
Auto-detected if already in $PATH.

--with-cubelib[=<cubelib-bindir>]
Use an already installed and compatible cubelib
library. Provide path to cubelib-config.
Auto-detected if already in $PATH.

--with-opari2[=<opari2-bindir>]
Use an already installed and compatible OPARI2 (v2.0
or newer). Provide path to opari2-config.
Auto-detected if already in $PATH.

For the components otf2, cubew, cubelib, and opari2, the corresponding
--without-<component> or --with-<component>=no options will ignore the
<component>-config in $PATH but use the Score-P internal components.

To enable support for CUDA measurement via the CUPTI interface we
provide three configure options: the path to the CUDA runtime, the
path to the CUPTI library, and the path to the CUDA library. Usually
you just need to provide the path to the runtime via --with-libcudart;
CUPTI will be detected automatically in the extras/CUPTI subdirectory
and the system libcuda will be used. This usually works for GNU and
Intel compilers:

--with-libcudart=<Path to libcudart installation>
If you want to build scorep with libcudart but do not
have a libcudart in a standard location then you need
to explicitly specify the directory where it is
installed. On non-cross-compile systems we search the
system include and lib paths per default [yes], on

59

APPENDIX A. SCORE-P INSTALL

cross-compile systems however,you have to specify a
path [no]. --with-libcudart is a shorthand for
--with-libcudart-include=<Path/include> and
--with-libcudart-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the explicit
include and lib options directly.

--with-libcudart-include=<Path to libcudart headers>
--with-libcudart-lib=<Path to libcudart libraries>

For PGI compilers since version 16.10 you need at least two options,
--with-libcudart pointing to the <PGI CUDA runtime> and
--with-libcupti pointing to <NVIDIA CUDA runtime>/extras/CUPTI. Note
that CUDA/CUPTI support in Score-P with PGI compilers prior to 16.10
does not work (unless you modify the NVIDIA CUDA runtime headers).

--with-libcupti=(yes|no|<Path to libcupti installation>)
If you want to build with libcupti support but do
not have a libcupti in a standard location, you need
to explicitly specify the directory where it is
installed. On non-cross-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. --with-libcupti is a shorthand
for --with-libcupti-include=<Path/include> and
--with-libcupti-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.

--with-libcupti-include=<Path to libcupti headers>
--with-libcupti-lib=<Path to libcupti libraries>

If you want to use a CUDA library different from the system one you
need to specify its location via:

--with-libcuda=<Path to libcuda installation>
Usually not needed, specifying --with-libcudart should
be fine!
If you want to build scorep with libcuda but do not
have a libcuda in a standard location then you need to
explicitly specify the directory where it is
installed. On non-cross-compile systems we search the
system include and lib paths per default [yes], on
cross-compile systems however,you have to specify a
path [no]. --with-libcuda is a shorthand for
--with-libcuda-include=<Path/include> and
--with-libcuda-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the explicit
include and lib options directly.

--with-libcuda-include=<Path to libcuda headers>
--with-libcuda-lib=<Path to libcuda libraries>

Options to further specify which features and external packages should
be used to build Score-P are as follows:

--enable-platform-mic Force build for Intel Xeon Phi co-processors
[no]. This option is only needed for Xeon
Phi co-processors, like the Knights Corner
(KNC). It is not needed for self-hosted Xeon
Phis, like the Knights Landing (KNL); for these
chips no special treatment is required.

--enable-debug activate internal debug output [no]
--enable-shared[=PKGS] build shared libraries [default=no]
--enable-static[=PKGS] build static libraries [default=yes]
--enable-backend-test-runs

Enable execution of tests during ’make check’ [no]
(does not affect building of tests, though). If
disabled, the files ’check-file-*’ and/or
’skipped_tests’ listing the tests are generated in the
corresponding build directory.

--enable-cuda
Enable or disable support for CUDA. Fails if support
cannot be satisfied but was requested.

--enable-openacc
Enable or disable support for OpenACC. (defaults to yes)

60

--disable-gcc-plugin
Disable support for the GCC plug-in
instrumentation. Default is to determine support
automatically. This disables it by request and fails
if support cannot be satisfied but was requested.

--with-pdt=<path-to-binaries>
Specifies the path to the program database toolkit
(PDT) binaries, e.g., cparse.

--with-extra-instrumentation-flags=flags
Add additional instrumentation flags.

--with-sionlib[=<sionlib-bindir>]
Use an already installed sionlib. Provide path to
sionconfig. Auto-detected if already in $PATH. This
option is not used by Score-P itself but passed to an
internal OTF2.

--with-papi-header=<path-to-papi.h>
If papi.h is not installed in the default location,
specify the dirname where it can be found.

--with-papi-lib=<path-to-libpapi.*>
If libpapi.* is not installed in the default location,
specify the dirname where it can be found.

--with-libunwind=(yes|no|<Path to libunwind installation>)
If you want to build with libunwind support but do
not have a libunwind in a standard location, you
need to explicitly specify the directory where it is
installed. On non-cross-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. --with-libunwind is a shorthand
for --with-libunwind-include=<Path/include> and
--with-libunwind-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.

--with-libunwind-include=<Path to libunwind headers>
--with-libunwind-lib=<Path to libunwind libraries>
--with-openacc-include=<path-to-openacc.h>

If openacc.h is not installed in the default
location, specify the directory where it can be
found.

--with-openacc-prof-include=<path-to-acc_prof.h>
If acc_prof.h is not installed in the default
location, specify the directory where it can be
found.

--with-libOpenCL=(yes|no|<Path to libOpenCL installation>)
If you want to build with libOpenCL support but do
not have a libOpenCL in a standard location, you
need to explicitly specify the directory where it is
installed. On non-cross-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. --with-libOpenCL is a shorthand
for --with-libOpenCL-include=<Path/include> and
--with-libOpenCL-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.

--with-libOpenCL-include=<Path to libOpenCL headers>
--with-libOpenCL-lib=<Path to libOpenCL libraries>
--with-libpmi=(yes|no|<Path to libpmi installation>)

If you want to build with libpmi support but do not
have a libpmi in a standard location, you need to
explicitly specify the directory where it is
installed. On non-cross-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. --with-libpmi is a shorthand
for --with-libpmi-include=<Path/include> and
--with-libpmi-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.

--with-libpmi-include=<Path to libpmi headers>
--with-libpmi-lib=<Path to libpmi libraries>
--with-librca=(yes|no|<Path to librca installation>)

If you want to build with librca support but do not

61

APPENDIX A. SCORE-P INSTALL

have a librca in a standard location, you need to
explicitly specify the directory where it is
installed. On non-cross-compile systems we search
the system include and lib paths per default [yes];
on cross-compile systems, however, you have to
specify a path [no]. --with-librca is a shorthand
for --with-librca-include=<Path/include> and
--with-librca-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the
explicit include and lib options directly.

--with-librca-include=<Path to librca headers>
--with-librca-lib=<Path to librca libraries>
--with-libbfd=<Path to libbfd installation>

If you want to build scorep with libbfd but do not have
a libbfd in a standard location then you need to
explicitly specify the directory where it is
installed. On non-cross-compile systems we search the
system include and lib paths per default [yes], on
cross-compile systems however,you have to specify a
path [no]. --with-libbfd is a shorthand for
--with-libbfd-include=<Path/include> and
--with-libbfd-lib=<Path/lib>. If these shorthand
assumptions are not correct, you can use the explicit
include and lib options directly.

--with-libbfd-include=<Path to libbfd headers>
--with-libbfd-lib=<Path to libbfd libraries>

Instead of passing command-line options to the ’configure’ script, the package
configuration can also be influenced by setting the following environment
variables:

CC C compiler command
CFLAGS C compiler flags
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>
LIBS libraries to pass to the linker, e.g. -l<library>
CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>
LT_SYS_LIBRARY_PATH

User-defined run-time library search path.
CPP C preprocessor
CXX C++ compiler command
CXXFLAGS C++ compiler flags
CXXCPP C++ preprocessor
CCAS assembler compiler command (defaults to CC)
CCASFLAGS assembler compiler flags (defaults to CFLAGS)
CXXCPP C++ preprocessor
F77 Fortran 77 compiler command
FFLAGS Fortran 77 compiler flags
FC Fortran compiler command
FCFLAGS Fortran compiler flags
CC_FOR_BUILD

C compiler command for the frontend build
CXX_FOR_BUILD

C++ compiler command for the frontend build
F77_FOR_BUILD

Fortran 77 compiler command for the frontend build
FC_FOR_BUILD

Fortran compiler command for the frontend build
CPPFLAGS_FOR_BUILD

(Objective) C/C++ preprocessor flags for the frontend build,
e.g. -I<include dir> if you have headers in a nonstandard
directory <include dir>

CFLAGS_FOR_BUILD
C compiler flags for the frontend build

CXXFLAGS_FOR_BUILD
C++ compiler flags for the frontend build

FFLAGS_FOR_BUILD
Fortran 77 compiler flags for the frontend build

FCFLAGS_FOR_BUILD
Fortran compiler flags for the frontend build

LDFLAGS_FOR_BUILD
linker flags for the frontend build, e.g. -L<lib dir> if you

62

have libraries in a nonstandard directory <lib dir>
LIBS_FOR_BUILD

libraries to pass to the linker for the frontend build, e.g.
-l<library>

MPICC MPI C compiler command
MPICXX MPI C++ compiler command
MPIF77 MPI Fortran 77 compiler command
MPIFC MPI Fortran compiler command
MPI_CPPFLAGS

MPI (Objective) C/C++ preprocessor flags, e.g. -I<include dir>
if you have headers in a nonstandard directory <include dir>

MPI_CFLAGS MPI C compiler flags
MPI_CXXFLAGS

MPI C++ compiler flags
MPI_FFLAGS MPI Fortran 77 compiler flags
MPI_FCFLAGS MPI Fortran compiler flags
MPI_LDFLAGS

MPI linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

MPI_LIBS MPI libraries to pass to the linker, e.g. -l<library>
SHMEMCC SHMEM C compiler command
SHMEMCXX SHMEM C++ compiler command
SHMEMF77 SHMEM Fortran 77 compiler command
SHMEMFC SHMEM Fortran compiler command
SHMEM_CPPFLAGS

SHMEM (Objective) C/C++ preprocessor flags, e.g. -I<include dir>
if you have headers in a nonstandard directory <include dir>

SHMEM_CFLAGS
SHMEM C compiler flags

SHMEM_CXXFLAGS
SHMEM C++ compiler flags

SHMEM_FFLAGS
SHMEM Fortran 77 compiler flags

SHMEM_FCFLAGS
SHMEM Fortran compiler flags

SHMEM_LDFLAGS
SHMEM linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

SHMEM_LIBS SHMEM libraries to pass to the linker, e.g. -l<library>
SHMEM_LIB_NAME

name of the SHMEM library
SHMEM_NAME name of the implemented SHMEM specification
CXXFLAGS_FOR_BUILD_SCORE

C++ compiler flags for building scorep-score
YACC The ‘Yet Another Compiler Compiler’ implementation to use.

Defaults to the first program found out of: ‘bison -y’, ‘byacc’,
‘yacc’.

YFLAGS The list of arguments that will be passed by default to $YACC.
This script will default YFLAGS to the empty string to avoid a
default value of ‘-d’ given by some make applications.

PTHREAD_CFLAGS
CFLAGS used to compile Pthread programs

PTHREAD_LIBS
LIBS used to link Pthread programs

RUNTIME_MANAGEMENT_TIMINGS
Whether to activate time measurements for Score-P’s
SCOREP_InitMeasurement() and scorep_finalize() functions.
Activation values are ’1’, ’yes’, and ’true’. For developer use.

PAPI_INC Include path to the papi.h header.
PAPI_LIB Library path to the papi library.
LIBUNWIND_INCLUDE

Path to libunwind headers.
LIBUNWIND_LIB

Path to libunwind libraries.
LIBCUDART_INCLUDE

Path to libcudart headers.
LIBCUDART_LIB

Path to libcudart libraries.
LIBCUDA_INCLUDE

Path to libcuda headers.
LIBCUDA_LIB Path to libcuda libraries.
LIBCUPTI_INCLUDE

Path to libcupti headers.

63

APPENDIX A. SCORE-P INSTALL

LIBCUPTI_LIB
Path to libcupti libraries.

LIBOPENCL_INCLUDE
Path to libOpenCL headers.

LIBOPENCL_LIB
Path to libOpenCL libraries.

LIBBFD_INCLUDE
Path to libbfd headers.

LIBBFD_LIB Path to libbfd libraries.
OPENACC_INCLUDE

Path to openacc.h header.
OPENACC_PROFILING_INCLUDE

Path to acc_prof.h header.
LIBPMI_INCLUDE

Path to libpmi headers.
LIBPMI_LIB Path to libpmi libraries.
LIBRCA_INCLUDE

Path to librca headers.
LIBRCA_LIB Path to librca libraries.

Building & Installing
=====================

Before building Score-P, carefully check whether the configuration summary
printed by the configure script matches your expectations (i.e., whether MPI
and/or OpenMP support is correctly enabled/disabled, external libraries are
used, etc). If everything is OK, Score-P can be built and installed using

make
make install

Note that parallel builds (i.e., using ’make -j <n>’) are fully supported.

Platform-specific Instructions
==============================

GNU Compiler Plug-In
====================

On some system the necessary header files, for compiling with support for
the GNU Compiler plug-in instrumentation, are not installed by default. Therefore
an extra package needs to be installed.

On Debian and it’s derivates the package is called:

gcc-<version>-plugin-dev

On Fedora and it’s derivates the mentioned package is called:

gcc-plugin-devel

Intel Xeon Phi (aka. MIC) co-processors
=======================================

[Note: The following instructions only apply to Intel Xeon Phi
co-processors, like the Knights Corner (KNC). They do not apply to
self-hosted Xeon Phis, like the Knights Landing (KNL); for these
chips no special treatment is required.]

Building Score-P for Intel Xeon Phi co-processors requires some
extra care, and in some cases two installations into the same
location. Therefore, we strongly recommend to strictly follow the
procedure as described below.

1. Ensure that Intel compilers and Intel MPI (if desired) are
installed and available in $PATH, and that the Intel Manycore
Platform Software Stack (MPSS) is installed.

2. Configure Score-P to use the MIC platform:

64

mkdir _build-mic
cd _build-mic
../configure --enable-platform-mic [other options, e.g., ’--prefix’]

3. Build and install:

make; make install

In case a native MIC-only installation serves your needs, that’s
it. However, if the installation should also support instrumentation
and measurement of host code, a second installation *on top* of the
just installed one is required:

4. Create a new build directory for the host build:

cd ..
mkdir _build-host
cd _build-host

5. Reconfigure for the host using *identical directory options* (e.g.,
’--prefix’ or ’--bindir’) as in step 2:

../configure [other options as used in step 2]

This will automatically detect the already existing native MIC
build and enable the required support in the host tools. On
non-cross-compile systems (e.g., typical Linux clusters), make
sure to explicitly select Intel compiler support by passing
’--with-nocross-compiler-suite=intel’ to the configure script.

6. Build and install:

make; make install

Note that this approach also works with VPATH builds (even with two
separate build directories) as long as the same options defining directory
locations are passed in steps 2 and 5.

Generic Installation Instructions
=================================

Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005,
2006, 2007, 2008, 2009 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without warranty of any kind.

Basic Installation
==================

Briefly, the shell commands ‘./configure; make; make install’ should
configure, build, and install this package. The following more-detailed
instructions are generic; see the section above for instructions
specific to this package. Some packages provide this ‘INSTALL’ file but
do not implement all of the features documented below. The lack of an
optional feature in a given package is not necessarily a bug.

The ‘configure’ shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a ‘Makefile’ in each directory of the package.
It may also create one or more ‘.h’ files containing system-dependent
definitions. Finally, it creates a shell script ‘config.status’ that
you can run in the future to recreate the current configuration, and a
file ‘config.log’ containing compiler output (useful mainly for
debugging ‘configure’).

It can also use an optional file (typically called ‘config.cache’
and enabled with ‘--cache-file=config.cache’ or simply ‘-C’) that saves
the results of its tests to speed up reconfiguring. Caching is

65

APPENDIX A. SCORE-P INSTALL

disabled by default to prevent problems with accidental use of stale
cache files.

If you need to do unusual things to compile the package, please try
to figure out how ‘configure’ could check whether to do them, and mail
diffs or instructions to support@score-p.org so they can be considered
for the next release. If you are using the cache, and at some point
‘config.cache’ contains results you don’t want to keep, you may remove
or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create
‘configure’ by a program called ‘autoconf’. You need ‘configure.ac’ if
you want to change it or regenerate ‘configure’ using a newer version
of ‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type
‘./configure’ to configure the package for your system.

Running ‘configure’ might take a while. While running, it prints
some messages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with
the package, generally using the just-built uninstalled binaries.

4. Type ‘make install’ to install the programs and any data files and
documentation. When installing into a prefix owned by root, it is
recommended that the package be configured and built as a regular
user, and only the ‘make install’ phase executed with root
privileges.

5. Optionally, type ‘make installcheck’ to repeat any self-tests, but
this time using the binaries in their final installed location.
This target does not install anything. Running this target as a
regular user, particularly if the prior ‘make install’ required
root privileges, verifies that the installation completed
correctly.

6. You can remove the program binaries and object files from the
source code directory by typing ‘make clean’. To also remove the
files that ‘configure’ created (so you can compile the package for
a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly
for the package’s developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

7. Often, you can also type ‘make uninstall’ to remove the installed
files again. In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.

8. Some packages, particularly those that use Automake, provide ‘make
distcheck’, which can by used by developers to test that all other
targets like ‘make install’ and ‘make uninstall’ work correctly.
This target is generally not run by end users.

Compilers and Options
=====================

Some systems require unusual options for compilation or linking that
the ‘configure’ script does not know about. Run ‘./configure --help’
for details on some of the pertinent environment variables.

You can give ‘configure’ initial values for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

66

*Note Defining Variables::, for more details.

Compiling For Multiple Architectures
====================================

You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you can use GNU ‘make’. ‘cd’ to the
directory where you want the object files and executables to go and run
the ‘configure’ script. ‘configure’ automatically checks for the
source code in the directory that ‘configure’ is in and in ‘..’. This
is known as a "VPATH" build.

With a non-GNU ‘make’, it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use ‘make distclean’ before
reconfiguring for another architecture.

On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types--known as "fat" or
"universal" binaries--by specifying multiple ‘-arch’ options to the
compiler but only a single ‘-arch’ option to the preprocessor. Like
this:

./configure CC="gcc -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CXX="g++ -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CPP="gcc -E" CXXCPP="g++ -E"

This is not guaranteed to produce working output in all cases, you
may have to build one architecture at a time and combine the results
using the ‘lipo’ tool if you have problems.

Installation Names
==================

By default, ‘make install’ installs the package’s commands under
‘/usr/local/bin’, include files under ‘/usr/local/include’, etc. You
can specify an installation prefix other than ‘/usr/local’ by giving
‘configure’ the option ‘--prefix=PREFIX’, where PREFIX must be an
absolute file name.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option ‘--exec-prefix=PREFIX’ to ‘configure’, the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give
options like ‘--bindir=DIR’ to specify different values for particular
kinds of files. Run ‘configure --help’ for a list of the directories
you can set and what kinds of files go in them. In general, the
default for these options is expressed in terms of ‘${prefix}’, so that
specifying just ‘--prefix’ will affect all of the other directory
specifications that were not explicitly provided.

The most portable way to affect installation locations is to pass the
correct locations to ‘configure’; however, many packages provide one or
both of the following shortcuts of passing variable assignments to the
‘make install’ command line to change installation locations without
having to reconfigure or recompile.

The first method involves providing an override variable for each
affected directory. For example, ‘make install
prefix=/alternate/directory’ will choose an alternate location for all
directory configuration variables that were expressed in terms of
‘${prefix}’. Any directories that were specified during ‘configure’,
but not in terms of ‘${prefix}’, must each be overridden at install
time for the entire installation to be relocated. The approach of
makefile variable overrides for each directory variable is required by
the GNU Coding Standards, and ideally causes no recompilation.
However, some platforms have known limitations with the semantics of
shared libraries that end up requiring recompilation when using this
method, particularly noticeable in packages that use GNU Libtool.

67

APPENDIX A. SCORE-P INSTALL

The second method involves providing the ‘DESTDIR’ variable. For
example, ‘make install DESTDIR=/alternate/directory’ will prepend
‘/alternate/directory’ before all installation names. The approach of
‘DESTDIR’ overrides is not required by the GNU Coding Standards, and
does not work on platforms that have drive letters. On the other hand,
it does better at avoiding recompilation issues, and works well even
when some directory options were not specified in terms of ‘${prefix}’
at ‘configure’ time.

Optional Features
=================

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving ‘configure’ the
option ‘--program-prefix=PREFIX’ or ‘--program-suffix=SUFFIX’.

Some packages pay attention to ‘--enable-FEATURE’ options to
‘configure’, where FEATURE indicates an optional part of the package.
They may also pay attention to ‘--with-PACKAGE’ options, where PACKAGE
is something like ‘gnu-as’ or ‘x’ (for the X Window System).

For packages that use the X Window System, ‘configure’ can usually
find the X include and library files automatically, but if it doesn’t,
you can use the ‘configure’ options ‘--x-includes=DIR’ and
‘--x-libraries=DIR’ to specify their locations.

Some packages offer the ability to configure how verbose the
execution of ‘make’ will be. For these packages, running ‘./configure
--enable-silent-rules’ sets the default to minimal output, which can be
overridden with ‘make V=1’; while running ‘./configure
--disable-silent-rules’ sets the default to verbose, which can be
overridden with ‘make V=0’.

Particular systems
==================

On HP-UX, the default C compiler is not ANSI C compatible. If GNU
CC is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:

./configure CC="cc -Ae -D_XOPEN_SOURCE=500"

and if that doesn’t work, install pre-built binaries of GCC for HP-UX.

On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot
parse its ‘<wchar.h>’ header file. The option ‘-nodtk’ can be used as
a workaround. If GNU CC is not installed, it is therefore recommended
to try

./configure CC="cc"

and if that doesn’t work, try

./configure CC="cc -nodtk"

On Solaris, don’t put ‘/usr/ucb’ early in your ‘PATH’. This
directory contains several dysfunctional programs; working variants of
these programs are available in ‘/usr/bin’. So, if you need ‘/usr/ucb’
in your ‘PATH’, put it _after_ ‘/usr/bin’.

On Haiku, software installed for all users goes in ‘/boot/common’,
not ‘/usr/local’. It is recommended to use the following options:

./configure --prefix=/boot/common

Specifying the System Type
==========================

There may be some features ‘configure’ cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
same architectures, ‘configure’ can figure that out, but if it prints

68

a message saying it cannot guess the machine type, give it the
‘--build=TYPE’ option. TYPE can either be a short name for the system
type, such as ‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM

where SYSTEM can have one of these forms:

OS
KERNEL-OS

See the file ‘config.sub’ for the possible values of each field. If
‘config.sub’ isn’t included in this package, then this package doesn’t
need to know the machine type.

If you are _building_ compiler tools for cross-compiling, you should
use the option ‘--target=TYPE’ to select the type of system they will
produce code for.

If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with ‘--host=TYPE’.

Sharing Defaults
================

If you want to set default values for ‘configure’ scripts to share,
you can create a site shell script called ‘config.site’ that gives
default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. Or, you can set the
‘CONFIG_SITE’ environment variable to the location of the site script.
A warning: not all ‘configure’ scripts look for a site script.

Defining Variables
==================

Variables not defined in a site shell script can be set in the
environment passed to ‘configure’. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the ‘configure’ command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is
overridden in the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to
an Autoconf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

‘configure’ Invocation
======================

‘configure’ recognizes the following options to control how it
operates.

‘--help’
‘-h’

Print a summary of all of the options to ‘configure’, and exit.

‘--help=short’
‘--help=recursive’

Print a summary of the options unique to this package’s
‘configure’, and exit. The ‘short’ variant lists options used
only in the top level, while the ‘recursive’ variant lists options
also present in any nested packages.

‘--version’
‘-V’

69

APPENDIX A. SCORE-P INSTALL

Print the version of Autoconf used to generate the ‘configure’
script, and exit.

‘--cache-file=FILE’
Enable the cache: use and save the results of the tests in FILE,
traditionally ‘config.cache’. FILE defaults to ‘/dev/null’ to
disable caching.

‘--config-cache’
‘-C’

Alias for ‘--cache-file=config.cache’.

‘--quiet’
‘--silent’
‘-q’

Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to ‘/dev/null’ (any error
messages will still be shown).

‘--srcdir=DIR’
Look for the package’s source code in directory DIR. Usually
‘configure’ can determine that directory automatically.

‘--prefix=DIR’
Use DIR as the installation prefix. *note Installation Names::
for more details, including other options available for fine-tuning
the installation locations.

‘--no-create’
‘-n’

Run the configure checks, but stop before creating any output
files.

‘configure’ also accepts some other, not widely useful, options. Run
‘configure --help’ for more details.

70

Appendix B

MPI wrapper affiliation

Some wrapper functions are affiliated with a function group that has not been described for direct user access in
section 5.7.1. These groups are subgroups that contain function calls that are only enabled when both main groups
are enabled. The reason for this is to control the amount of events generated during measurement, a user might
want to turn off the measurement of non-critical function calls before the measurement of the complete main group
is turned off. Subgroups can either be related to MISC (miscellaneous functions, e.g. handle conversion), EXT
(external interfaces, e.g. handle attributes), or ERR (error handlers).

For example, the functions in group CG_MISC will only generate events if both groups CG and MISC are enabled
at runtime.

B.1 Function to group

Function Group
MPI_Abort EXT
MPI_Accumulate RMA
MPI_Add_error_class ERR
MPI_Add_error_code ERR
MPI_Add_error_string ERR
MPI_Address MISC
MPI_Allgather COLL
MPI_Allgatherv COLL
MPI_Alloc_mem MISC
MPI_Allreduce COLL
MPI_Alltoall COLL
MPI_Alltoallv COLL
MPI_Alltoallw COLL
MPI_Attr_delete CG_EXT
MPI_Attr_get CG_EXT
MPI_Attr_put CG_EXT
MPI_Barrier COLL
MPI_Bcast COLL
MPI_Bsend P2P
MPI_Bsend_init P2P
MPI_Buffer_attach P2P

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_Buffer_detach P2P
MPI_Cancel P2P
MPI_Cart_coords TOPO
MPI_Cart_create TOPO
MPI_Cart_get TOPO
MPI_Cart_map TOPO
MPI_Cart_rank TOPO
MPI_Cart_shift TOPO
MPI_Cart_sub TOPO
MPI_Cartdim_get TOPO
MPI_Close_port SPAWN
MPI_Comm_accept SPAWN
MPI_Comm_c2f CG_MISC
MPI_Comm_call_errhandler CG_ERR
MPI_Comm_compare CG
MPI_Comm_connect SPAWN
MPI_Comm_create CG
MPI_Comm_create_errhandler CG_ERR
MPI_Comm_create_group CG
MPI_Comm_create_keyval CG_EXT
MPI_Comm_delete_attr CG_EXT
MPI_Comm_disconnect SPAWN
MPI_Comm_dup CG
MPI_Comm_dup_with_info CG
MPI_Comm_f2c CG_MISC
MPI_Comm_free CG
MPI_Comm_free_keyval CG_EXT
MPI_Comm_get_attr CG_EXT
MPI_Comm_get_errhandler CG_ERR
MPI_Comm_get_info CG_EXT
MPI_Comm_get_name CG_EXT
MPI_Comm_get_parent SPAWN
MPI_Comm_group CG
MPI_Comm_idup CG
MPI_Comm_join SPAWN
MPI_Comm_rank CG
MPI_Comm_remote_group CG
MPI_Comm_remote_size CG
MPI_Comm_set_attr CG_EXT
MPI_Comm_set_errhandler CG_ERR
MPI_Comm_set_info CG_EXT
MPI_Comm_set_name CG_EXT
MPI_Comm_size CG
MPI_Comm_spawn SPAWN
MPI_Comm_spawn_multiple SPAWN
MPI_Comm_split CG
MPI_Comm_split_type CG

72

B.1 Function to group

MPI_Comm_test_inter CG
MPI_Compare_and_swap RMA
MPI_Dims_create TOPO
MPI_Dist_graph_create TOPO
MPI_Dist_graph_create_adjacent TOPO
MPI_Dist_graph_neighbors TOPO
MPI_Dist_graph_neighbors_count TOPO
MPI_Errhandler_create ERR
MPI_Errhandler_free ERR
MPI_Errhandler_get ERR
MPI_Errhandler_set ERR
MPI_Error_class ERR
MPI_Error_string ERR
MPI_Exscan COLL
MPI_Fetch_and_op RMA
MPI_File_c2f IO_MISC
MPI_File_call_errhandler IO_ERR
MPI_File_close IO
MPI_File_create_errhandler IO_ERR
MPI_File_delete IO
MPI_File_f2c IO_MISC
MPI_File_get_amode IO
MPI_File_get_atomicity IO
MPI_File_get_byte_offset IO
MPI_File_get_errhandler IO_ERR
MPI_File_get_group IO
MPI_File_get_info IO
MPI_File_get_position IO
MPI_File_get_position_shared IO
MPI_File_get_size IO
MPI_File_get_type_extent IO
MPI_File_get_view IO
MPI_File_iread IO
MPI_File_iread_all IO
MPI_File_iread_at IO
MPI_File_iread_at_all IO
MPI_File_iread_shared IO
MPI_File_iwrite IO
MPI_File_iwrite_all IO
MPI_File_iwrite_at IO
MPI_File_iwrite_at_all IO
MPI_File_iwrite_shared IO
MPI_File_open IO
MPI_File_preallocate IO
MPI_File_read IO
MPI_File_read_all IO
MPI_File_read_all_begin IO

73

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_File_read_all_end IO
MPI_File_read_at IO
MPI_File_read_at_all IO
MPI_File_read_at_all_begin IO
MPI_File_read_at_all_end IO
MPI_File_read_ordered IO
MPI_File_read_ordered_begin IO
MPI_File_read_ordered_end IO
MPI_File_read_shared IO
MPI_File_seek IO
MPI_File_seek_shared IO
MPI_File_set_atomicity IO
MPI_File_set_errhandler IO_ERR
MPI_File_set_info IO
MPI_File_set_size IO
MPI_File_set_view IO
MPI_File_sync IO
MPI_File_write IO
MPI_File_write_all IO
MPI_File_write_all_begin IO
MPI_File_write_all_end IO
MPI_File_write_at IO
MPI_File_write_at_all IO
MPI_File_write_at_all_begin IO
MPI_File_write_at_all_end IO
MPI_File_write_ordered IO
MPI_File_write_ordered_begin IO
MPI_File_write_ordered_end IO
MPI_File_write_shared IO
MPI_Finalize ENV
MPI_Finalized ENV
MPI_Free_mem MISC
MPI_Gather COLL
MPI_Gatherv COLL
MPI_Get RMA
MPI_Get_accumulate RMA
MPI_Get_address MISC
MPI_Get_count EXT
MPI_Get_elements EXT
MPI_Get_elements_x EXT
MPI_Get_library_version ENV
MPI_Get_processor_name EXT
MPI_Get_version MISC
MPI_Graph_create TOPO
MPI_Graph_get TOPO
MPI_Graph_map TOPO
MPI_Graph_neighbors TOPO

74

B.1 Function to group

MPI_Graph_neighbors_count TOPO
MPI_Graphdims_get TOPO
MPI_Grequest_complete EXT
MPI_Grequest_start EXT
MPI_Group_c2f CG_MISC
MPI_Group_compare CG
MPI_Group_difference CG
MPI_Group_excl CG
MPI_Group_f2c CG_MISC
MPI_Group_free CG
MPI_Group_incl CG
MPI_Group_intersection CG
MPI_Group_range_excl CG
MPI_Group_range_incl CG
MPI_Group_rank CG
MPI_Group_size CG
MPI_Group_translate_ranks CG
MPI_Group_union CG
MPI_Iallgather COLL
MPI_Iallgatherv COLL
MPI_Iallreduce COLL
MPI_Ialltoall COLL
MPI_Ialltoallv COLL
MPI_Ialltoallw COLL
MPI_Ibarrier COLL
MPI_Ibcast COLL
MPI_Ibsend P2P
MPI_Iexscan COLL
MPI_Igather COLL
MPI_Igatherv COLL
MPI_Improbe P2P
MPI_Imrecv P2P
MPI_Ineighbor_allgather TOPO
MPI_Ineighbor_allgatherv TOPO
MPI_Ineighbor_alltoall TOPO
MPI_Ineighbor_alltoallv TOPO
MPI_Ineighbor_alltoallw TOPO
MPI_Info_c2f MISC
MPI_Info_create MISC
MPI_Info_delete MISC
MPI_Info_dup MISC
MPI_Info_f2c MISC
MPI_Info_free MISC
MPI_Info_get MISC
MPI_Info_get_nkeys MISC
MPI_Info_get_nthkey MISC
MPI_Info_get_valuelen MISC

75

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_Info_set MISC
MPI_Init ENV
MPI_Init_thread ENV
MPI_Initialized ENV
MPI_Intercomm_create CG
MPI_Intercomm_merge CG
MPI_Iprobe P2P
MPI_Irecv P2P
MPI_Ireduce COLL
MPI_Ireduce_scatter COLL
MPI_Ireduce_scatter_block COLL
MPI_Irsend P2P
MPI_Is_thread_main ENV
MPI_Iscan COLL
MPI_Iscatter COLL
MPI_Iscatterv COLL
MPI_Isend P2P
MPI_Issend P2P
MPI_Keyval_create CG_EXT
MPI_Keyval_free CG_EXT
MPI_Lookup_name SPAWN
MPI_Mprobe P2P
MPI_Mrecv P2P
MPI_Neighbor_allgather TOPO
MPI_Neighbor_allgatherv TOPO
MPI_Neighbor_alltoall TOPO
MPI_Neighbor_alltoallv TOPO
MPI_Neighbor_alltoallw TOPO
MPI_Op_c2f MISC
MPI_Op_commutative MISC
MPI_Op_create MISC
MPI_Op_f2c MISC
MPI_Op_free MISC
MPI_Open_port SPAWN
MPI_Pack TYPE
MPI_Pack_external TYPE
MPI_Pack_external_size TYPE
MPI_Pack_size TYPE
MPI_Pcontrol PERF
MPI_Probe P2P
MPI_Publish_name SPAWN
MPI_Put RMA
MPI_Query_thread ENV
MPI_Raccumulate RMA
MPI_Recv P2P
MPI_Recv_init P2P
MPI_Reduce COLL

76

B.1 Function to group

MPI_Reduce_local COLL
MPI_Reduce_scatter COLL
MPI_Reduce_scatter_block COLL
MPI_Register_datarep IO
MPI_Request_c2f MISC
MPI_Request_f2c MISC
MPI_Request_free P2P
MPI_Request_get_status MISC
MPI_Rget RMA
MPI_Rget_accumulate RMA
MPI_Rput RMA
MPI_Rsend P2P
MPI_Rsend_init P2P
MPI_Scan COLL
MPI_Scatter COLL
MPI_Scatterv COLL
MPI_Send P2P
MPI_Send_init P2P
MPI_Sendrecv P2P
MPI_Sendrecv_replace P2P
MPI_Sizeof TYPE
MPI_Ssend P2P
MPI_Ssend_init P2P
MPI_Start P2P
MPI_Startall P2P
MPI_Status_c2f MISC
MPI_Status_f2c MISC
MPI_Status_set_cancelled EXT
MPI_Status_set_elements EXT
MPI_Status_set_elements_x EXT
MPI_Test P2P
MPI_Test_cancelled P2P
MPI_Testall P2P
MPI_Testany P2P
MPI_Testsome P2P
MPI_Topo_test TOPO
MPI_Type_c2f TYPE_MISC
MPI_Type_commit TYPE
MPI_Type_contiguous TYPE
MPI_Type_create_darray TYPE
MPI_Type_create_f90_complex TYPE
MPI_Type_create_f90_integer TYPE
MPI_Type_create_f90_real TYPE
MPI_Type_create_hindexed TYPE
MPI_Type_create_hindexed_block TYPE
MPI_Type_create_hvector TYPE
MPI_Type_create_indexed_block TYPE

77

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_Type_create_keyval TYPE_EXT
MPI_Type_create_resized TYPE
MPI_Type_create_struct TYPE
MPI_Type_create_subarray TYPE
MPI_Type_delete_attr TYPE_EXT
MPI_Type_dup TYPE
MPI_Type_extent TYPE
MPI_Type_f2c TYPE_MISC
MPI_Type_free TYPE
MPI_Type_free_keyval TYPE_EXT
MPI_Type_get_attr TYPE_EXT
MPI_Type_get_contents TYPE
MPI_Type_get_envelope TYPE
MPI_Type_get_extent TYPE
MPI_Type_get_extent_x TYPE
MPI_Type_get_name TYPE_EXT
MPI_Type_get_true_extent TYPE
MPI_Type_get_true_extent_x TYPE
MPI_Type_hindexed TYPE
MPI_Type_hvector TYPE
MPI_Type_indexed TYPE
MPI_Type_lb TYPE
MPI_Type_match_size TYPE
MPI_Type_set_attr TYPE_EXT
MPI_Type_set_name TYPE_EXT
MPI_Type_size TYPE
MPI_Type_size_x TYPE
MPI_Type_struct TYPE
MPI_Type_ub TYPE
MPI_Type_vector TYPE
MPI_Unpack TYPE
MPI_Unpack_external TYPE
MPI_Unpublish_name SPAWN
MPI_Wait P2P
MPI_Waitall P2P
MPI_Waitany P2P
MPI_Waitsome P2P
MPI_Win_allocate RMA
MPI_Win_allocate_shared RMA
MPI_Win_attach RMA
MPI_Win_c2f RMA_MISC
MPI_Win_call_errhandler RMA_ERR
MPI_Win_complete RMA
MPI_Win_create RMA
MPI_Win_create_dynamic RMA
MPI_Win_create_errhandler RMA_ERR
MPI_Win_create_keyval RMA_EXT

78

B.2 Group to function

MPI_Win_delete_attr RMA_EXT
MPI_Win_detach RMA
MPI_Win_f2c RMA_MISC
MPI_Win_fence RMA
MPI_Win_flush RMA
MPI_Win_flush_all RMA
MPI_Win_flush_local RMA
MPI_Win_flush_local_all RMA
MPI_Win_free RMA
MPI_Win_free_keyval RMA_EXT
MPI_Win_get_attr RMA_EXT
MPI_Win_get_errhandler RMA_ERR
MPI_Win_get_group RMA
MPI_Win_get_info RMA_EXT
MPI_Win_get_name RMA_EXT
MPI_Win_lock RMA
MPI_Win_lock_all RMA
MPI_Win_post RMA
MPI_Win_set_attr RMA_EXT
MPI_Win_set_errhandler RMA_ERR
MPI_Win_set_info RMA_EXT
MPI_Win_set_name RMA_EXT
MPI_Win_shared_query RMA
MPI_Win_start RMA
MPI_Win_sync RMA
MPI_Win_test RMA
MPI_Win_unlock RMA
MPI_Win_unlock_all RMA
MPI_Win_wait RMA
MPI_Wtick EXT
MPI_Wtime EXT

B.2 Group to function

CG - Communicators and Groups
MPI_Comm_compare, MPI_Comm_create, MPI_Comm_create_group, MPI_Comm_dup,
MPI_Comm_dup_with_info, MPI_Comm_free, MPI_Comm_group, MPI_Comm_idup, MPI_Comm_rank,
MPI_Comm_remote_group, MPI_Comm_remote_size, MPI_Comm_size, MPI_Comm_split,
MPI_Comm_split_type, MPI_Comm_test_inter, MPI_Group_compare, MPI_Group_difference,
MPI_Group_excl, MPI_Group_free, MPI_Group_incl, MPI_Group_intersection, MPI_Group_range_excl,
MPI_Group_range_incl, MPI_Group_rank, MPI_Group_size, MPI_Group_translate_ranks, MPI_Group_union,
MPI_Intercomm_create, MPI_Intercomm_merge,

CG_ERR - Error handlers for Communicators and Groups
MPI_Comm_call_errhandler, MPI_Comm_create_errhandler, MPI_Comm_get_errhandler,
MPI_Comm_set_errhandler,

CG_EXT - External interfaces for Communicators and Groups
MPI_Attr_delete, MPI_Attr_get, MPI_Attr_put, MPI_Comm_create_keyval, MPI_Comm_delete_attr,
MPI_Comm_free_keyval, MPI_Comm_get_attr, MPI_Comm_get_info, MPI_Comm_get_name,
MPI_Comm_set_attr, MPI_Comm_set_info, MPI_Comm_set_name, MPI_Keyval_create, MPI_Keyval_free,

CG_MISC - Miscellaneous functions for Communicators and Groups
MPI_Comm_c2f, MPI_Comm_f2c, MPI_Group_c2f, MPI_Group_f2c,

COLL - Collective communication

79

APPENDIX B. MPI WRAPPER AFFILIATION

MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, MPI_Alltoall, MPI_Alltoallv, MPI_Alltoallw, MPI_Barrier,
MPI_Bcast, MPI_Exscan, MPI_Gather, MPI_Gatherv, MPI_Iallgather, MPI_Iallgatherv, MPI_Iallreduce,
MPI_Ialltoall, MPI_Ialltoallv, MPI_Ialltoallw, MPI_Ibarrier, MPI_Ibcast, MPI_Iexscan, MPI_Igather, MPI_Igatherv,
MPI_Ireduce, MPI_Ireduce_scatter, MPI_Ireduce_scatter_block, MPI_Iscan, MPI_Iscatter, MPI_Iscatterv,
MPI_Reduce, MPI_Reduce_local, MPI_Reduce_scatter, MPI_Reduce_scatter_block, MPI_Scan, MPI_Scatter,
MPI_Scatterv,

ENV - Environmental management
MPI_Finalize, MPI_Finalized, MPI_Get_library_version, MPI_Init, MPI_Init_thread, MPI_Initialized,
MPI_Is_thread_main, MPI_Query_thread,

ERR - Common error handlers
MPI_Add_error_class, MPI_Add_error_code, MPI_Add_error_string, MPI_Errhandler_create,
MPI_Errhandler_free, MPI_Errhandler_get, MPI_Errhandler_set, MPI_Error_class, MPI_Error_string,

IO - Parallel I/O
MPI_File_close, MPI_File_delete, MPI_File_get_amode, MPI_File_get_atomicity, MPI_File_get_byte_offset,
MPI_File_get_group, MPI_File_get_info, MPI_File_get_position, MPI_File_get_position_shared,
MPI_File_get_size, MPI_File_get_type_extent, MPI_File_get_view, MPI_File_iread, MPI_File_iread_all,
MPI_File_iread_at, MPI_File_iread_at_all, MPI_File_iread_shared, MPI_File_iwrite, MPI_File_iwrite_all,
MPI_File_iwrite_at, MPI_File_iwrite_at_all, MPI_File_iwrite_shared, MPI_File_open, MPI_File_preallocate,
MPI_File_read, MPI_File_read_all, MPI_File_read_all_begin, MPI_File_read_all_end, MPI_File_read_at,
MPI_File_read_at_all, MPI_File_read_at_all_begin, MPI_File_read_at_all_end, MPI_File_read_ordered,
MPI_File_read_ordered_begin, MPI_File_read_ordered_end, MPI_File_read_shared, MPI_File_seek,
MPI_File_seek_shared, MPI_File_set_atomicity, MPI_File_set_info, MPI_File_set_size, MPI_File_set_view,
MPI_File_sync, MPI_File_write, MPI_File_write_all, MPI_File_write_all_begin, MPI_File_write_all_end,
MPI_File_write_at, MPI_File_write_at_all, MPI_File_write_at_all_begin, MPI_File_write_at_all_end,
MPI_File_write_ordered, MPI_File_write_ordered_begin, MPI_File_write_ordered_end,
MPI_File_write_shared, MPI_Register_datarep,

IO_ERR - Error handlers for Parallel I/O
MPI_File_call_errhandler, MPI_File_create_errhandler, MPI_File_get_errhandler, MPI_File_set_errhandler,

IO_MISC - Miscellaneous functions for Parallel I/O
MPI_File_c2f, MPI_File_f2c,

EXT - Common external interfaces
MPI_Abort, MPI_Get_count, MPI_Get_elements, MPI_Get_elements_x, MPI_Get_processor_name,
MPI_Grequest_complete, MPI_Grequest_start, MPI_Status_set_cancelled, MPI_Status_set_elements,
MPI_Status_set_elements_x, MPI_Wtick, MPI_Wtime,

MISC - Miscellaneous functions
MPI_Address, MPI_Alloc_mem, MPI_Free_mem, MPI_Get_address, MPI_Get_version, MPI_Info_c2f,
MPI_Info_create, MPI_Info_delete, MPI_Info_dup, MPI_Info_f2c, MPI_Info_free, MPI_Info_get,
MPI_Info_get_nkeys, MPI_Info_get_nthkey, MPI_Info_get_valuelen, MPI_Info_set, MPI_Op_c2f,
MPI_Op_commutative, MPI_Op_create, MPI_Op_f2c, MPI_Op_free, MPI_Request_c2f, MPI_Request_f2c,
MPI_Request_get_status, MPI_Status_c2f, MPI_Status_f2c,

P2P - Point-to-point communication
MPI_Bsend, MPI_Bsend_init, MPI_Buffer_attach, MPI_Buffer_detach, MPI_Cancel, MPI_Ibsend,
MPI_Improbe, MPI_Imrecv, MPI_Iprobe, MPI_Irecv, MPI_Irsend, MPI_Isend, MPI_Issend, MPI_Mprobe,
MPI_Mrecv, MPI_Probe, MPI_Recv, MPI_Recv_init, MPI_Request_free, MPI_Rsend, MPI_Rsend_init,
MPI_Send, MPI_Send_init, MPI_Sendrecv, MPI_Sendrecv_replace, MPI_Ssend, MPI_Ssend_init, MPI_Start,
MPI_Startall, MPI_Test, MPI_Test_cancelled, MPI_Testall, MPI_Testany, MPI_Testsome, MPI_Wait,
MPI_Waitall, MPI_Waitany, MPI_Waitsome,

PERF - Profiling Interface
MPI_Pcontrol,

RMA - One-sided communication (Remote Memory Access)

80

B.2 Group to function

MPI_Accumulate, MPI_Compare_and_swap, MPI_Fetch_and_op, MPI_Get, MPI_Get_accumulate, MPI_Put,
MPI_Raccumulate, MPI_Rget, MPI_Rget_accumulate, MPI_Rput, MPI_Win_allocate,
MPI_Win_allocate_shared, MPI_Win_attach, MPI_Win_complete, MPI_Win_create, MPI_Win_create_dynamic,
MPI_Win_detach, MPI_Win_fence, MPI_Win_flush, MPI_Win_flush_all, MPI_Win_flush_local,
MPI_Win_flush_local_all, MPI_Win_free, MPI_Win_get_group, MPI_Win_lock, MPI_Win_lock_all,
MPI_Win_post, MPI_Win_shared_query, MPI_Win_start, MPI_Win_sync, MPI_Win_test, MPI_Win_unlock,
MPI_Win_unlock_all, MPI_Win_wait,

RMA_ERR - Error handlers for One-sided communication (Remote Memory Access)
MPI_Win_call_errhandler, MPI_Win_create_errhandler, MPI_Win_get_errhandler, MPI_Win_set_errhandler,

RMA_EXT - External interfaces for One-sided communication (Remote Memory Access)
MPI_Win_create_keyval, MPI_Win_delete_attr, MPI_Win_free_keyval, MPI_Win_get_attr, MPI_Win_get_info,
MPI_Win_get_name, MPI_Win_set_attr, MPI_Win_set_info, MPI_Win_set_name,

RMA_MISC - Miscellaneous functions for One-sided communication (Remote Memory Access)
MPI_Win_c2f, MPI_Win_f2c,

SPAWN - Process spawning
MPI_Close_port, MPI_Comm_accept, MPI_Comm_connect, MPI_Comm_disconnect, MPI_Comm_get_parent,
MPI_Comm_join, MPI_Comm_spawn, MPI_Comm_spawn_multiple, MPI_Lookup_name, MPI_Open_port,
MPI_Publish_name, MPI_Unpublish_name,

TOPO - Topology (cartesian and graph) communicators
MPI_Cart_coords, MPI_Cart_create, MPI_Cart_get, MPI_Cart_map, MPI_Cart_rank, MPI_Cart_shift,
MPI_Cart_sub, MPI_Cartdim_get, MPI_Dims_create, MPI_Dist_graph_create,
MPI_Dist_graph_create_adjacent, MPI_Dist_graph_neighbors, MPI_Dist_graph_neighbors_count,
MPI_Graph_create, MPI_Graph_get, MPI_Graph_map, MPI_Graph_neighbors, MPI_Graph_neighbors_count,
MPI_Graphdims_get, MPI_Ineighbor_allgather, MPI_Ineighbor_allgatherv, MPI_Ineighbor_alltoall,
MPI_Ineighbor_alltoallv, MPI_Ineighbor_alltoallw, MPI_Neighbor_allgather, MPI_Neighbor_allgatherv,
MPI_Neighbor_alltoall, MPI_Neighbor_alltoallv, MPI_Neighbor_alltoallw, MPI_Topo_test,

TYPE - Datatypes
MPI_Pack, MPI_Pack_external, MPI_Pack_external_size, MPI_Pack_size, MPI_Sizeof, MPI_Type_commit,
MPI_Type_contiguous, MPI_Type_create_darray, MPI_Type_create_f90_complex,
MPI_Type_create_f90_integer, MPI_Type_create_f90_real, MPI_Type_create_hindexed,
MPI_Type_create_hindexed_block, MPI_Type_create_hvector, MPI_Type_create_indexed_block,
MPI_Type_create_resized, MPI_Type_create_struct, MPI_Type_create_subarray, MPI_Type_dup,
MPI_Type_extent, MPI_Type_free, MPI_Type_get_contents, MPI_Type_get_envelope, MPI_Type_get_extent,
MPI_Type_get_extent_x, MPI_Type_get_true_extent, MPI_Type_get_true_extent_x, MPI_Type_hindexed,
MPI_Type_hvector, MPI_Type_indexed, MPI_Type_lb, MPI_Type_match_size, MPI_Type_size,
MPI_Type_size_x, MPI_Type_struct, MPI_Type_ub, MPI_Type_vector, MPI_Unpack, MPI_Unpack_external,

TYPE_EXT - External interfaces for datatypes
MPI_Type_create_keyval, MPI_Type_delete_attr, MPI_Type_free_keyval, MPI_Type_get_attr,
MPI_Type_get_name, MPI_Type_set_attr, MPI_Type_set_name,

TYPE_MISC - Miscellaneous functions for datatypes
MPI_Type_c2f, MPI_Type_f2c,

81

APPENDIX B. MPI WRAPPER AFFILIATION

82

Appendix C

Score-P Metric Plugin Example

Simple example of a Score-P metric plugin

#include <scorep/SCOREP_MetricPlugins.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Maximum number of metrics */
#define NUMBER_METRICS 5

/* Maximum string length */
#define MAX_BUFFER_LENGTH 255

/* Number of individual metrics */
static int32_t num_metrics = 0;

int32_t
init()
{

return 0;
}

int32_t
add_counter(char* eventName)
{

int id = num_metrics;
num_metrics++;

return id;
}

SCOREP_Metric_Plugin_MetricProperties*
get_event_info(char* eventName)
{

SCOREP_Metric_Plugin_MetricProperties* return_values;
char name_buffer[MAX_BUFFER_LENGTH];
int i;

/* If wildcard is specified, add some default counters */
if (strcmp(eventName, "*") == 0)
{

return_values = malloc((NUMBER_METRICS + 1) * sizeof(
SCOREP_Metric_Plugin_MetricProperties));
for (i = 0; i < NUMBER_METRICS; i++)
{

snprintf(name_buffer, MAX_BUFFER_LENGTH, "sync counter #%i", i);
return_values[i].name = strdup(name_buffer);
return_values[i].description = NULL;
return_values[i].unit = NULL;
return_values[i].mode =

SCOREP_METRIC_MODE_ABSOLUTE_LAST;
return_values[i].value_type =

SCOREP_METRIC_VALUE_UINT64;
return_values[i].base = SCOREP_METRIC_BASE_DECIMAL;
return_values[i].exponent = 0;

}
return_values[NUMBER_METRICS].name = NULL;

}
else
{

/* If no wildcard is given create one counter with the passed name */

APPENDIX C. SCORE-P METRIC PLUGIN EXAMPLE

return_values = malloc(2 * sizeof(
SCOREP_Metric_Plugin_MetricProperties));

snprintf(name_buffer, MAX_BUFFER_LENGTH, "sync counter #%s", eventName);
return_values[0].name = strdup(name_buffer);
return_values[0].description = NULL;
return_values[0].unit = NULL;
return_values[0].mode = SCOREP_METRIC_MODE_ABSOLUTE_LAST

;
return_values[0].value_type = SCOREP_METRIC_VALUE_UINT64;
return_values[0].base = SCOREP_METRIC_BASE_DECIMAL;
return_values[0].exponent = 0;
return_values[1].name = NULL;

}
return return_values;

}

bool
get_value(int32_t counterIndex,

uint64_t* value)
{

*value = counterIndex;

return true;
}

void
fini()
{

return;
}

SCOREP_METRIC_PLUGIN_ENTRY(HelloWorld)
{

/* Initialize info data (with zero) */
SCOREP_Metric_Plugin_Info info;
memset(&info, 0, sizeof(SCOREP_Metric_Plugin_Info));

/* Set up */
info.plugin_version = SCOREP_METRIC_PLUGIN_VERSION;
info.run_per = SCOREP_METRIC_PER_PROCESS;
info.sync = SCOREP_METRIC_SYNC;
info.initialize = init;
info.finalize = fini;
info.get_event_info = get_event_info;
info.add_counter = add_counter;
info.get_optional_value = get_value;

return info;
}

See also

SCOREP_MetricPlugins.h

84

Appendix D

Score-P Substrate Plugin Example

Simple example of a Score-P substrate plugin

#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <scorep/SCOREP_SubstratePlugins.h>

static const SCOREP_SubstratePluginCallbacks* callbacks;

static size_t plugin_id;

static void
print(const char* event,

struct SCOREP_Location* location,
uint64_t timestamp,
SCOREP_RegionHandle regionHandle,
uint64_t stackdepth)

{
uint64_t i;
const char* slocation = callbacks->SCOREP_Location_GetName(location);
const char* sregion = callbacks->SCOREP_RegionHandle_GetName(regionHandle

);

printf("%" PRIu64 ": %s >%" PRIu64 " %s %s\n", timestamp, slocation, stackdepth, event, sregion);
}

/* An enter event has been received from Score-P */
static void
enter_region(

struct SCOREP_Location* location,
uint64_t timestamp,
SCOREP_RegionHandle regionHandle,
uint64_t* metricValues)

{
uint64_t* stackdepth = callbacks->SCOREP_Location_GetData(location, plugin_id)
;

print("Enter", location, timestamp, regionHandle, *stackdepth);
(*stackdepth)++;

}

/* An exit event has been received from Score-P */
static void
exit_region(

struct SCOREP_Location* location,
uint64_t timestamp,
SCOREP_RegionHandle regionHandle,
uint64_t* metricValues)

{
uint64_t* stackdepth = callbacks->SCOREP_Location_GetData(location, plugin_id)
;

(*stackdepth)--;
print("Exit", location, timestamp, regionHandle, *stackdepth);

}

/* is only called when process is currently not parallel */
static void
disable(

struct SCOREP_Location* location,
uint64_t timestamp,
SCOREP_RegionHandle regionHandle,
uint64_t* metricValues)

APPENDIX D. SCORE-P SUBSTRATE PLUGIN EXAMPLE

{
const char* slocation = callbacks->SCOREP_Location_GetName(location);
const char* sregion = callbacks->SCOREP_RegionHandle_GetName(regionHandle

);
printf("--------Disabled recording (%s - %s)------------\n",

slocation,
sregion);

}

/* is only called when process is currently not parallel */
static void
enable(

struct SCOREP_Location* location,
uint64_t timestamp,
SCOREP_RegionHandle regionHandle,
uint64_t* metricValues)

{
const char* slocation = callbacks->SCOREP_Location_GetName(location);
const char* sregion = callbacks->SCOREP_RegionHandle_GetName(regionHandle

);
printf("--------Enabled recording (%s - %s)------------\n",

slocation,
sregion);

}

/* Register event functions */
static uint32_t
get_event_functions(

SCOREP_Substrates_Mode mode,
SCOREP_Substrates_Callback** returned)

{
SCOREP_Substrates_Callback* functions = calloc(

SCOREP_SUBSTRATES_NUM_EVENTS,
sizeof(

SCOREP_Substrates_Callback));

/* Only print region events when recording is enabled */
if (mode == SCOREP_SUBSTRATES_RECORDING_ENABLED)
{

functions[SCOREP_EVENT_ENTER_REGION] = (
SCOREP_Substrates_Callback)enter_region;
functions[SCOREP_EVENT_EXIT_REGION] = (

SCOREP_Substrates_Callback)exit_region;
/* function prototypes for other events can be found in scorep/SCOREP_SubstrateEvents.h */

/* enable and disable are guaranteed to be called for SCOREP_SUBSTRATES_RECORDING_ENABLED */
functions[SCOREP_EVENT_ENABLE_RECORDING] = (

SCOREP_Substrates_Callback)enable;
functions[SCOREP_EVENT_DISABLE_RECORDING] = (

SCOREP_Substrates_Callback)disable;
}

*returned = functions;
return SCOREP_SUBSTRATES_NUM_EVENTS;

}

/* Receive callbacks from Score-P */
static void
set_callbacks(const SCOREP_SubstratePluginCallbacks* incoming_callbacks,

size_t size)
{

assert(sizeof(SCOREP_SubstratePluginCallbacks) <= size);
callbacks = incoming_callbacks;

}

/* assign id */
static void
assign_id(size_t id)
{

plugin_id = id;
}

static void
create_location(const struct SCOREP_Location* location,

const struct SCOREP_Location* parentLocation)
{

/* we store the stackdepth per location and initialize it with 0 */
uint64_t* stackdepth = calloc(sizeof(uint64_t), 1);
callbacks->SCOREP_Location_SetData(location, plugin_id, (void*)stackdepth);

}

/* Define plugins and some plugin functions */
SCOREP_SUBSTRATE_PLUGIN_ENTRY(PrintRegions)
{

SCOREP_SubstratePluginInfo info;
memset(&info, 0, sizeof(SCOREP_SubstratePluginInfo));

86

info.plugin_version = SCOREP_SUBSTRATE_PLUGIN_VERSION
;

info.set_callbacks = set_callbacks;
info.create_location = create_location;
info.assign_id = assign_id;
info.get_event_functions = get_event_functions;
return info;

}

See also

SCOREP_SubstratePlugins.h

87

APPENDIX D. SCORE-P SUBSTRATE PLUGIN EXAMPLE

88

Appendix E

Score-P Tools

E.1 scorep

A call to scorep has the following syntax:

This is the Score-P instrumentation tool. The usage is:
scorep <options> <original command>

Common options are:
--help, -h Show help output. Does not execute any other command.
--config=<file> Specifies file for the instrumentation configuration.
-v, --verbose[=<value>] Specifies the verbosity level. The following

levels are available:
0 = No output
1 = Executed commands are displayed (default if no

value is specified)
2 = Detailed information is displayed

--dry-run Only displays the executed commands. It does not
execute any command.

--keep-files Do not delete temporarily created files after successful
instrumentation. By default, temporary files are deleted
if no error occurs during instrumentation.

--instrument-filter=<file>
Specifies the filter file for filtering functions during
compile-time. Not supported by all instrumentation methods.
It applies the same syntax, as the one used by Score-P during
run-time.

--version Prints the Score-P version and exits.
--static Enforce static linking of the Score-P libraries.
--dynamic Enforce dynamic linking of the Score-P libraries.
--no-as-needed Adds a GNU ld linker flag to fix undefined references

when using shared Score-P libraries. This happens on
systems using --as-needed as linker default. It will
be handled transparently in future releases of Score-P.

--thread=<paradigm>
Possible paradigms and variants are:

none
No thread support.

omp
OpenMP support using thread tracking via ancestry
functions in OpenMP 3.0 and later or via an
OPARI2-instrumented threadprivate variable.
It requires and, thus, automatically enables OPARI2
instrumentation.

pthread
Pthread support using thread tracking via library wrapping
It conflicts and, thus, automatically disables OPARI2
instrumentation.

--mpp=<paradigm>[:<variant>]
Possible paradigms and variants are:

none
No multi-process support.

mpi

APPENDIX E. SCORE-P TOOLS

MPI support using library wrapping
shmem

SHMEM support using library wrapping
--mutex=<paradigm>[:<variant>]

Possible paradigms and variants are:
none

serial case, no locking
pthread

Pthread mutex locks
pthread:spinlock

Pthread spinlocks
omp

OpenMP locks
--compiler Enables compiler instrumentation.

By default, it disables pdt instrumentation.
--nocompiler Disables compiler instrumentation.
--cuda Enables cuda instrumentation.
--nocuda Disables cuda instrumentation.
--online-access Enables online-access support. It is disabled by default
--noonline-access Disables online-access support.
--pomp Enables pomp user instrumentation. By default, it also

enables preprocessing.
--nopomp Disables pomp user instrumentation. (Default)
--openmp Enables instrumentation of OpenMP directives. By default,

it also enables preprocessing. (Default for compile units
with enabled OpenMP support during the compilation)

--noopenmp Disables instrumentation of OpenMP directives.
Note: To ensure thread-safe execution of the measurement,
parallel regions still need to be tracked and will appear
in the results. (Default for compile units without OpenMP
enabled compilation)

--opari=<parameter-list>
Pass options to the source-to-source instrumenter OPARI2
to have finer control over the instrumentation process.
Please refer to the OPARI2 user documentation for more
details.

--pdt[=<parameter-list>]
Enables pdt instrumentation.
You may add additional parameters that are passed to pdt.
It requires and, thus, automatically enables user
instrumentation.
It conflicts and, thus, automatically disables preprocess
instrumentation.
By default, it disables compiler instrumentation.

--nopdt Disables pdt instrumentation.
--preprocess Enables preprocess instrumentation.

It cannot be enabled, if not at least one of the following is
enabled: OPARI2 instrumentation.
It conflicts and, thus, automatically disables pdt
instrumentation.

--nopreprocess Disables preprocess instrumentation.
--user Enables user instrumentation.
--nouser Disables user instrumentation.
--opencl Enables OpenCL instrumentation.
--noopencl Disables OpenCL instrumentation.
--openacc Enables OpenACC instrumentation.
--noopenacc Disables OpenACC instrumentation.
--memory Enables memory usage instrumentation. It is enabled by default.
--nomemory Disables memory usage instrumentation.

Report bugs to <support@score-p.org>

E.2 scorep-config

A call to scorep-config has the following syntax:

Usage:
scorep-config <command> [<options>]

Commands:
--cflags Prints additional compiler flags for a C compiler.

90

E.2 scorep-config

They already contain the include flags.
--cxxflags Prints additional compiler flags for a C++ compiler.

They already contain the include flags.
--fflags Prints additional compiler flags for a Fortran compiler.

They already contain the include flags.
--cppflags[=language]

Prints the include flags. They are already contained in the
output of the --cflags, --cxxflags, and --fflags commands.
language may be one of c (default), c++, or fortran.

--ldflags Prints the library path flags for the linker.
--libs Prints the required libraries to link against.
--cc Prints the C compiler name.
--cxx Prints the C++ compiler name.
--fc Prints the Fortran compiler name.
--mpicc Prints the MPI C compiler name.
--mpicxx Prints the MPI C++ compiler name.
--mpifc Prints the MPI Fortran compiler name.
--help Prints this usage information.
--version Prints the version number of the Score-P package.
--scorep-revision

Prints the revision number of the Score-P package.
--common-revision

Prints the revision number of the common package.
--remap-specfile

Prints the path to the remapper specification file.
--adapter-init

Prints the code for adapter initialization.
Options:
--target Get flags for specified target, e.g., mic.
--nvcc Convert flags to be suitable for the nvcc compiler.
--static Use only static Score-P libraries if possible.
--dynamic Use only dynamic Score-P libraries if possible.
--online-access|--noonline-access

Specifies whether online access (needed by Periscope) is
enabled. On default it is enabled.

--compiler|--nocompiler
Specifies whether compiler instrumentation is used.
On default compiler instrumentation is enabled.

--user|--nouser
Specifies whether user instrumentation is used.
On default user instrumentation is disabled.

--pomp|--nopomp
Specifies whether pomp instrumentation is used.
On default pomp instrumentation is disabled.

--cuda|--nocuda
Specifies whether cuda instrumentation is used.
On default cuda instrumentation is enabled.

--openacc|--noopenacc
Specifies whether openacc instrumentation is used.
On default openacc instrumentation is enabled.

--opencl|--noopencl
Specifies whether opencl instrumentation is used.
On default opencl instrumentation is enabled.

--preprocess|--nopreprocess
Specifies whether preprocess instrumentation is used.
On default preprocess instrumentation is disabled.

--memory=<memory-api-list>|--nomemory
Specifies whether memory usage recording is used.
On default memory usage recording is disabled.
The following memory interfaces may be recorded:
libc:
malloc,realloc,calloc,free,memalign,posix_memalign,valloc
libc11:
aligned_alloc
c++L32|c++L64:
new,new[],delete,delete[] (IA-64 C++ ABI)
pgCCL32|pgCCL64:
new,new[],delete,delete[] (old PGI/EDG C++ ABI)

--thread=<threading system>
Available threading systems are:
none (default)
omp
pthread

91

APPENDIX E. SCORE-P TOOLS

--mutex=<locking system>[:<variant>]
Available locking systems are:
none
omp
pthread:default
pthread:wrap
pthread:spinlock
If no variant is specified the default for the respective
threading system is used.

--mpp=<multi-process paradigm>
Available multi-process paradigms are:
none (default)
mpi
shmem

Report bugs to <support@score-p.org>

E.3 scorep-info

A call to scorep-info has the following syntax:

Usage: scorep-info <info command> <command options>
scorep-info --help [<info command>]

This is the Score-P info tool.

Available info commands:

config-summary:
Shows the configure summary of the Score-P package.

config-vars:
Shows the list of all measurement config variables with a short description.

Info command options:
--help Displays a description of the Score-P measurement

configuration system. --full Displays a detailed description for each config variable.
--values Displays the current values for each config variable.

Warning: These values may be wrong, please consult the
manual of the batch system how to pass the values
to the measurement job.

open-issues:
Shows open and known issues of the Score-P package.

Report bugs to <support@score-p.org>

E.4 scorep-score

A call to scorep-score has the following syntax:

Usage: scorep-score <profile> [options]
Options:
-r Show all regions.
-h, --help Show this help and exit.
-f <filter> Shows the result with the filter applied.
-c <num> Specifies the number of hardware counters that shall be measured.

By default, this value is 0, which means that only a timestamp
is measured on each event. If you plan to record hardware counters
specify the number of hardware counters. Otherwise, scorep-score
may underestimate the required space.

-m Prints mangled region names instead of demangled names.

E.5 scorep-backend-info

92

E.5 scorep-backend-info

Note

This tool is intended to run as a batch job. Please consult the manual of the batch system how to submit jobs.

A call to scorep-backend-info has the following syntax:

Usage: scorep-backend-info <info command> <command options>
scorep-backend-info --help

This is the Score-P backend info tool.

Available info commands:

system-tree:
Shows the available system tree levels, starting with the root.

config-vars:
Shows the current values of all measurement config variables.

93

APPENDIX E. SCORE-P TOOLS

94

Appendix F

Score-P Measurement Configuration

Introduction

Score-P allows to configure several measurement parameters via environment variables. After the measurement
run you can find a 'scorep.cfg' file in your experiment directory which contains the configuration of the measurement
run. If you did not set any configuration values explicitly, this file will contain the default values. This file is safe
to be used as input for a POSIX shell. For example, if you want to reuse the same configuration from a previous
measurement run, do something like this:

$ set -a
$. scorep.cfg
$ set +a

Measurement configuration variables have a specific type which accepts certain values.

Supported Types

String

An arbitrary character sequence, no white space trimming is done.

Path

Like String but a path is expected. Though no validation is performed.

Boolean

A Boolean value, no white space trimming is done. Accepted Boolean values for true are case insensitive and the
following:

• 'true'

• 'yes'

• 'on'

• any positive decimal number

Everything else is interpreted as the Boolean value false.

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

Number

A decimal number, white space trimming is done.

Number with size suffixes

Like Number, but also accepts unit case insensitive suffixes after optional white space:

• 'B', 'Kb', 'Mb', 'Gb', 'Tb', 'Pb', 'Eb'

The 'b' suffix can be omitted.

Set

A symbolic set. Accepted members are listed in the documentation of the variable. Multiple values are allowed,
are case insensitive, and are subject to white space trimming. They can be separated with one of the following
characters:

• ' ' - space

• ',' - comma

• ':' - colon

• ';' - semicolon

Acceptable values can also have aliases, which are listed in the documentation and separated by '/'.

Option

Like Set, but only one value allowed to be selected.

List of Configuration Variables

This is the list of all known configure variables to control a Score-P measurement.

Note

Not all variables are supported by one Score-P installation. Use the scorep-info config-vars com-
mand to list only those supported by the used installation.

SCOREP_ENABLE_PROFILING Enable profiling

Type: Boolean

Default: true

SCOREP_ENABLE_TRACING Enable tracing

96

Type: Boolean

Default: false

SCOREP_ENABLE_UNWINDING Enables recording calling context information for every event

Type: Boolean

Default: false

The calling context is the call chain of functions to the current position in the running program. This call chain
will also be annotated with source code information if possible.
This is a prerequisite for sampling but also works with instrumented applications.
Note that when tracing is also enabled, Score-P does not write the usual Enter/Leave records into the OTF2
trace, but new records.
See also SCOREP_TRACING_CONVERT_CALLING_CONTEXT_EVENTS.
Note also that this supresses events from the compiler instrumentation.

SCOREP_VERBOSE Be verbose

Type: Boolean

Default: false

SCOREP_TOTAL_MEMORY Total memory in bytes per process to be consumed by the measurement system

Type: Number with size suffixes

Default: 16000k

SCOREP_TOTAL_MEMORY will be split into pages of size SCOREP_PAGE_SIZE (potentially reduced to a
multiple of SCOREP_PAGE_SIZE). Maximum size is 4 GBminus one SCOREP_PAGE_SIZE.

SCOREP_PAGE_SIZE Memory page size in bytes

Type: Number with size suffixes

Default: 8k

If not a power of two, SCOREP_PAGE_SIZE will be increased to the next larger power of two. SCOREP_←↩

TOTAL_MEMORY will be split up into pages of (the adjusted) SCOREP_PAGE_SIZE. Minimum size is 512
bytes.

97

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

SCOREP_EXPERIMENT_DIRECTORY Name of the experiment directory

Type: Path

Default: ""

When no experiment name is given (the default) Score-P names the experiment directory ‘scorep-
measurement-tmp' and renames this after a successful measurement to a generated name based on
the current time.

SCOREP_OVERWRITE_EXPERIMENT_DIRECTORY Overwrite an existing experiment directory

Type: Boolean

Default: true

If you specified a specific experiment directory name, but this name is already given, you can force overwriting
it with this flag. The previous experiment directory will be renamed.

SCOREP_MACHINE_NAME The machine name used in profile and trace output

Type: String

Default: "Linux"

We suggest using a unique name, e.g., the fully qualified domain name. The default machine name was set
at configure time (see the INSTALL file for customization options).

SCOREP_ENABLE_SYSTEM_TREE_SEQUENCE_DEFINITIONS Use system tree sequence definitions

Type: Boolean

Default: false

Enables an internal system tree representation that specifies a sequence of system tree nodes with one
record instead of creating one record per system tree node, location group or location. It is more scalable and
has less memory requirements than single-node records. However, it costs inidividual names of nodes, but
simply enumerates them based on types. Currently, system tree sequence definitions support only MPI (and
trivially single-process) applications.

SCOREP_FORCE_CFG_FILES Force the creation of experiment directory and configuration files

Type: Boolean

98

Default: true

If this is set to 'true' (which is the default), the experiment directory will be created along with some config-
uration files, even if no substrate writes data (i.e., profiling and tracing are disabled and no substrate plugin
registered for writing).
If this is set to 'false', the directory will only be created if any substrate actually writes data.

SCOREP_TIMER Timer used during measurement

Type: Option

Default: tsc

The following timers are available for this installation:

tsc Low overhead time stamp counter (X86_64) timer.

gettimeofday gettimeofday timer.

clock_gettime clock_gettime timer with CLOCK_MONOTONIC_RAW as clock.

SCOREP_EXECUTABLE Executable of the application

Type: Path

Default: ""

File name, preferably with full path, of the application's executable. It is used for evaluating the symbol table
of the application, which is required by some compiler adapters.

SCOREP_NM_SYMBOLS Application's symbol table obtained via 'nm -l' for compiler instrumentation

Type: Path

Default: ""

File name, preferably with full path, of <file> that contains the <application>'s symbol table that was ob-
tained by the command:

$ nm -l <application> 2> /dev/null > <file>

Only needed if generating the file at measurement initialization time fails, e.g., if using the 'system()' command
from the compute nodes isn't possible.

SCOREP_PROFILING_TASK_EXCHANGE_NUM Number of foreign task objects that are collected before they
are put into the common task object exchange buffer

99

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

Type: Number with size suffixes

Default: 1K

The profiling creates a record for every task instance that is running. To avoid locking, the required memory
is taken from a preallocated memory block. Each thread has its own memory block. On task completion, the
created object can be reused by other tasks. However, if tasks migrate, the data structure migrates with them.
Thus, if there is an imbalance in the migration from a source thread that starts the execution of tasks towards
a sink thread that completes the tasks, the source thread may continually creating new task objects while in
the sink, released task objects are collected. Thus, if the sink collected a certain number of tasks it should
trigger a backflow of its collected task objects. However, this requires locking which should be avoided as
much as possible. Thus, we do not want the locking to happen on every migrated task, but only if a certain
imbalance occurs. This environment variable determines the number of migrated task instances that must be
collected before the backflow is triggered.

SCOREP_PROFILING_MAX_CALLPATH_DEPTH Maximum depth of the calltree

Type: Number

Default: 30

SCOREP_PROFILING_BASE_NAME Base for construction of the profile filename

Type: String

Default: "profile"

String which is used as based to create the filenames for the profile files.

SCOREP_PROFILING_FORMAT Profile output format

Type: Option

Default: default

Sets the output format for the profile.

The following formats are supported:

none No profile output. This does not disable profile recording.

tau_snapshot Tau snapshot format.

cube4 Stores the sum for every metric per callpath per location in Cube4 format.

cube_tuple Stores an extended set of statistics in Cube4 format.

thread_sum Sums all locations within a location group and stores the data in Cube4 format.

thread_tuple Sums all locations within a location group and store in addition some statistical data about the
distribution among the location of a location group.

100

key_threads Stores the initial location, the slowest location and the fastest location per process. Sums all
other locations within a location group. The result is stored in Cube4 format.

cluster_threads Clusters locations within a location group if they have the same calltree structure. Sums
locations within a cluster. Stores the result in Cube4 format.

default Default format. If Cube4 is supported, Cube4 is the default else the Tau snapshot format is default.

SCOREP_PROFILING_ENABLE_CLUSTERING Enable clustering

Type: Boolean

Default: true

SCOREP_PROFILING_CLUSTER_COUNT Maximum cluster count for iteration clustering

Type: Number with size suffixes

Default: 64

SCOREP_PROFILING_CLUSTERING_MODE Specifies the level of strictness when comparing call trees for
equivalence

Type: Option

Default: subtree

Possible levels:

none/0 No structural similarity required.

subtree/1 The sub-trees structure must match.

subtree_visits/2 The sub-trees structure and the number of visits must match.

mpi/3 The structure of the call-path to MPI calls must match.
Nodes that are not on an MPI call-path may differ.

mpi_visits/4 Like above, but the number of visits of the MPI calls must match, too.

mpi_visits_all/5 Like above, but the number of visits must match also match on all nodes on the call-path
to an MPI function.

SCOREP_PROFILING_CLUSTERED_REGION Name of the clustered region

Type: String

Default: ""

101

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

The clustering can only cluster one dynamic region. If more than one dynamic region are defined by the user,
the region is clustered which is exited first. If another region should be clustered instead you can specify the
region name in this variable. If the variable is unset or empty, the first exited dynamic region is clustered.

SCOREP_PROFILING_ENABLE_CORE_FILES Write .core files if an error occurred

Type: Boolean

Default: false

If an error occurs inside the profiling system, the profiling is disabled. For debugging reasons, it might be
feasible to get the state of the local stack at these points. It is not recommended to enable this feature for
large scale measurements.

SCOREP_TRACING_USE_SION Whether or not to use libsion as OTF2 substrate

Type: Boolean

Default: false

SCOREP_TRACING_MAX_PROCS_PER_SION_FILE Maximum number of processes that share one sion file
(must be > 0)

Type: Number with size suffixes

Default: 1K

All processes are than evenly distributed over the number of needed files to fulfill this constraint. E.g., having
4 processes and setting the maximum to 3 would result in 2 files each holding 2 processes.

SCOREP_TRACING_CONVERT_CALLING_CONTEXT_EVENTS Write calling context information as a se-
quence of Enter/Leave events to trace

Type: Boolean

Default: false

When recording the calling context of events (instrumented or sampled) than these could be stored in the
trace either as the new CallingContext records from OTF2 or they could be converted to the legacy Enter/←↩

Leave records. This can be controlled with this variable, where the former is the false value.
This is only in effect if SCOREP_ENABLING_UNWINDING is on.
Note that enabling this will result in an increase of records per event and also of the loss of the source code
locations.
This option exists only for backwards compatibility for tools, which cannot handle the new OTF2 records. This
option my thus be removed in future releases.

102

SCOREP_ONLINEACCESS_ENABLE Enable online access interface

Type: Boolean

Default: false

SCOREP_ONLINEACCESS_REG_PORT Online access registry service port

Type: Number

Default: 50100

SCOREP_ONLINEACCESS_REG_HOST Online access registry service hostname

Type: String

Default: "localhost"

SCOREP_ONLINEACCESS_BASE_PORT Base port for online access server

Type: Number

Default: 50010

SCOREP_ONLINEACCESS_APPL_NAME Application name to be registered

Type: String

Default: "appl"

SCOREP_FILTERING_FILE A file name which contain the filter rules

Type: Path

Default: ""

103

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

SCOREP_SUBSTRATE_PLUGINS Specify list of used plugins

Type: String

Default: ""

List of requested substrate plugin names that will be used during program run.

SCOREP_SUBSTRATE_PLUGINS_SEP Separator of substrate plugin names

Type: String

Default: ","

Character that separates plugin names in SCOREP_SUBSTRATE_PLUGINS.

SCOREP_METRIC_PAPI PAPI metric names to measure

Type: String

Default: ""

List of requested PAPI metric names that will be collected during program run.

SCOREP_METRIC_PAPI_PER_PROCESS PAPI metric names to measure per-process

Type: String

Default: ""

List of requested PAPI metric names that will be recorded only by first thread of a process.

SCOREP_METRIC_PAPI_SEP Separator of PAPI metric names

Type: String

Default: ","

Character that separates metric names in SCOREP_METRIC_PAPI and SCOREP_METRIC_PAPI_PER_←↩

PROCESS.

104

SCOREP_METRIC_RUSAGE Resource usage metric names to measure

Type: String

Default: ""

List of requested resource usage metric names that will be collected during program run.

SCOREP_METRIC_RUSAGE_PER_PROCESS Resource usage metric names to measure per-process

Type: String

Default: ""

List of requested resource usage metric names that will be recorded only by first thread of a process.

SCOREP_METRIC_RUSAGE_SEP Separator of resource usage metric names

Type: String

Default: ","

Character that separates metric names in SCOREP_METRIC_RUSAGE and SCOREP_METRIC_RUSAG←↩

E_PER_PROCESS.

SCOREP_METRIC_PLUGINS Specify list of used plugins

Type: String

Default: ""

List of requested metric plugin names that will be used during program run.

SCOREP_METRIC_PLUGINS_SEP Separator of plugin names

Type: String

Default: ","

Character that separates plugin names in SCOREP_METRIC_PLUGINS.

105

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

SCOREP_METRIC_PERF PERF metric names to measure

Type: String

Default: ""

List of requested PERF metric names that will be collected during program run.

SCOREP_METRIC_PERF_PER_PROCESS PERF metric names to measure per-process

Type: String

Default: ""

List of requested PERF metric names that will be recorded only by first thread of a process.

SCOREP_METRIC_PERF_SEP Separator of PERF metric names

Type: String

Default: ","

Character that separates metric names in SCOREP_METRIC_PERF and SCOREP_METRIC_PERF_PE←↩

R_PROCESS.

SCOREP_SAMPLING_EVENTS Set the sampling event and period: <event>[<period>]

Type: String

Default: "perf_cycles@10000000"

This selects the interrupt source for sampling.
This is only in effect if SCOREP_ENABLE_UNWINDING is on.

Possible values:
- perf event (perf_<event>, see "perf list")
period in number of events, default: 10000000
e.g., perf_cycles@2000000
- PAPI event (PAPI_<event>, see "papi_avail")
period in number of events, default: 10000000
e.g., PAPI_TOT_CYC@2000000
- timer (POSIX timer, invalid for multi-threaded)
period in us, default: 10000
e.g., timer@2000

106

SCOREP_SAMPLING_SEP Separator of sampling event names

Type: String

Default: ","

Character that separates sampling event names in SCOREP_SAMPLING_EVENTS

SCOREP_SELECTIVE_CONFIG_FILE A file name which configures selective recording

Type: Path

Default: ""

SCOREP_MPI_MAX_COMMUNICATORS Determines the number of concurrently used communicators per pro-
cess

Type: Number

Default: 50

SCOREP_MPI_MAX_WINDOWS Determines the number of concurrently used windows for MPI one-sided com-
munication per process

Type: Number

Default: 50

SCOREP_MPI_MAX_ACCESS_EPOCHS Maximum amount of concurrently active access or exposure epochs
per process

Type: Number

Default: 50

SCOREP_MPI_MAX_GROUPS Maximum number of concurrently used MPI groups per process

Type: Number

107

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

Default: 50

SCOREP_MPI_ENABLE_GROUPS The names of the function groups which are measured

Type: Set

Default: default

Other functions are not measured.

Possible groups are:

all All MPI functions

cg Communicator and group management

coll Collective functions

default Default configuration

env Environmental management

err MPI Error handling

ext External interface functions

io MPI file I/O

p2p Peer-to-peer communication

misc Miscellaneous

perf PControl

rma One sided communication

spawn Process management

topo Topology

type MPI datatype functions

xnonblock Extended non-blocking events

xreqtest Test events for uncompleted requests

none/no Disable feature

SCOREP_MPI_MEMORY_RECORDING Enable tracking of memory allocations done by calls to MPI_ALLOC_←↩

MEM and MPI_FREE_MEM

Type: Boolean

Default: false

Requires that the MISC group is also recorded.

SCOREP_MPI_ONLINE_ANALYSIS Enable online mpi wait states analysis

108

Type: Boolean

Default: false

SCOREP_SHMEM_MEMORY_RECORDING Enable tracking of memory allocations done by calls to the SHMEM
allocation API

Type: Boolean

Default: false

SCOREP_CUDA_ENABLE CUDA measurement features

Type: Set

Default: no

Sets the CUDA measurement mode to capture:

runtime CUDA runtime API

driver CUDA driver API

kernel CUDA kernels

kernel_serial Serialized kernel recording

kernel_counter Fixed CUDA kernel metrics

memcpy CUDA memory copies

sync Record implicit and explicit CUDA synchronization

idle GPU compute idle time

pure_idle GPU idle time (memory copies are not idle)

gpumemusage Record CUDA memory (de)allocations as a counter

references Record references between CUDA activities

flushatexit Flush CUDA activity buffer at program exit

default/yes/1 CUDA runtime API and GPU activities

none/no Disable feature

SCOREP_CUDA_BUFFER Total memory in bytes for the CUDA record buffer

Type: Number with size suffixes

Default: 1M

109

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

SCOREP_CUDA_BUFFER_CHUNK Chunk size in bytes for the CUDA record buffer (ignored for CUDA 5.5 and
earlier)

Type: Number with size suffixes

Default: 8k

SCOREP_OPENCL_ENABLE OpenCL measurement features

Type: Set

Default: no

Sets the OpenCL measurement mode to capture:

api OpenCL runtime API

kernel OpenCL kernels

memcpy OpenCL buffer reads/writes

default/yes/true/1 OpenCL API and GPU activities

none/no Disable feature

SCOREP_OPENCL_BUFFER_QUEUE Memory in bytes for the OpenCL command queue buffer

Type: Number with size suffixes

Default: 8k

SCOREP_OPENACC_ENABLE OpenACC measurement features

Type: Set

Default: no

Sets the OpenACC measurement mode to capture:

regions OpenACC regions

wait OpenACC wait operations

enqueue OpenACC enqueue operations (kernel, upload, download)

device_alloc OpenACC device memory allocations

kernel_properties Record kernel properties such as the kernel name as well as the gang, worker and
vector size for kernel launch operations

variable_names Record variable names for OpenACC data allocation and enqueue upload/download

default/yes/1 OpenACC regions, enqueue and wait operations

110

none/no Disable feature

SCOREP_MEMORY_RECORDING Memory recording

Type: Boolean

Default: false

Memory (de)allocations are recorded via the libc/C++ API.

111

APPENDIX F. SCORE-P MEASUREMENT CONFIGURATION

112

Appendix G

Score-P wrapper usage

Usage

scorep-wrapper --create COMPILER [BINDIR]
scorep-<compiler> [COMPILER_FLAGS...]

Description

The scorep-wrapper script instances (like scorep-gcc, see below for a list of provided instances) are in-
tended to simplify configuration and instrumentation of applications where the usual means of instrumentation, i.e.,
prefixing the compilation command with scorep, does not work out of the box. This applies, e.g., to applications
that use autotools or CMake.

The intended usage of the wrapper instances is to replace the application's compiler and linker with the correspond-
ing wrapper at configuration time so that they will be used at build time. As compiler and linker commands are
usually assigned to build variables like CC, CXX, or F77 (e.g., CC=gcc), using the corresponding wrapper is as
simple as prefixing the value with scorep- (e.g., CC=scorep-gcc).

E.g., say the original compile command is

$ gcc COMPILER_FLAGS...

Using the wrapper instead

$ scorep-gcc COMPILER_FLAGS...

will expand to the following call:

$ scorep $SCOREP_WRAPPER_INSTRUMENTER_FLAGS \
gcc $SCOREP_WRAPPER_COMPILER_FLAGS \
COMPILER_FLAGS...

Used at build time, this expansion performs the desired Score-P instrumentation.

The variables SCOREP_WRAPPER_INSTRUMENTER_FLAGS and SCOREP_WRAPPER_COMPILER_FLAG←↩

S can be used to pass extra arguments to scorep and to the compiler, respectively. Please see the Examples
section below for details.

If the application's build system includes a configuration step (like it is the case for autotools and CMake based
projects) the expansion needs to be prevented at this stage (the configuration step compiles and runs lots of small
test programs; instrumenting these would in almost all cases result in failure of the configuration). To do so, one
needs to set the variable SCOREP_WRAPPER to off when invoking the configuration command. The wrapper
command from above will than expand to the original compile command:

$ gcc COMPILER_FLAGS...

See also the EXAMPLES section below.

APPENDIX G. SCORE-P WRAPPER USAGE

Wrapper Instances

The installation provides wrapper instances based on the compilers used to build Score-P. Run scorep-wrapper
--help to see a listing of all default instances of the used Score-P installation.

Additional wrapper instances can be created with scorep-wrapper --create.

Examples

• The most prominent use case is the CMake build system. As CMake prohibits to change the compiler after the
CMake step and it also prohibits that the compiler variable value includes any flags (which renders the usual
prefixing scorep gcc to a non-functional value). One needs to use a wrapper script which introduces the
Score-P instrumenter as a compiler replacement to CMake as early as possible so that they are hard-coded
into the generated build files. Apart from that one needs to make sure that the wrappers don't perform their
usual instrumentation at this early stage or else the configuration step is likely to fail. However, at make time
we want the wrappers to do the actual instrumentation. These goals can be achieved by invoking cmake like
follows:

$ SCOREP_WRAPPER=off cmake .. \
-DCMAKE_C_COMPILER=scorep-gcc \
-DCMAKE_CXX_COMPILER=scorep-g++

The SCOREP_WRAPPER=off disables the instrumentation only in the environment of the cmake com-
mand. Subsequent calls to make are not affected and will instrument the application as expected.

• For autotools based build systems it is recommended to configure in the following way:

$ SCOREP_WRAPPER=off ../configure \
CC=scorep-gcc \
CXX=scorep-g++ \
--disable-dependency-tracking

• Both autoconf and CMake based build systems, may automatically re-configure the build tree when calling
make, because some build related files have changed (i.e., Makefile.am or CMakeLists.txt files).
This usage is not supported by the Score-P wrapper. Please re-start the configuration from an empty build
directory again as described above.

• To pass options to the scorep command in order to diverge from the default instrumentation or to activate
verbose output, use the variable SCOREP_WRAPPER_INSTRUMENTER_FLAGS at make time:

$ make SCOREP_WRAPPER_INSTRUMENTER_FLAGS=--verbose

This will result in the execution of:

$ scorep --verbose gcc ...

• The wrapper also allows to pass flags to the wrapped compiler call by using the variable SCOREP_WRAP←↩

PER_COMPILER_FLAGS:

$ make SCOREP_WRAPPER_COMPILER_FLAGS="-D_GNU_SOURCE"

Will result in the execution of:

$ scorep gcc -D_GNU_SOURCE ...

• If there is a need to create additional wrapper instances, e.g., if your build system already uses compiler
wrappers, you can do so by calling the scorep-wrapper script with the --create option:

$ scorep-wrapper --create cc

This will create a new wrapper instance for the cc compiler named scorep-cc in the same directory where
scorep-wrapper resides.

114

http://www.cmake.org/Wiki/CMake_FAQ#I_change_CMAKE_C_COMPILER_in_the_GUI_but_it_changes_back_on_the_next_configure_step._Why.3F

Appendix H

Module Documentation

H.1 Score-P User Adapter

Files

• file SCOREP_User.h

This file contains the interface for the manual user instrumentation.

• file SCOREP_User_Types.h

This file contains type definitions for manual user instrumentation.

Macros for region instrumentation

• #define SCOREP_USER_OA_PHASE_BEGIN(handle, name, type)
• #define SCOREP_USER_OA_PHASE_END(handle) SCOREP_User_OaPhaseEnd(handle);
• #define SCOREP_USER_REGION_BEGIN(handle, name, type)
• #define SCOREP_USER_REGION_INIT(handle, name, type)
• #define SCOREP_USER_REGION_END(handle) SCOREP_User_RegionEnd(handle);
• #define SCOREP_USER_REGION_ENTER(handle) SCOREP_User_RegionEnter(handle);
• #define SCOREP_USER_REGION_DEFINE(handle) static SCOREP_User_RegionHandle handle = SCO←↩

REP_USER_INVALID_REGION;
• #define SCOREP_USER_FUNC_DEFINE()
• #define SCOREP_USER_FUNC_BEGIN()
• #define SCOREP_USER_FUNC_END() SCOREP_User_RegionEnd(scorep_user_func_handle);
• #define SCOREP_USER_GLOBAL_REGION_DEFINE(handle) SCOREP_User_RegionHandle handle =

SCOREP_USER_INVALID_REGION;
• #define SCOREP_USER_GLOBAL_REGION_EXTERNAL(handle) extern SCOREP_User_RegionHandle

handle;

Macros for parameter instrumentation

• #define SCOREP_USER_PARAMETER_INT64(name, value)
• #define SCOREP_USER_PARAMETER_UINT64(name, value)
• #define SCOREP_USER_PARAMETER_STRING(name, value)

Macros to provide user metrics

• #define SCOREP_USER_METRIC_LOCAL(metricHandle)
• #define SCOREP_USER_METRIC_GLOBAL(metricHandle)

APPENDIX H. MODULE DOCUMENTATION

• #define SCOREP_USER_METRIC_EXTERNAL(metricHandle) extern SCOREP_SamplingSetHandle
metricHandle;

• #define SCOREP_USER_METRIC_INIT(metricHandle, name, unit, type, context) SCOREP_User_InitMetric(
&metricHandle, name, unit, type, context);

• #define SCOREP_USER_METRIC_INT64(metricHandle, value)
• #define SCOREP_USER_METRIC_UINT64(metricHandle, value)
• #define SCOREP_USER_METRIC_DOUBLE(metricHandle, value)

C++ specific macros for region instrumentation

• #define SCOREP_USER_REGION(name, type)

Macros for measurement control

• #define SCOREP_RECORDING_ON() SCOREP_User_EnableRecording();
• #define SCOREP_RECORDING_OFF() SCOREP_User_DisableRecording();
• #define SCOREP_RECORDING_IS_ON() SCOREP_User_RecordingEnabled()

Region types

• #define SCOREP_USER_REGION_TYPE_COMMON 0
• #define SCOREP_USER_REGION_TYPE_FUNCTION 1
• #define SCOREP_USER_REGION_TYPE_LOOP 2
• #define SCOREP_USER_REGION_TYPE_DYNAMIC 4
• #define SCOREP_USER_REGION_TYPE_PHASE 8

Metric types

• #define SCOREP_USER_METRIC_TYPE_INT64 0
• #define SCOREP_USER_METRIC_TYPE_UINT64 1
• #define SCOREP_USER_METRIC_TYPE_DOUBLE 2

Metric contexts

• #define SCOREP_USER_METRIC_CONTEXT_GLOBAL 0
• #define SCOREP_USER_METRIC_CONTEXT_CALLPATH 1

H.1.1 Detailed Description

The user adapter provides a set of macros for user manual instrumentation. The macros are inserted in the source
code and call functions of the Score-P runtime system. The user should avoid calling the Score-P runtime functions
directly.

For every macro, two definitions are provided: The first one inserts calls to the Score-P runtime system, the second
definitions resolve to nothing. Which implementation is used, depends on the definition of SCOREP_USER←↩

_ENABLE. If SCOREP_USER_ENABLE is defined, the macros resolve to calls to the Score-P runtime system.
If SCOREP_USER_ENABLE is undefined, the user instrumentation is removed by the preprocessor. This flag
SCOREP_USER_ENABLE should be set through the instrumentation wrapper tool automatically if user manual
instrumentation is enabled.

Every source file which is instrumented must include a header file with the Score-P user instrumentation header.
For C/C++ programs, the header file is 'scorep/SCOREP_User.h', for Fortran files, 'scorep/SCOREP_User.inc' must
be included. Because the Fortran compilers cannot expand macros, the Fortran source code must be preprocessed

116

H.1 Score-P User Adapter

by a C or C++ preprocessor, to include the headers and expand the macros. Which Fortran files are passed to
the preprocessor depends on the suffix. Usually, suffixes .f and .f90 are not preprocessed, .F and .F90 files are
preprocessed. However, this may depend on the used compiler.

H.1.2 Macro Definition Documentation

H.1.2.1 #define SCOREP_RECORDING_IS_ON() SCOREP_User_RecordingEnabled()

In C/C++ it behaves like a function call which returns whether recording is enabled or not. It returns false if the
recording of events is disabled, else it returns true.

C/C++ example:

1 void foo()
2 {
3 if (SCOREP_RECORDING_IS_ON())
4 {
5 // do something
6 }
7 }

In Fortran, this macro has a different syntax. An integer variable must be specified as parameter, which is set to
non-zero if recording is enabled, else the value is set to zero.

Fortran example:

1 subroutine foo
2 integer :: l
3
4 SCOREP_RECORDING_IS_ON(l)
5 if (l .eq. 0) then
6 ! do something
7 end if
8
9 end subroutine foo

H.1.2.2 #define SCOREP_RECORDING_OFF() SCOREP_User_DisableRecording();

Disables recording of events. If already disabled, this command has no effect. The control is not restricted to events
from the user adapter, but disables the recording of all events.

C/C++ example:

1 void foo()
2 {
3 SCOREP_RECORDING_OFF()
4
5 // do something
6
7 SCOREP_RECORDING_ON()
8 }

Fortran example:

1 subroutine foo
2
3 SCOREP_RECORDING_OFF()
4 ! do something
5 SCOREP_RECORDING_ON()
6
7 end subroutine foo

117

APPENDIX H. MODULE DOCUMENTATION

H.1.2.3 #define SCOREP_RECORDING_ON() SCOREP_User_EnableRecording();

Enables recording of events. If already enabled, this command has no effect. The control is not restricted to events
from the user adapter, but enables the recording of all events.

C/C++ example:

1 void foo()
2 {
3 SCOREP_RECORDING_OFF()
4
5 // do something
6
7 SCOREP_RECORDING_ON()
8 }

Fortran example:

1 subroutine foo
2
3 SCOREP_RECORDING_OFF()
4 ! do something
5 SCOREP_RECORDING_ON()
6
7 end subroutine foo

H.1.2.4 #define SCOREP_USER_FUNC_BEGIN()

Value:

static SCOREP_User_RegionHandle \
scorep_user_func_handle = SCOREP_USER_INVALID_REGION; \
SCOREP_User_RegionBegin(&scorep_user_func_handle, &SCOREP_User_LastFileName, \

&SCOREP_User_LastFileHandle, SCOREP_USER_FUNCTION_NAME, \
SCOREP_USER_REGION_TYPE_FUNCTION, __FILE__,

__LINE__);

This macro marks the start of a function. It should be inserted at the beginning of the instrumented function. It will
generate a region, with the function name.

The C/C++ version of this command takes no arguments. It contains a variable declaration and a function call.
Compilers that require a strict separation between declaration block and execution block may fail if this macro is
used.

In Fortran one argument is required for the name of the function. Furthermore, the handle must be declared explicitly
in Fortran.

Parameters

name Fortan only: A string containing the name of the function.

C/C++ example:

1 void myfunc()
2 {
3 // declarations
4
5 SCOREP_USER_FUNC_BEGIN()
6
7 // do something
8
9 SCOREP_USER_FUNC_END()
10 }

Fortran example:

1 subroutine myfunc
2 SCOREP_USER_FUNC_DEFINE()
3 ! more declarations
4

118

H.1 Score-P User Adapter

5 SCOREP_USER_FUNC_BEGIN("myfunc")
6 ! do something
7 SCOREP_USER_FUNC_END()
8
9 end subroutine myfunc

Note that in Fortran the function need to be declared using SCOREP_USER_FUNC_DEFINE before.

H.1.2.5 #define SCOREP_USER_FUNC_DEFINE()

This macro is for Fortran only. It declares the handle for a function. Every function handle must be declared in the
declaration part of the subroutine or function if the SCOREP_USER_FUNC_BEGIN and SCOREP_USER_FUN←↩

C_END macros are used.

Example:

1 subroutine myfunc
2 SCOREP_USER_FUNC_DEFINE()
3 ! more declarations
4
5 SCOREP_USER_FUNC_BEGIN("myfunc")
6 ! do something
7 SCOREP_USER_FUNC_END()
8
9 end subroutine myfunc

Note that in Fortran the function need to be declared using SCOREP_USER_FUNC_DEFINE before.

H.1.2.6 #define SCOREP_USER_FUNC_END() SCOREP_User_RegionEnd(scorep_user_func_handle);

This macro marks the end of a function. It should be inserted at every return point of the instrumented function.

C/C++ example:

1 void myfunc()
2 {
3 // declarations
4
5 SCOREP_USER_FUNC_BEGIN()
6
7 // do something
8 if (some_expression)
9 {
10 SCOREP_USER_FUNC_END()
11 return;
12 }
13
14 SCOREP_USER_FUNC_END()
15 }

Fortran example:

1 subroutine myfunc
2 SCOREP_USER_FUNC_DEFINE()
3 ! more declarations
4
5 SCOREP_USER_FUNC_BEGIN("myfunc")
6 ! do something
7 SCOREP_USER_FUNC_END()
8
9 end subroutine myfunc

Note that in Fortran the function need to be declared using SCOREP_USER_FUNC_DEFINE before.

H.1.2.7 #define SCOREP_USER_GLOBAL_REGION_DEFINE(handle) SCOREP_User_RegionHandle handle =
SCOREP_USER_INVALID_REGION;

This macro defines a region handle in a global scope for usage in more than one code block. If a region is used
in multiple source files, only one of them must contain the definition using SCOREP_USER_GLOBAL_REGION←↩

119

APPENDIX H. MODULE DOCUMENTATION

_DEFINE. All other files, in which the global handle is accessed, must only declare the global handle with SCO←↩

REP_USER_GLOBAL_REGION_EXTERNAL(handle). It is possible to use the global handle in more than one
code-block. However, code-blocks that share a handle, are handled as they were all the same region. Enter and
exit events for global regions are created with SCOREP_USER_REGION_BEGIN and SCOREP_USER_REGIO←↩

N_END, respectively. Its name and type is determined at the first enter event and is not changed on later events,
even if other code blocks contains a different name or type in their SCOREP_USER_REGION_BEGIN statement.

This macro is not available in Fortran.

Parameters

handle A unique name for the handle must be provided. This handle is declared in the macro. This
handle is used in the SCOREP_USER_REGION_BEGIN and SCOREP_USER_REGION←↩

_END statements to specify which region is started, or ended. If you are using a Fortran
version which has a limited length of code lines, the length of the handle parameter must be
at most 4 characters, else the declaration line exceeds the allowed length.

C/C++ example:

1 // In File1:
2 SCOREP_USER_GLOBAL_REGION_DEFINE(my_global_handle)
3
4 void myfunc()
5 {
6 SCOREP_USER_REGION_BEGIN(my_global_handle, "my_global", SCOREP_USER_REGION_TYPE_PHASE)
7
8 // do something
9
10 SCOREP_USER_REGION_END(my_global_handle)
11 }

1 // In File2:
2 SCOREP_USER_GLOBAL_EXTERNAL(my_global_handle)
3
4 void foo()
5 {
6 SCOREP_USER_REGION_BEGIN(my_global_handle, "my_global", SCOREP_USER_REGION_TYPE_PHASE)
7
8 // do something
9
10 SCOREP_USER_REGION_END(my_global_handle)
11 }

H.1.2.8 #define SCOREP_USER_GLOBAL_REGION_EXTERNAL(handle) extern SCOREP_User_RegionHandle handle;

This macro declares an externally defined global region. If a region is used in multiple source files, only one of
them must contain the definition using SCOREP_USER_GLOBAL_REGION_DEFINE. All other files, in which the
global handle is accessed, must only declare the global handle with SCOREP_USER_GLOBAL_REGION_EXT←↩

ERNAL(handle). It is possible to use the global handle in more than one code-block. However, code-blocks that
share a handle, are handled as they were all the same region. Enter and exit events for global regions are created
with SCOREP_USER_REGION_BEGIN and SCOREP_USER_REGION_END, respectively. Its name and type is
determined at the first enter event and is not changed on later events, even if other code blocks contains a different
name or type in their SCOREP_USER_REGION_BEGIN statement.

This macro is not available in Fortran

Parameters

handle A name for a variable must be provided. This variable name must be the same like for the cor-
responding SCOREP_USER_GLOBAL_REGION_DEFINE statement. The handle is used in
the SCOREP_USER_REGION_BEGIN and SCOREP_USER_REGION_END statements to
specify which region is started, or ended.

C/C++ example:

1 // In File 1
2 SCOREP_USER_GLOBAL_REGION_DEFINE(my_global_handle)
3
4 void myfunc()
5 {

120

H.1 Score-P User Adapter

6 SCOREP_USER_REGION_BEGIN(my_global_handle, "my_global", SCOREP_USER_REGION_TYPE_PHASE)
7
8 // do something
9
10 SCOREP_USER_REGION_END(my_global_handle)
11 }

1 // In File 2
2 SCOREP_USER_GLOBAL_EXTERNAL(my_global_handle)
3
4 void foo()
5 {
6 SCOREP_USER_REGION_BEGIN(my_global_handle, "my_global", SCOREP_USER_REGION_TYPE_PHASE)
7
8 // do something
9
10 SCOREP_USER_REGION_END(my_global_handle)
11 }

H.1.2.9 #define SCOREP_USER_METRIC_CONTEXT_CALLPATH 1

Indicates that a user counter is is measured for every callpath.

H.1.2.10 #define SCOREP_USER_METRIC_CONTEXT_GLOBAL 0

Indicates that a user counter is is measured for the global context.

H.1.2.11 #define SCOREP_USER_METRIC_DOUBLE(metricHandle, value)

Value:

SCOREP_User_TriggerMetricDouble(\
metricHandle, value);

Triggers a new event for a user counter of a double precision floating point data type. Each user metric must be
declared with SCOREP_USER_COUNTER_LOCAL, SCOREP_USER_COUNTER_GLOBAL, or SCOREP_USE←↩

R_COUNTER_EXTERNAL and initialized with SCOREP_USER_COUNTER_INIT before it is triggered for the first
time.

Parameters

metricHandle The handle of the metric for which a value is given in this statement.
value The value of the counter. It must be possible for implicit casts to cast it to a double.

Example:

1 SCOREP_USER_METRIC_LOCAL(my_local_metric)
2
3 int main()
4 {
5 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
6 SCOREP_USER_METRIC_TYPE_DOUBLE, \
7 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
8 // do something
9 }
10
11 void foo()
12 {
13 double my_double = get_some_double_value();
14 SCOREP_USER_METRIC_DOUBLE(my_local_metric, my_double)
15 }

Fortran example:

1 program myProg
2 SCOREP_USER_METRIC_LOCAL(my_local_metric)
3 real (kind=selected_int_kind(14,200)):: my_real = 24.5
4 ! more declarations

121

APPENDIX H. MODULE DOCUMENTATION

5
6
7 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", &
8 SCOREP_USER_METRIC_TYPE_DOUBLE, &
9 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
10
11 ! do something
12
13 SCOREP_USER_METRIC_DOUBLE(my_local_metric, my_real)
14 end program myProg

H.1.2.12 #define SCOREP_USER_METRIC_EXTERNAL(metricHandle) extern SCOREP_SamplingSetHandle
metricHandle;

Declares an externally defined handle for a user metric. Every global metric must be declared only in one file
using SCOREP_USER_METRIC_GLOBAL. All other files in which this handle is accessed must declare it with
SCOREP_USER_METRIC_EXTERNAL.

This macro is not available in Fortran.

Parameters

metricHandle The variable name of the handle. it must be the same name as used in the corresponding
SCOREP_USER_METRIC_GLOBAL statement.

C/C++ example:

1 // In File 1
2 SCOREP_USER_METRIC_GLOBAL(my_global_metric)
3
4 int main()
5 {
6 SCOREP_USER_METRIC_INIT(my_global_metric, "My Global Metric", "seconds", \
7 SCOREP_USER_METRIC_TYPE_UINT64, \
8 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
9 // do something
10 }
11
12 void foo()
13 {
14 uint64 my_int = get_some_int_value();
15 SCOREP_USER_METRIC_UINT64(my_global_metric, my_int)
16 }

1 // In File 2
2 SCOREP_USER_METRIC_EXTERNAL(my_global_metric)
3
4 void bar()
5 {
6 uint64 my_int = get_some_int_value();
7 SCOREP_USER_METRIC_UINT64(my_global_metric, my_int)
8 }

H.1.2.13 #define SCOREP_USER_METRIC_GLOBAL(metricHandle)

Value:

SCOREP_SamplingSetHandle metricHandle \
= SCOREP_INVALID_SAMPLING_SET;

Declares a handle for a user metric as a global variable. It must be used if a metric handle is accessed in more than
one file. Every global metric must be declared only in one file using SCOREP_USER_METRIC_GLOBAL. All other
files in which this handle is accessed must declare it with SCOREP_USER_METRIC_EXTERNAL.

This macro is not available in Fortran.

122

H.1 Score-P User Adapter

Parameters

metricHandle The variable name for the handle. If you are using a Fortran version which has a limited
length of code lines, the length of the handle parameter must be at most 4 characters, else
the declaration line exceeds the allowed length.

C/C++ example:

1 // In File 1
2 SCOREP_USER_METRIC_GLOBAL(my_global_metric)
3
4 int main()
5 {
6 SCOREP_USER_METRIC_INIT(my_global_metric, "My Global Metric", "seconds", \
7 SCOREP_USER_METRIC_TYPE_UINT64, \
8 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
9 // do something
10 }
11
12 void foo()
13 {
14 uint64 my_int = get_some_int_value();
15 SCOREP_USER_METRIC_UINT64(my_global_metric, my_int)
16 }

1 // In File 2
2 SCOREP_USER_METRIC_EXTERNAL(my_global_metric)
3
4 void bar()
5 {
6 uint64 my_int = get_some_int_value();
7 SCOREP_USER_METRIC_UINT64(my_global_metric, my_int)
8 }

H.1.2.14 #define SCOREP_USER_METRIC_INIT(metricHandle, name, unit, type, context) SCOREP_User_InitMetric(
&metricHandle, name, unit, type, context);

Initializes a new user counter. Each counter must be initialized before it is triggered the first time. The handle must
be declared using SCOREP_USER_METRIC_LOCAL, SCOREP_USER_METRIC_GLOBAL, or SCOREP_USE←↩

R_METRIC_EXTERNAL.

Parameters

metricHandle Provides a variable name of the variable to store the metric handle. The variable is declared
by the macro.

name A string containing a unique name for the counter.
unit A string containing a the unit of the data.
type Specifies the data type of the counter. It must be one of the following: SCOREP_USER_←↩

METRIC_TYPE_INT64, SCOREP_USER_METRIC_TYPE_UINT64, SCOREP_USER_M←↩

ETRIC_TYPE_DOUBLE. In Fortran is SCOREP_USER_METRIC_TYPE_UINT64 not avail-
able.

context Specifies the context for which the counter is measured. IT must be one of the following:
SCOREP_USER_METRIC_CONTEXT_GLOBAL, or SCOREP_USER_METRIC_CONTE←↩

XT_CALLPATH.

C/C++ example:

1 SCOREP_USER_METRIC_LOCAL(my_local_metric)
2
3 int main()
4 {
5 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
6 SCOREP_USER_METRIC_TYPE_UINT64, \
7 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
8 // do something
9 }
10
11 void foo()
12 {
13 uint64 my_int = get_some_int_value();
14 SCOREP_USER_METRIC_UINT64(my_local_metric, my_int)
15 }

123

APPENDIX H. MODULE DOCUMENTATION

Fortran example:

1 program myProg
2 SCOREP_USER_METRIC_LOCAL(my_local_metric)
3 integer (kind=selected_int_kind(8)):: my_int = 19
4 ! more declarations
5
6
7 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", &
8 SCOREP_USER_METRIC_TYPE_INT64, &
9 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
10
11 ! do something
12
13 SCOREP_USER_METRIC_INT64(my_local_metric, my_int)
14 end program myProg

H.1.2.15 #define SCOREP_USER_METRIC_INT64(metricHandle, value)

Value:

SCOREP_User_TriggerMetricInt64(\
metricHandle, value);

Triggers a new event for a user counter of a 64 bit integer data type. Each user metric must be declared with
SCOREP_USER_COUNTER_LOCAL, SCOREP_USER_COUNTER_GLOBAL, or SCOREP_USER_COUNTE←↩

R_EXTERNAL and initialized with SCOREP_USER_COUNTER_INIT before it is triggered for the first time.

Parameters

metricHandle The handle of the metric for which a value is given in this statement.
value The value of the counter. It must be possible for implicit casts to cast it to a 64 bit integer.

C/C++ example:

1 SCOREP_USER_METRIC_LOCAL(my_local_metric)
2
3 int main()
4 {
5 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
6 SCOREP_USER_METRIC_TYPE_INT64, \
7 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
8 // do something
9 }
10
11 void foo()
12 {
13 int64 my_int = get_some_int_value();
14 SCOREP_USER_METRIC_INT64(my_local_metric, my_int)
15 }

Fortran example:

1 program myProg
2 SCOREP_USER_METRIC_LOCAL(my_local_metric)
3 integer (kind=selected_int_kind(8)):: my_int = 19
4 ! more declarations
5
6
7 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", &
8 SCOREP_USER_METRIC_TYPE_INT64, &
9 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
10
11 ! do something
12
13 SCOREP_USER_METRIC_INT64(my_local_metric, my_int)
14 end program myProg

H.1.2.16 #define SCOREP_USER_METRIC_LOCAL(metricHandle)

Value:

124

H.1 Score-P User Adapter

static SCOREP_SamplingSetHandle \
metricHandle \

= SCOREP_INVALID_SAMPLING_SET;

Declares a handle for a user metric. It defines a variable which must be in scope at all places where the metric is
used. If it is used in more than one place it need to be a global definition.

Parameters

metricHandle The name of the variable which will be declared for storing the metric handle.

C/C++ example:

1 SCOREP_USER_METRIC_LOCAL(my_local_metric)
2
3 int main()
4 {
5 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
6 SCOREP_USER_METRIC_TYPE_UINT64, \
7 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
8 // do something
9 }
10
11 void foo()
12 {
13 uint64 my_int = get_some_int_value();
14 SCOREP_USER_METRIC_UINT64(my_local_metric, my_int)
15 }

Fortran example:

1 program myProg
2 SCOREP_USER_METRIC_LOCAL(my_local_metric)
3 integer (kind=selected_int_kind(8)):: my_int = 19
4 ! more declarations
5
6
7 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", &
8 SCOREP_USER_METRIC_TYPE_INT64, &
9 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
10
11 ! do something
12
13 SCOREP_USER_METRIC_INT64(my_local_metric, my_int)
14 end program myProg

H.1.2.17 #define SCOREP_USER_METRIC_TYPE_DOUBLE 2

Indicates that a user counter is of data type double.

H.1.2.18 #define SCOREP_USER_METRIC_TYPE_INT64 0

Indicates that a user counter is of data type signed 64 bit integer.

H.1.2.19 #define SCOREP_USER_METRIC_TYPE_UINT64 1

Indicates that a user counter is of data type unsigned 64 bit integer.

H.1.2.20 #define SCOREP_USER_METRIC_UINT64(metricHandle, value)

Value:

SCOREP_User_TriggerMetricUint64(\
metricHandle, value);

125

APPENDIX H. MODULE DOCUMENTATION

Triggers a new event for a user counter of a 64 bit unsigned integer data type. Each user metric must be declared
with SCOREP_USER_COUNTER_LOCAL, SCOREP_USER_COUNTER_GLOBAL, or SCOREP_USER_COU←↩

NTER_EXTERNAL and initialized with SCOREP_USER_COUNTER_INIT before it is triggered for the first time.

In Fortran is the unsigned integer type metric not available.

126

H.1 Score-P User Adapter

Parameters

metricHandle The handle of the metric for which a value is given in this statement.
value The value of the counter. It must be possible for implicit casts to cast it to a 64 bit unsigned

integer.

Example:

1 SCOREP_USER_METRIC_LOCAL(my_local_metric)
2
3 int main()
4 {
5 SCOREP_USER_METRIC_INIT(my_local_metric, "My Metric", "seconds", \
6 SCOREP_USER_METRIC_TYPE_UINT64, \
7 SCOREP_USER_METRIC_CONTEXT_GLOBAL)
8 // do something
9 }
10
11 void foo()
12 {
13 uint64 my_int = get_some_int_value();
14 SCOREP_USER_METRIC_UINT64(my_local_metric, my_int)
15 }

H.1.2.21 #define SCOREP_USER_OA_PHASE_BEGIN(handle, name, type)

Value:

SCOREP_User_OaPhaseBegin(\
&handle, &SCOREP_User_LastFileName, &SCOREP_User_LastFileHandle, name, \
type, __FILE__, __LINE__);

This macro marks the start of a user defined Online Access phase region. The SCOREP_USER_OA_PHASE_B←↩

EGIN and SCOREP_USER_OA_PHASE_END must be correctly nested and be a potential global synchronization
points, also it is recommended to mark the body of the application's main loop as a Online Access phase in order
to utilize main loop iterations for iterative online analysis.

Parameters

handle The handle of the associated user region, which will become a root of the profile call-tree.
This handle must be declared using SCOREP_USER_REGION_DEFINE or SCOREP_U←↩

SER_GLOBAL_REGION_DEFINE before.
name A string containing the name of the new region. The name should be unique.

type Specifies the type of the region. Possible values are SCOREP_USER_REGION_TYPE_←↩

COMMON, SCOREP_USER_REGION_TYPE_FUNCTION, SCOREP_USER_REGION_←↩

TYPE_LOOP, SCOREP_USER_REGION_TYPE_DYNAMIC, SCOREP_USER_REGION←↩

_TYPE_PHASE, or a combination of them.

C/C++ example:

1 void main()
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4
5 // application initialization
6
7 for () // main loop of the application
8 {
9 SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "main loop",SCOREP_USER_REGION_TYPE_COMMON)
10
11 // do something
12
13 SCOREP_USER_OA_PHASE_END(my_region_handle)
14 }
15
16 // application finalization
17 }

Fortran example:

127

APPENDIX H. MODULE DOCUMENTATION

1 program myProg
2 SCOREP_USER_REGION_DEFINE(my_region_handle)
3
4 ! applications initialization
5
6 ! main loop of the application
7 do ...
8
9 SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "main loop",SCOREP_USER_REGION_TYPE_COMMON)
10
11 ! do something
12
13 SCOREP_USER_OA_PHASE_END(my_region_handle)
14
15 enddo
16
17 !application finalization
18
19 end program myProg

H.1.2.22 #define SCOREP_USER_OA_PHASE_END(handle) SCOREP_User_OaPhaseEnd(handle);

This macro marks the end of a user defined Online Access phase region. The SCOREP_USER_OA_PHASE_B←↩

EGIN and SCOREP_USER_OA_PHASE_END must be correctly nested and be a potential global synchronization
points, also it is recommended to mark the body of the application's main loop as a Online Access phase in order
to utilize main loop iterations for iterative online analysis.

Parameters

handle The handle of the associated user region, which will become a root of the profile call-tree.
This handle must be declared using SCOREP_USER_REGION_DEFINE or SCOREP_U←↩

SER_GLOBAL_REGION_DEFINE before. C/C++ example:

1 void main()
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4
5 // application initialization
6
7 for () // main loop of the application
8 {
9 SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "main loop",SCOREP_USER_REGION_TYPE_COMMON)
10
11 // do something
12
13 SCOREP_USER_OA_PHASE_END(my_region_handle)
14 }
15
16 // application finalization
17 }

Fortran example:

1 program myProg
2 SCOREP_USER_REGION_DEFINE(my_region_handle)
3
4 ! applications initialization
5
6 ! main loop of the application
7 do ...
8
9 SCOREP_USER_OA_PHASE_BEGIN(my_region_handle, "main loop",SCOREP_USER_REGION_TYPE_COMMON)
10
11 ! do something
12
13 SCOREP_USER_OA_PHASE_END(my_region_handle)
14
15 enddo
16
17 !application finalization
18
19 end program myProg

128

H.1 Score-P User Adapter

H.1.2.23 #define SCOREP_USER_PARAMETER_INT64(name, value)

Value:

{ \
static SCOREP_User_ParameterHandle scorep_param =

SCOREP_USER_INVALID_PARAMETER; \
SCOREP_User_ParameterInt64(&scorep_param, name, value); }

This statement adds a 64 bit signed integer type parameter for parameter-based profiling to the current region. The
call-tree for the region is split according to the different values of the parameters with the same name. It is possible
to add an arbitrary number of parameters to a region. Each parameter must have a unique name. However, it is not
recommended to use more than 1 parameter per region.

Parameters

name A string containing the name of the parameter.
value The value of the parameter. It must be possible for implicit casts to cast it to a 64 bit integer.

C/C++ example:

1 void myfunc(int64 myint)
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
5 SCOREP_USER_PARAMETER_INT64("A nice int",myint)
6
7 // do something
8
9 SCOREP_USER_REGION_END(my_region_handle)
10 }

H.1.2.24 #define SCOREP_USER_PARAMETER_STRING(name, value)

Value:

{ \
static SCOREP_User_ParameterHandle scorep_param =

SCOREP_USER_INVALID_PARAMETER; \
SCOREP_User_ParameterString(&scorep_param, name, value); }

This statement adds a string type parameter for parameter-based profiling to the current region. The call-tree for
the region is split according to the different values of the parameters with the same name. It is possible to add
an arbitrary number of parameters to a region. Each parameter must have a unique name. However, it is not
recommended to use more than 1 parameter per region. During one visit it is not allowed to use the same name
twice for two different parameters.

Parameters

name A string containing the name of the parameter.
value The value of the parameter. It must be a pointer to a C-string (a NULL-terminated string).

C/C++ Example:

1 void myfunc(char *mystring)
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
5 SCOREP_USER_PARAMETER_STRING("A nice string",mystring)
6
7 // do something
8
9 SCOREP_USER_REGION_END(my_region_handle)
10 }

129

APPENDIX H. MODULE DOCUMENTATION

H.1.2.25 #define SCOREP_USER_PARAMETER_UINT64(name, value)

Value:

{ \
static SCOREP_User_ParameterHandle scorep_param =

SCOREP_USER_INVALID_PARAMETER; \
SCOREP_User_ParameterUint64(&scorep_param, name, value); }

This statement adds a 64 bit unsigned integer type parameter for parameter-based profiling to the current region.
The call-tree for the region is split according to the different values of the parameters with the same name. It
is possible to add an arbitrary number of parameters to a region. Each parameter must have a unique name.
However, it is not recommended to use more than 1 parameter per region.

Parameters

name A string containing the name of the parameter.
value The value of the parameter. It must be possible for implicit casts to cast it to a 64 bit unsigned

integer.

C/C++ example:

1 void myfunc(uint64 myuint)
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
5 SCOREP_USER_PARAMETER_UINT64("A nice unsigned int",myuint)
6
7 // do something
8
9 SCOREP_USER_REGION_END(my_region_handle)
10 }

H.1.2.26 #define SCOREP_USER_REGION(name, type)

Instruments a code block as a region with the given name. It inserts a local variable of the type class SCOREP_←↩

User_Region. Its constructor generates the enter event and its destructor generates the exit event. Thus, only one
statement is necessary to instrument the code block. This statement is only in C++ available.

Parameters

name A string containing the name of the new region. The name should be unique.
type Specifies the type of the region. Possible values are SCOREP_USER_REGION_TYPE_←↩

COMMON, SCOREP_USER_REGION_TYPE_FUNCTION, SCOREP_USER_REGION_←↩

TYPE_LOOP, SCOREP_USER_REGION_TYPE_DYNAMIC, SCOREP_USER_REGION←↩

_TYPE_PHASE, or a combination of them.

Example:

1 void myfunc()
2 {
3 SCOREP_USER_REGION_("myfunc", SCOREP_USER_REGION_TYPE_FUNCTION)
4
5 // do something
6 }

H.1.2.27 #define SCOREP_USER_REGION_BEGIN(handle, name, type)

Value:

SCOREP_User_RegionBegin(\
&handle, &SCOREP_User_LastFileName, &SCOREP_User_LastFileHandle, name, \
type, __FILE__, __LINE__);

This macro marks the start of a user defined region. The SCOREP_USER_REGION_BEGIN and SCOREP_US←↩

ER_REGION_END calls of all regions must be correctly nested.

130

H.1 Score-P User Adapter

Parameters

handle The handle of the region to be started. This handle must be declared using SCOREP_US←↩

ER_REGION_DEFINE or SCOREP_USER_GLOBAL_REGION_DEFINE before.
name A string containing the name of the new region. The name should be unique.

type Specifies the type of the region. Possible values are SCOREP_USER_REGION_TYPE_←↩

COMMON, SCOREP_USER_REGION_TYPE_FUNCTION, SCOREP_USER_REGION_←↩

TYPE_LOOP, SCOREP_USER_REGION_TYPE_DYNAMIC, SCOREP_USER_REGION←↩

_TYPE_PHASE, or a combination of them.

C/C++ example:

1 void myfunc()
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4
5 // do something
6
7 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
8
9 // do something
10
11 SCOREP_USER_REGION_END(my_region_handle)
12 }

Fortran example:

1 program myProg
2 SCOREP_USER_REGION_DEFINE(my_region_handle)
3 ! more declarations
4
5 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
6 ! do something
7 SCOREP_USER_REGION_END(my_region_handle)
8
9 end program myProg

H.1.2.28 #define SCOREP_USER_REGION_DEFINE(handle) static SCOREP_User_RegionHandle handle =
SCOREP_USER_INVALID_REGION;

This macro defines a user region handle in a local context. Every user handle must be defined, before it can be
used.

Parameters

handle A unique name for the handle must be provided. This handle is declared in the macro. This
handle is used in the SCOREP_USER_REGION_BEGIN and SCOREP_USER_REGION←↩

_END statements to specify which region is started, or ended. If you are using a Fortran
version which has a limited length of code lines, the length of the handle parameter must be
at most 4 characters, else the declaration line exceeds the allowed length.

C/C++ example:

1 void myfunc()
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4
5 // do something
6
7 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
8
9 // do something
10
11 SCOREP_USER_REGION_END(my_region_handle)
12 }

Fortran example:

1 program myProg
2 SCOREP_USER_REGION_DEFINE(my_region_handle)

131

APPENDIX H. MODULE DOCUMENTATION

3 ! more declarations
4
5 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
6 ! do something
7 SCOREP_USER_REGION_END(my_region_handle)
8
9 end program myProg

H.1.2.29 #define SCOREP_USER_REGION_END(handle) SCOREP_User_RegionEnd(handle);

This macro marks the end of a user defined region. The SCOREP_USER_REGION_BEGIN and SCOREP_USE←↩

R_REGION_END calls of all regions must be correctly nested.

Parameters

handle The handle of the region which ended here. It must be the same handle which is used as the
start of the region.

C/C++ example:

1 void myfunc()
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4
5 // do something
6
7 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
8
9 // do something
10
11 SCOREP_USER_REGION_END(my_region_handle)
12 }

Fortran example:

1 program myProg
2 SCOREP_USER_REGION_DEFINE(my_region_handle)
3 ! more declarations
4
5 SCOREP_USER_REGION_BEGIN(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
6 ! do something
7 SCOREP_USER_REGION_END(my_region_handle)
8
9 end program myProg

H.1.2.30 #define SCOREP_USER_REGION_ENTER(handle) SCOREP_User_RegionEnter(handle);

This macro marks the beginning of a user defined and already initialized region. The SCOREP_USER_REGI←↩

ON_BEGIN/SCOREP_USER_REGION_ENTER and SCOREP_USER_REGION_END calls of all regions must be
correctly nested. To initialize the region handle, SCOREP_USER_REGION_INIT or SCOREP_USER_REGION_←↩

BEGIN must be called before.

Parameters

handle The handle of the region which ended here. It must be the same handle which is used as the
start of the region.

C/C++ example:

1 void myfunc()
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4
5 // do something
6
7 SCOREP_USER_REGION_INIT(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
8 SCOREP_USER_REGION_ENTER(my_region_handle)
9
10 // do something
11
12 SCOREP_USER_REGION_END(my_region_handle)
13 }

132

H.1 Score-P User Adapter

Fortran example:

1 program myProg
2 SCOREP_USER_REGION_DEFINE(my_region_handle)
3 ! more declarations
4
5 SCOREP_USER_REGION_INIT(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
6 SCOREP_USER_REGION_ENTER(my_region_handle)
7 ! do something
8 SCOREP_USER_REGION_END(my_region_handle)
9
10 end program myProg

H.1.2.31 #define SCOREP_USER_REGION_INIT(handle, name, type)

Value:

SCOREP_User_RegionInit(\
&handle, &SCOREP_User_LastFileName, &SCOREP_User_LastFileHandle, name, \
type, __FILE__, __LINE__);

This macro initializes a user defined region. If the region handle is already initialized, no operation is executed.

Parameters

handle The handle of the region to be started. This handle must be declared using SCOREP_US←↩

ER_REGION_DEFINE or SCOREP_USER_GLOBAL_REGION_DEFINE before.
name A string containing the name of the new region. The name should be unique.

type Specifies the type of the region. Possible values are SCOREP_USER_REGION_TYPE_←↩

COMMON, SCOREP_USER_REGION_TYPE_FUNCTION, SCOREP_USER_REGION_←↩

TYPE_LOOP, SCOREP_USER_REGION_TYPE_DYNAMIC, SCOREP_USER_REGION←↩

_TYPE_PHASE, or a combination of them.

C/C++ example:

1 void myfunc()
2 {
3 SCOREP_USER_REGION_DEFINE(my_region_handle)
4
5 // do something
6
7 SCOREP_USER_REGION_INIT(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
8 SCOREP_USER_REGION_ENTER(my_region_handle)
9
10 // do something
11
12 SCOREP_USER_REGION_END(my_region_handle)
13 }

Fortran example:

1 program myProg
2 SCOREP_USER_REGION_DEFINE(my_region_handle)
3 ! more declarations
4
5 SCOREP_USER_REGION_INIT(my_region_handle, "my_region",SCOREP_USER_REGION_TYPE_COMMON)
6 SCOREP_USER_REGION_ENTER(my_region_handle)
7 ! do something
8 SCOREP_USER_REGION_END(my_region_handle)
9
10 end program myProg

H.1.2.32 #define SCOREP_USER_REGION_TYPE_COMMON 0

Region without any specific type.

H.1.2.33 #define SCOREP_USER_REGION_TYPE_DYNAMIC 4

Marks the regions as dynamic.

133

APPENDIX H. MODULE DOCUMENTATION

H.1.2.34 #define SCOREP_USER_REGION_TYPE_FUNCTION 1

Marks the region as being the codeblock of a function.

H.1.2.35 #define SCOREP_USER_REGION_TYPE_LOOP 2

Marks the region as being the codeblock of a loop with the same number of iterations on all processes.

H.1.2.36 #define SCOREP_USER_REGION_TYPE_PHASE 8

Marks the region as being a root node of a phase.

134

H.2 type definitions and enums used in Score-P

H.2 type definitions and enums used in Score-P

Macros

• #define SCOREP_INVALID_LINE_NO 0
• #define SCOREP_INVALID_METRIC SCOREP_MOVABLE_NULL
• #define SCOREP_INVALID_PARADIGM SCOREP_MOVABLE_NULL
• #define SCOREP_INVALID_REGION SCOREP_MOVABLE_NULL
• #define SCOREP_INVALID_ROOT_RANK -1
• #define SCOREP_INVALID_SAMPLING_SET SCOREP_MOVABLE_NULL
• #define SCOREP_INVALID_SOURCE_FILE SCOREP_MOVABLE_NULL
• #define SCOREP_LOCATION_TYPES
• #define SCOREP_MOVABLE_NULL 0

Typedefs

• typedef uint32_t SCOREP_Allocator_MovableMemory
• typedef SCOREP_Allocator_MovableMemory SCOREP_AnyHandle
• typedef uint32_t SCOREP_LineNo
• typedef SCOREP_AnyHandle SCOREP_MetricHandle
• typedef int SCOREP_MpiRank
• typedef uint64_t SCOREP_MpiRequestId
• typedef SCOREP_AnyHandle SCOREP_ParadigmHandle
• typedef SCOREP_AnyHandle SCOREP_RegionHandle
• typedef SCOREP_AnyHandle SCOREP_SamplingSetHandle
• typedef SCOREP_AnyHandle SCOREP_SourceFileHandle
• typedef struct SCOREP_Task ∗ SCOREP_TaskHandle

Enumerations

• enum SCOREP_CollectiveType {
SCOREP_COLLECTIVE_BARRIER,
SCOREP_COLLECTIVE_BROADCAST,
SCOREP_COLLECTIVE_GATHER,
SCOREP_COLLECTIVE_GATHERV,
SCOREP_COLLECTIVE_SCATTER,
SCOREP_COLLECTIVE_SCATTERV,
SCOREP_COLLECTIVE_ALLGATHER,
SCOREP_COLLECTIVE_ALLGATHERV,
SCOREP_COLLECTIVE_ALLTOALL,
SCOREP_COLLECTIVE_ALLTOALLV,
SCOREP_COLLECTIVE_ALLTOALLW,
SCOREP_COLLECTIVE_ALLREDUCE,
SCOREP_COLLECTIVE_REDUCE,
SCOREP_COLLECTIVE_REDUCE_SCATTER,
SCOREP_COLLECTIVE_REDUCE_SCATTER_BLOCK,
SCOREP_COLLECTIVE_SCAN,
SCOREP_COLLECTIVE_EXSCAN,
SCOREP_COLLECTIVE_CREATE_HANDLE,
SCOREP_COLLECTIVE_DESTROY_HANDLE,
SCOREP_COLLECTIVE_ALLOCATE,
SCOREP_COLLECTIVE_DEALLOCATE,
SCOREP_COLLECTIVE_CREATE_HANDLE_AND_ALLOCATE,
SCOREP_COLLECTIVE_DESTROY_HANDLE_AND_DEALLOCATE }

Types to specify the used collectives in calls to SCOREP_MpiCollectiveBegin and SCOREP_RmaCollectiveBegin.

135

APPENDIX H. MODULE DOCUMENTATION

• enum SCOREP_Ipc_Datatype

specifies an inter process communication data types

• enum SCOREP_Ipc_Operation

specifies an inter process communication operation for reduce function

• enum SCOREP_LocationType { , SCOREP_INVALID_LOCATION_TYPE }

• enum SCOREP_LockType {
SCOREP_LOCK_EXCLUSIVE,
SCOREP_LOCK_SHARED,
SCOREP_INVALID_LOCK_TYPE }

• enum SCOREP_MetricOccurrence {
SCOREP_METRIC_OCCURRENCE_SYNCHRONOUS_STRICT = 0,
SCOREP_METRIC_OCCURRENCE_SYNCHRONOUS = 1,
SCOREP_METRIC_OCCURRENCE_ASYNCHRONOUS = 2,
SCOREP_INVALID_METRIC_OCCURRENCE }

Types to be used in defining the occurrence of a sampling set.

• enum SCOREP_MetricScope {
SCOREP_METRIC_SCOPE_LOCATION = 0,
SCOREP_METRIC_SCOPE_LOCATION_GROUP = 1,
SCOREP_METRIC_SCOPE_SYSTEM_TREE_NODE = 2,
SCOREP_METRIC_SCOPE_GROUP = 3,
SCOREP_INVALID_METRIC_SCOPE }

Types to be used in defining the scope of a scoped sampling set.

• enum SCOREP_ParadigmClass { SCOREP_INVALID_PARADIGM_CLASS }

defines classes of paradigms that are monitored Types:

• enum SCOREP_ParadigmType { SCOREP_INVALID_PARADIGM_TYPE }

defines paradigms that are be monitored

• enum SCOREP_ParameterType {
SCOREP_PARAMETER_INT64,
SCOREP_PARAMETER_UINT64,
SCOREP_PARAMETER_STRING,
SCOREP_INVALID_PARAMETER_TYPE }

defines types to be used in defining a parameter for parameter based profiling (SCOREP_Definitions_New←↩

Parameter()).

• enum SCOREP_RegionType { , SCOREP_INVALID_REGION_TYPE }

specifies a Region

• enum SCOREP_RmaAtomicType

specifies a RMA Atomic Operation Type.

• enum SCOREP_RmaSyncLevel

specifies a RMA synchronization level, used by RMA records to be passed to SCOREP_Rma∗() functions.

• enum SCOREP_RmaSyncType { SCOREP_INVALID_RMA_SYNC_TYPE }

Type of direct RMA synchronization call.

• enum SCOREP_SamplingSetClass {
SCOREP_SAMPLING_SET_ABSTRACT,
SCOREP_SAMPLING_SET_CPU,
SCOREP_SAMPLING_SET_GPU }

Class of locations which recorded a sampling set.

• enum SCOREP_Substrates_RequirementFlag {
SCOREP_SUBSTRATES_REQUIREMENT_EXPERIMENT_DIRECTORY = 0,
SCOREP_SUBSTRATES_REQUIREMENT_CONSTANT_METRIC_SET = 0,
SCOREP_SUBSTRATES_NUM_REQUIREMENT }

136

H.2 type definitions and enums used in Score-P

H.2.1 Detailed Description

H.2.2 Macro Definition Documentation

H.2.2.1 #define SCOREP_INVALID_LINE_NO 0

Symbolic constant representing an invalid or unknown line number.

See also

SCOREP_Definitions_NewRegion()

H.2.2.2 #define SCOREP_INVALID_METRIC SCOREP_MOVABLE_NULL

Symbolic constant representing an invalid or unknown metric definition.

H.2.2.3 #define SCOREP_INVALID_PARADIGM SCOREP_MOVABLE_NULL

Symbolic constant representing an invalid or unknown paradigm definition.

H.2.2.4 #define SCOREP_INVALID_REGION SCOREP_MOVABLE_NULL

Symbolic constant representing an invalid or unknown region definition.

H.2.2.5 #define SCOREP_INVALID_ROOT_RANK -1

Symbolic constant representing an invalid or unknown rank.

See also

SCOREP_MpiCollective()

H.2.2.6 #define SCOREP_INVALID_SAMPLING_SET SCOREP_MOVABLE_NULL

Symbolic constant representing an invalid or unknown metric class definition.

H.2.2.7 #define SCOREP_INVALID_SOURCE_FILE SCOREP_MOVABLE_NULL

Symbolic constant representing an invalid or unknown source file definition.

H.2.2.8 #define SCOREP_LOCATION_TYPES

Value:

SCOREP_LOCATION_TYPE(CPU_THREAD, "CPU thread") \
SCOREP_LOCATION_TYPE(GPU, "GPU") \
SCOREP_LOCATION_TYPE(METRIC, "metric location") \

Types to be used in defining a location (SCOREP_Definitions_NewLocation()).

H.2.2.9 #define SCOREP_MOVABLE_NULL 0

Symbolic constant representing an invalid or NULL handle of type SCOREP_Allocator_MovableMemory.

137

APPENDIX H. MODULE DOCUMENTATION

H.2.3 Typedef Documentation

H.2.3.1 typedef uint32_t SCOREP_Allocator_MovableMemory

Opaque handle to memory that can be easily moved between processes. Used for definitions as they have to be
moved during unification.

H.2.3.2 typedef SCOREP_Allocator_MovableMemory SCOREP_AnyHandle

Type of a opaque handle to any definition.

H.2.3.3 typedef uint32_t SCOREP_LineNo

Type used in specifying line numbers.

See also

SCOREP_Definitions_NewRegion()

H.2.3.4 typedef SCOREP_AnyHandle SCOREP_MetricHandle

Type of a opaque handle to a metric definition.

See also

SCOREP_Definitions_NewMetric()

H.2.3.5 typedef int SCOREP_MpiRank

Type of MPI Ranks. Type of MPI ranks always int.

H.2.3.6 typedef uint64_t SCOREP_MpiRequestId

Type of a MPI Non-blocking communication request id.

H.2.3.7 typedef SCOREP_AnyHandle SCOREP_ParadigmHandle

Type of a opaque handle to a paradigm definition.

See also

SCOREP_Definitions_NewParadigm()

H.2.3.8 typedef SCOREP_AnyHandle SCOREP_RegionHandle

Type of a opaque handle to a region definition.

See also

SCOREP_Definitions_NewRegion()

138

H.2 type definitions and enums used in Score-P

H.2.3.9 typedef SCOREP_AnyHandle SCOREP_SamplingSetHandle

Type of a opaque handle to a sampling set definition.

See also

SCOREP_Definitions_NewSamplingSet()

H.2.3.10 typedef SCOREP_AnyHandle SCOREP_SourceFileHandle

Type of a opaque handle to a source file definition.

See also

SCOREP_Definitions_NewSourceFile()

H.2.3.11 typedef struct SCOREP_Task∗ SCOREP_TaskHandle

Task Handle

H.2.4 Enumeration Type Documentation

H.2.4.1 enum SCOREP_CollectiveType

Types to specify the used collectives in calls to SCOREP_MpiCollectiveBegin and SCOREP_RmaCollectiveBegin.

Enumerator

SCOREP_COLLECTIVE_BARRIER The collective is a barrier, e.g., MPI_Barrier(...), shmem_barrier(...), or
shmem_barrier_all(...)

SCOREP_COLLECTIVE_BROADCAST The collective is a barrier, e.g., MPI_Bcast(...), or shmem_←↩

broadcast32(...)

SCOREP_COLLECTIVE_GATHER The collective is a simple gather operation, e.g., MPI_Gather(...)

SCOREP_COLLECTIVE_GATHERV The collective is a complex gather operation, e.g., MPI_Gatherv(...)

SCOREP_COLLECTIVE_SCATTER The collective is a simple scatter operation, e.g., MPI_Scatter(...)

SCOREP_COLLECTIVE_SCATTERV The collective is a complex scatter operation, e.g., MPI_Scatterv(...)

SCOREP_COLLECTIVE_ALLGATHER The collective is a simple allgather operation, e.g., MPI_Allgather(...),
or shmem_collect64(...)

SCOREP_COLLECTIVE_ALLGATHERV The collective is a complex allgather operation, e.g., MPI_←↩

Allgatherv(...)

SCOREP_COLLECTIVE_ALLTOALL The collective is a simple all-to-all communication, e.g., MPI_←↩

Alltoall(...)

SCOREP_COLLECTIVE_ALLTOALLV The collective is a all-to-all communication with more options for sizes
and displacements, e.g., MPI_Alltoallv(...)

SCOREP_COLLECTIVE_ALLTOALLW The collective is a generalized all-to-all communication, e.g., MPI←↩

_Alltoallw(...)

SCOREP_COLLECTIVE_ALLREDUCE The collective is an allreduce operation, e.g., MPI_Allreduce(...)

SCOREP_COLLECTIVE_REDUCE The collective is a reduce operation, e.g., MPI_Reduce(...), or shmem←↩

_longlong_max_to_all(...)

SCOREP_COLLECTIVE_REDUCE_SCATTER The collective is a reduce-scatter operation, which combines
some values and scatters the results, e.g., MPI_Reduce_scatter(...)

139

APPENDIX H. MODULE DOCUMENTATION

SCOREP_COLLECTIVE_REDUCE_SCATTER_BLOCK The collective is a reduce scatter block operation,
e.g., MPI_Reduce_scatter_block(...)

SCOREP_COLLECTIVE_SCAN The collective is a scan operation, where partial reductions of data is com-
puted, e.g., MPI_Scan(...)

SCOREP_COLLECTIVE_EXSCAN The collective is an exclusive scan operation, e.g., MPI_Exscan(...)

SCOREP_COLLECTIVE_CREATE_HANDLE This is used by the tracing substrate to work together with O←↩

TF2

SCOREP_COLLECTIVE_DESTROY_HANDLE This is used by the tracing substrate to work together with
OTF2

SCOREP_COLLECTIVE_ALLOCATE This is used by the tracing substrate to work together with OTF2

SCOREP_COLLECTIVE_DEALLOCATE This is used by the tracing substrate to work together with OTF2

SCOREP_COLLECTIVE_CREATE_HANDLE_AND_ALLOCATE This is used by the tracing substrate to
work together with OTF2

SCOREP_COLLECTIVE_DESTROY_HANDLE_AND_DEALLOCATE This is used by the tracing substrate
to work together with OTF2

H.2.4.2 enum SCOREP_Ipc_Datatype

specifies an inter process communication data types

Types:

• SCOREP_IPC_BYTE byte

• SCOREP_IPC_CHAR char

• SCOREP_IPC_UNSIGNED_CHAR unsigned char

• SCOREP_IPC_INT int

• SCOREP_IPC_UNSIGNED unsigned int

• SCOREP_IPC_INT32_T int32_t

• SCOREP_IPC_UINT32_T uint32_t

• SCOREP_IPC_INT64_T int64_t

• SCOREP_IPC_UINT64_T uint64_t

• SCOREP_IPC_DOUBLE double

H.2.4.3 enum SCOREP_Ipc_Operation

specifies an inter process communication operation for reduce function

Types:

• SCOREP_IPC_BAND binary and

• SCOREP_IPC_BOR binary or

• SCOREP_IPC_MIN minimum

• SCOREP_IPC_MAX maximum

• SCOREP_IPC_SUM sum

140

H.2 type definitions and enums used in Score-P

H.2.4.4 enum SCOREP_LocationType

Enumerator

SCOREP_INVALID_LOCATION_TYPE For internal use only.

H.2.4.5 enum SCOREP_LockType

General Lock Type.

Enumerator

SCOREP_LOCK_EXCLUSIVE Exclusive lock. No other lock will be granted.

SCOREP_LOCK_SHARED Shared lock. Other shared locks will be granted, but no exclusive locks.

SCOREP_INVALID_LOCK_TYPE For internal use only.

H.2.4.6 enum SCOREP_MetricOccurrence

Types to be used in defining the occurrence of a sampling set.

Enumerator

SCOREP_METRIC_OCCURRENCE_SYNCHRONOUS_STRICT Metric occurs at every region enter and
leave.

SCOREP_METRIC_OCCURRENCE_SYNCHRONOUS Metric occurs only at a region enter and leave, but
does not need to occur at every enter/leave.

SCOREP_METRIC_OCCURRENCE_ASYNCHRONOUS Metric can occur at any place i.e. it is not related to
region enter and leaves.

SCOREP_INVALID_METRIC_OCCURRENCE For internal use only.

H.2.4.7 enum SCOREP_MetricScope

Types to be used in defining the scope of a scoped sampling set.

Enumerator

SCOREP_METRIC_SCOPE_LOCATION Scope of a metric is another location.

SCOREP_METRIC_SCOPE_LOCATION_GROUP Scope of a metric is a location group.

SCOREP_METRIC_SCOPE_SYSTEM_TREE_NODE Scope of a metric is a system tree node.

SCOREP_METRIC_SCOPE_GROUP Scope of a metric is a generic group of locations.

SCOREP_INVALID_METRIC_SCOPE For internal use only.

H.2.4.8 enum SCOREP_ParadigmClass

defines classes of paradigms that are monitored Types:

Types to be used in defining a region (SCOREP_Definitions_NewRegion()). In order to track the origin of a region
definition, the adapter needs to provide his type.

• SCOREP_PARADIGM_CLASS_MPP refers to any multi processing based paradigms (e.g., MPI, SHMEM)

• SCOREP_PARADIGM_CLASS_THREAD_FORK_JOIN refers to any thread parallel fork-join based
paradigms (e.g., OpenMP)

141

APPENDIX H. MODULE DOCUMENTATION

• SCOREP_PARADIGM_CLASS_THREAD_CREATE_WAIT refers to any thread parallel create wait based
paradigms (e.g., PThreads)

• SCOREP_PARADIGM_CLASS_ACCELERATOR refers to any accelerator based paradigms

• SCOREP_INVALID_PARADIGM_CLASS for internal use only

Enumerator

SCOREP_INVALID_PARADIGM_CLASS For internal use only.

H.2.4.9 enum SCOREP_ParadigmType

defines paradigms that are be monitored

! Keep MPI first after the non-parallel paradigms

Types:

• SCOREP_PARADIGM_MEASUREMENT refers to Score-P internals

• SCOREP_PARADIGM_USER refers to user instrumentation

• SCOREP_PARADIGM_COMPILER refers to compiler instrumentation

• SCOREP_PARADIGM_SAMPLING refers to sampling

• SCOREP_PARADIGM_MEMORY refers to a memory region (malloc/realloc/...)

• SCOREP_PARADIGM_MPI refers to MPI instrumentation

• SCOREP_PARADIGM_SHMEM refers to SHMEM instrumentation

• SCOREP_PARADIGM_OPENMP refers to OpenMP instrumentation

• SCOREP_PARADIGM_PTHREAD refers to Pthread instrumentation

• SCOREP_PARADIGM_CUDA refers to CUDA instrumentation

• SCOREP_PARADIGM_OPENCL refers to OpenCL instrumentation

• SCOREP_PARADIGM_OPENACC refers to OpenACC instrumentation

• SCOREP_INVALID_PARADIGM_TYPE for internal use only

Enumerator

SCOREP_INVALID_PARADIGM_TYPE For internal use only.

H.2.4.10 enum SCOREP_ParameterType

defines types to be used in defining a parameter for parameter based profiling (SCOREP_Definitions_New←↩

Parameter()).

Enumerator

SCOREP_PARAMETER_INT64 The parameter is an int64_t

SCOREP_PARAMETER_UINT64 The parameter is an uint64_t

SCOREP_PARAMETER_STRING The parameter is a string

SCOREP_INVALID_PARAMETER_TYPE For internal use only.

142

H.2 type definitions and enums used in Score-P

H.2.4.11 enum SCOREP_RegionType

specifies a Region

Types to be used in defining a region (SCOREP_Definitions_NewRegion()). These types are currently not used
inside the measurement system. This may change in future if we are going to implement phases/dynamic regions
etc. inside the measurement system as opposed to inside the adapters or as a postprocessing step. The names
should be self explanatory; most of them are already used (whith a different prefix) in VampiTrace and Scalasca.

Types:

• SCOREP_REGION_UNKNOWN The type of the region is unknown / not defined

• SCOREP_REGION_FUNCTION The region is defined by compiler instrumentation/sampling and defines a
code function

• SCOREP_REGION_LOOP The region represents a loop in the source code (used by Opari)

• SCOREP_REGION_USER The region is a user region, e.g., an Opari user region

• SCOREP_REGION_CODE The region represents a code region

• SCOREP_REGION_PHASE (Currently not used)

• SCOREP_REGION_DYNAMIC (Currently not used)

• SCOREP_REGION_DYNAMIC_PHASE (Currently not used)

• SCOREP_REGION_DYNAMIC_LOOP (Currently not used)

• SCOREP_REGION_DYNAMIC_FUNCTION (Currently not used)

• SCOREP_REGION_DYNAMIC_LOOP_PHASE (Currently not used)

• SCOREP_REGION_COLL_ONE2ALL Represents a collective communication region with one2all communi-
cation

• SCOREP_REGION_COLL_ALL2ONE Represents a collective communication region with all2one communi-
cation

• SCOREP_REGION_COLL_ALL2ALL Represents a collective communication region with all2all communica-
tion

• SCOREP_REGION_COLL_OTHER Represents a collective communication region that is neither one2all,
nor all2one, nor all2all

• SCOREP_REGION_POINT2POINT Represents a point2point communication region

• SCOREP_REGION_PARALLEL Represents an (OpenMP) parallel region

• SCOREP_REGION_SECTIONS Represents an (OpenMP) sections region

• SCOREP_REGION_SECTION Represents an (OpenMP) section region

• SCOREP_REGION_WORKSHARE Represents an (OpenMP) workshare region

• SCOREP_REGION_SINGLE Represents an (OpenMP) single region

• SCOREP_REGION_MASTER Represents an (OpenMP) master region

• SCOREP_REGION_CRITICAL Represents an (OpenMP) critical region

• SCOREP_REGION_ATOMIC Represents an atomic region

• SCOREP_REGION_BARRIER Represents a barrier

• SCOREP_REGION_IMPLICIT_BARRIER Represents an implicit barrier (that is implicitely given but not ex-
plicitely defined)

143

APPENDIX H. MODULE DOCUMENTATION

• SCOREP_REGION_FLUSH Represents an (OpenMP) flush region

• SCOREP_REGION_CRITICAL_SBLOCK Represents an sblock within a (OpenMP) critical region

• SCOREP_REGION_SINGLE_SBLOCK Represents an sblock within a (OpenMP) single region

• SCOREP_REGION_WRAPPER Represents a wrapper region (e.g., from interpositioning)

• SCOREP_REGION_TASK Represents a (OpenMP) task region, within SCOREP_REGION_TASK_CREA←↩

TE

• SCOREP_REGION_TASK_UNTIED Represents a (OpenMP) untied task region

• SCOREP_REGION_TASK_WAIT Represents a (OpenMP) taskwait region

• SCOREP_REGION_TASK_CREATE Represents a created (OpenMP) task region

• SCOREP_REGION_ORDERED Represents an (OpenMP) ordered region

• SCOREP_REGION_ORDERED_SBLOCK Represents an sblock within a (OpenMP) ordered region

• SCOREP_REGION_ARTIFICIAL Represents an artificial region

• SCOREP_REGION_RMA Represents an RMA region

• SCOREP_REGION_THREAD_CREATE Represents the creation of a thread

• SCOREP_REGION_THREAD_WAIT Represents the creation of a thread

• SCOREP_REGION_ALLOCATE Represents a region where memory is allocated, e.g., MPI_Alloc_mem

• SCOREP_REGION_DEALLOCATE Represents a region where memory is deallocated

• SCOREP_REGION_REALLOCATE Represents a region where memory is reallocated

Enumerator

SCOREP_INVALID_REGION_TYPE For internal use only.

H.2.4.12 enum SCOREP_RmaAtomicType

specifies a RMA Atomic Operation Type.

Types:

• SCOREP_RMA_ATOMIC_TYPE_ACCUMULATE accumulate

• SCOREP_RMA_ATOMIC_TYPE_INCREMENT increment

• SCOREP_RMA_ATOMIC_TYPE_TEST_AND_SET test and set

• SCOREP_RMA_ATOMIC_TYPE_COMPARE_AND_SWAP compare and swap

• SCOREP_RMA_ATOMIC_TYPE_SWAP swap

• SCOREP_RMA_ATOMIC_TYPE_FETCH_AND_ADD fetch and add

• SCOREP_RMA_ATOMIC_TYPE_FETCH_AND_INCREMENT fetch and increment

• SCOREP_RMA_ATOMIC_TYPE_ADD add

• SCOREP_INVALID_RMA_ATOMIC_TYPE for internal use only

144

H.2 type definitions and enums used in Score-P

H.2.4.13 enum SCOREP_RmaSyncLevel

specifies a RMA synchronization level, used by RMA records to be passed to SCOREP_Rma∗() functions.

Types:

• SCOREP_RMA_SYNC_LEVEL_NONE No process synchronization or access completion (e.g., ∗ MPI_←↩

Win_post)

• SCOREP_RMA_SYNC_LEVEL_PROCESS Synchronize processes (e.g., MPI_Win_create/free)

• SCOREP_RMA_SYNC_LEVEL_MEMORY Complete memory accesses (e.g., MPI_Win_complete, MPI_←↩

Win_wait)

• SCOREP_RMA_SYNC_LEVELS for internal use only

H.2.4.14 enum SCOREP_RmaSyncType

Type of direct RMA synchronization call.

Types:

• SCOREP_RMA_SYNC_TYPE_MEMORY Synchronize memory copy.

• SCOREP_RMA_SYNC_TYPE_NOTIFY_IN Incoming remote notification.

• SCOREP_RMA_SYNC_TYPE_NOTIFY_OUT Outgoing remote notification

• SCOREP_INVALID_RMA_SYNC_TYPE for internal use only

Enumerator

SCOREP_INVALID_RMA_SYNC_TYPE For internal use only.

H.2.4.15 enum SCOREP_SamplingSetClass

Class of locations which recorded a sampling set.

Enumerator

SCOREP_SAMPLING_SET_ABSTRACT The sampling set is more complicated, e.g., refers to a number of
locations.

SCOREP_SAMPLING_SET_CPU The sampling set refers to a CPU.

SCOREP_SAMPLING_SET_GPU The sampling set refers to a GPU.

H.2.4.16 enum SCOREP_Substrates_RequirementFlag

Enumerator

SCOREP_SUBSTRATES_REQUIREMENT_EXPERIMENT_DIRECTORY Set this to != 0 if you need the ex-
periment directory. If no substrate uses this option, the experiment directory will not be created and no
configuration file will be written.

SCOREP_SUBSTRATES_REQUIREMENT_CONSTANT_METRIC_SET Set this to != 0 if you rely on a con-
stant set of metrics. I.e., all metrics that are per host/once would mess with your internal structure.

SCOREP_SUBSTRATES_NUM_REQUIREMENT Non-ABI used internally

145

APPENDIX H. MODULE DOCUMENTATION

146

Appendix I

Data Structure Documentation

I.1 SCOREP_Metric_Plugin_Info Struct Reference

#include <SCOREP_MetricPlugins.h>

Data Fields

• int32_t(∗ add_counter)(char ∗metric_name)
• uint64_t delta_t
• void(∗ finalize)(void)
• uint64_t(∗ get_all_values)(int32_t id, SCOREP_MetricTimeValuePair ∗∗time_value_list)
• uint64_t(∗ get_current_value)(int32_t id)
• SCOREP_Metric_Plugin_MetricProperties ∗(∗ get_event_info)(char ∗token)
• bool(∗ get_optional_value)(int32_t id, uint64_t ∗value)
• int32_t(∗ initialize)(void)
• uint32_t plugin_version
• uint64_t reserved [92]
• SCOREP_MetricPer run_per
• void(∗ set_clock_function)(uint64_t(∗clock_time)(void))
• SCOREP_MetricSynchronicity sync
• void(∗ synchronize)(bool is_responsible, SCOREP_MetricSynchronizationMode sync_mode)

I.1.1 Detailed Description

Information on that defines the plugin. All values that are not explicitly defined should be set to 0

I.1.2 Field Documentation

I.1.2.1 int32_t(∗ SCOREP_Metric_Plugin_Info::add_counter) (char ∗metric_name)

Depending on run_per, this function is called per thread, per process, per host, or only on a single thread. Further
it is called for each metric as returned by the calls to get_event_info.

The function sets up the measurement for the requested metric and returns a non-negative unique ID which is from
now on used to refer to this metric.

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Parameters

metric_name Name of an individual metric

Returns

non-negative ID of requested metric or negative value in cased of failure

I.1.2.2 uint64_t SCOREP_Metric_Plugin_Info::delta_t

Set a specific interval for reading metric values. Score-P will request metric values of a plugin, at the earliest, after
delta_t ticks after it was last read. NOTE: This is only a lower limit for the time between two reads

• there is no upper limit. This setting is used by plugins of synchronicity type SCOREP_METRIC_SYNC,
SCOREP_METRIC_ASYNC_EVENT, and SCOREP_METRIC_ASYNC. In combination with SCOREP_M←↩

ETRIC_SYNC, it can be used for metrics that update at known intervals and therefore reduce the over head of
reading unchanged values. In combination with SCOREP_METRIC_ASYNC_EVENT it can be used similarly.
This value is ignored for SCOREP_METRIC_STRICTLY_SYNC metrics.

I.1.2.3 void(∗ SCOREP_Metric_Plugin_Info::finalize) (void)

This functions is called once per process to clean up all resources used by the metric plugin.

I.1.2.4 uint64_t(∗ SCOREP_Metric_Plugin_Info::get_all_values) (int32_t id, SCOREP_MetricTimeValuePair
∗∗time_value_list)

This function provides the recorded value of the selected metric. It must be implemented by asynchronous met-
ric plugins. The timestamps in the returned list should correspond to the clock provided by set_clock_function.
Further, all values (timestamps) should lie within within the following interval: synchronize(SCOREP_METR←↩

IC_SYNCHRONIZATION_MODE_BEGIN|SCOREP_METRIC_SYNCHRONIZATION_MODE_BEGIN_MPP), syn-
chronize(SCOREP_METRIC_SYNCHRONIZATION_MODE_END). Score-P takes ownership of the ∗time_←↩

value_list memory. Make sure the memory remains valid and is never modified by the plugin. Score-P will
release the memory using free. The pointer must be created directly by malloc/calloc etc. directly. Do not use a
memory pool / pointer with offset into a larger memory etc.

Parameters

id Metric id (see add_counter).
out time_value_list Pointer to list with return values (pairs of timestamp and value).

See also

SCOREP_MetricSynchronizationMode

Returns

Number of elements within ∗time_value_list

I.1.2.5 uint64_t(∗ SCOREP_Metric_Plugin_Info::get_current_value) (int32_t id)

This function shall provide the current value of a metric. It must be implemented by strictly synchronous metric
plugins. It is called according to the run_per specification.

148

I.1 SCOREP_Metric_Plugin_Info Struct Reference

Parameters

id Metric id (see add_counter).

Returns

Current value of requested metric. For metrics of value_type other than UINT64, the data should be reinter-
preted to a UINT64 using a union.

I.1.2.6 SCOREP_Metric_Plugin_MetricProperties∗(∗ SCOREP_Metric_Plugin_Info::get_event_info) (char ∗token)

A user specifies a SCOREP_METRIC_EXAMPLE_PLUGIN=token1,token2,... This function is called once per pro-
cess and token. Each token can result in any number of metrics (wildcards). The function shall provide the proper-
ties of the metrics for this token.

The total list of metrics returned by the calls for all tokens comprises the metrics that will be recorded by the plugin.

Note: The properties-array must contain an additional end entry with name = NULL.

Note: The properties-array memory and all indirect pointers are managed by Score-P now. Make sure the memory
remains valid and unmodified. All memory may be released with free by Score-P. Make sure that all provided
pointers are created by malloc/strdup/....

Parameters

token String that describes one or multiple metrics.

Returns

properties Meta data about the metrics available for this token.

I.1.2.7 bool(∗ SCOREP_Metric_Plugin_Info::get_optional_value) (int32_t id, uint64_t ∗value)

This function provides the current value of a metric if available. It must be implemented by synchronous metric
plugins. It is called according to the run_per specification.

Parameters

id Metric id (see add_counter).
out value Current value of requested metric. For metrics of value_type other than UIN←↩

T64, the data should be reinterpreted to a UINT64 using a union.

Returns

True if value of requested metric was written, otherwise false.

I.1.2.8 int32_t(∗ SCOREP_Metric_Plugin_Info::initialize) (void)

This function is called once per process. It should check that all requirements are met (e.g., are special libraries
needed and available, has the user appropriate rights to access implemented metrics). If all requirements are met,
data structures used by the plugin can be initialized within this function.

Returns

0 if successful, error code if failure

149

APPENDIX I. DATA STRUCTURE DOCUMENTATION

I.1.2.9 uint32_t SCOREP_Metric_Plugin_Info::plugin_version

Should be set to SCOREP_METRIC_PLUGIN_VERSION (needed for back- and forward compatibility)

I.1.2.10 uint64_t SCOREP_Metric_Plugin_Info::reserved[92]

Reserved space for future features, should be zeroed

I.1.2.11 SCOREP_MetricPer SCOREP_Metric_Plugin_Info::run_per

Defines how many threads should record the metrics of a plugin. For the available options see SCOREP_MetricPer.

I.1.2.12 void(∗ SCOREP_Metric_Plugin_Info::set_clock_function) (uint64_t(∗clock_time)(void))

When this callback is implemented, Score-P calls it once to provide a clock function that allows the plugin to read
the current time in Score-P ticks. This should be used by asynchronous metric plugins.

Note: This function is called before initialize.

Parameters

clock_time Function pointer to Score-P's clock function.

I.1.2.13 SCOREP_MetricSynchronicity SCOREP_Metric_Plugin_Info::sync

Defines how metrics are measured over time and how they are collected by Score-P. This setting influences when
and which callback functions are called by Score-P. For the available options see SCOREP_MetricSynchronicity.

I.1.2.14 void(∗ SCOREP_Metric_Plugin_Info::synchronize) (bool is_responsible, SCOREP_MetricSynchronizationMode
sync_mode)

This callback is used for stating and stopping the measurement of asynchronous metrics and can also be used for
time synchronization purposes. This function is called for all threads in the application, but the threads that handle
the metric plugin according to run_per will be marked as is_responsible. The function will be called approximately
at the same time for all threads:

• Once the beginning with SCOREP_METRIC_SYNCHRONIZATION_MODE_BEGIN or SCOREP_METRI←↩

C_SYNCHRONIZATION_MODE_BEGIN_MPP for (non-)MPI programs respectively.

• Once at the end with SCOREP_METRIC_SYNCHRONIZATION_MODE_END For asynchronous metrics,
starting and stopping a measurement should be done in this function, not in add_counter.

Parameters

is_responsible Flag to mark responsibility as per run_per
sync_mode Mode of synchronization point, e.g. SCOREP_METRIC_SYNCHRONIZATION_MODE←↩

_BEGIN, SCOREP_METRIC_SYNCHRONIZATION_MODE_BEGIN_MPP, SCOREP_ME←↩

TRIC_SYNCHRONIZATION_MODE_END

See also

SCOREP_MetricSynchronizationMode

The documentation for this struct was generated from the following file:

• SCOREP_MetricPlugins.h

150

I.2 SCOREP_Metric_Plugin_MetricProperties Struct Reference

I.2 SCOREP_Metric_Plugin_MetricProperties Struct Reference

Properties describing a metric. Provided by the get_event_info function.

#include <SCOREP_MetricPlugins.h>

Data Fields

• SCOREP_MetricBase base
• char ∗ description
• int64_t exponent
• SCOREP_MetricMode mode
• char ∗ name
• char ∗ unit
• SCOREP_MetricValueType value_type

I.2.1 Detailed Description

Properties describing a metric. Provided by the get_event_info function.

I.2.2 Field Documentation

I.2.2.1 SCOREP_MetricBase SCOREP_Metric_Plugin_MetricProperties::base

Base of metric: decimal, binary

I.2.2.2 char∗ SCOREP_Metric_Plugin_MetricProperties::description

Additional information about the metric

I.2.2.3 int64_t SCOREP_Metric_Plugin_MetricProperties::exponent

Exponent to scale metric: e.g., 3 for kilo

I.2.2.4 SCOREP_MetricMode SCOREP_Metric_Plugin_MetricProperties::mode

Metric mode: valid combination of ACCUMULATED|ABSOLUTE|RELATIVE + POINT|START|LAST|NEXT

See also

SCOREP_MetricMode

I.2.2.5 char∗ SCOREP_Metric_Plugin_MetricProperties::name

Plugin name

I.2.2.6 char∗ SCOREP_Metric_Plugin_MetricProperties::unit

Unit string of recorded metric

151

APPENDIX I. DATA STRUCTURE DOCUMENTATION

I.2.2.7 SCOREP_MetricValueType SCOREP_Metric_Plugin_MetricProperties::value_type

Value type: signed 64 bit integer, unsigned 64 bit integer, double

The documentation for this struct was generated from the following file:

• SCOREP_MetricPlugins.h

I.3 SCOREP_Metric_Properties Struct Reference

#include <SCOREP_MetricTypes.h>

Data Fields

• SCOREP_MetricBase base
• const char ∗ description
• int64_t exponent
• SCOREP_MetricMode mode
• const char ∗ name
• SCOREP_MetricProfilingType profiling_type
• SCOREP_MetricSourceType source_type
• const char ∗ unit
• SCOREP_MetricValueType value_type

I.3.1 Detailed Description

Properties describing a metric.

I.3.2 Field Documentation

I.3.2.1 SCOREP_MetricBase SCOREP_Metric_Properties::base

Base of metric values (DECIMAL or BINARY).

I.3.2.2 const char∗ SCOREP_Metric_Properties::description

Long description of the metric.

I.3.2.3 int64_t SCOREP_Metric_Properties::exponent

Exponent to scale metric values (metric_value = value ∗ base∧exponent).

I.3.2.4 SCOREP_MetricMode SCOREP_Metric_Properties::mode

Metric mode (valid combination of ACCUMULATED|ABSOLUTE|RELATIVE and POINT|START|LAST|NEXT).

I.3.2.5 const char∗ SCOREP_Metric_Properties::name

Name of the metric.

152

I.4 SCOREP_MetricTimeValuePair Struct Reference

I.3.2.6 SCOREP_MetricProfilingType SCOREP_Metric_Properties::profiling_type

Profiling type of the metric.

I.3.2.7 SCOREP_MetricSourceType SCOREP_Metric_Properties::source_type

Type of the metric source (e.g. PAPI).

I.3.2.8 const char∗ SCOREP_Metric_Properties::unit

Unit of the metric.

I.3.2.9 SCOREP_MetricValueType SCOREP_Metric_Properties::value_type

Type of the metric value (INT64, UINT64, or DOUBLE).

The documentation for this struct was generated from the following file:

• SCOREP_MetricTypes.h

I.4 SCOREP_MetricTimeValuePair Struct Reference

#include <SCOREP_MetricTypes.h>

Data Fields

• uint64_t timestamp
• uint64_t value

I.4.1 Detailed Description

Pair of Score-P timestamp and corresponding metric value (used by asynchronous metrics).

I.4.2 Field Documentation

I.4.2.1 uint64_t SCOREP_MetricTimeValuePair::timestamp

Timestamp in Score-P time!

I.4.2.2 uint64_t SCOREP_MetricTimeValuePair::value

Current metric value

The documentation for this struct was generated from the following file:

• SCOREP_MetricTypes.h

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

#include <SCOREP_SubstratePlugins.h>

153

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Data Fields

• SCOREP_CallingContextHandle(∗ SCOREP_CallingContextHandle_GetParent)(SCOREP_Calling←↩

ContextHandle handle)
• SCOREP_RegionHandle(∗ SCOREP_CallingContextHandle_GetRegion)(SCOREP_CallingContextHandle

handle)
• const char ∗(∗ SCOREP_GetExperimentDirName)(void)
• int(∗ SCOREP_Ipc_Allgather)(const void ∗sendbuf, void ∗recvbuf, int count, SCOREP_Ipc_Datatype

datatype)
• int(∗ SCOREP_Ipc_Allreduce)(const void ∗sendbuf, void ∗recvbuf, int count, SCOREP_Ipc_Datatype

datatype, SCOREP_Ipc_Operation operation)
• int(∗ SCOREP_Ipc_Barrier)(void)
• int(∗ SCOREP_Ipc_Bcast)(void ∗buf, int count, SCOREP_Ipc_Datatype datatype, int root)
• int(∗ SCOREP_Ipc_Gather)(const void ∗sendbuf, void ∗recvbuf, int count, SCOREP_Ipc_Datatype datatype,

int root)
• int(∗ SCOREP_Ipc_Gatherv)(const void ∗sendbuf, int sendcount, void ∗recvbuf, const int ∗recvcnts, SCO←↩

REP_Ipc_Datatype datatype, int root)
• int(∗ SCOREP_Ipc_GetRank)(void)
• int(∗ SCOREP_Ipc_GetSize)(void)
• int(∗ SCOREP_Ipc_Recv)(void ∗buf, int count, SCOREP_Ipc_Datatype datatype, int source)
• int(∗ SCOREP_Ipc_Reduce)(const void ∗sendbuf, void ∗recvbuf, int count, SCOREP_Ipc_Datatype

datatype, SCOREP_Ipc_Operation operation, int root)
• int(∗ SCOREP_Ipc_Scatter)(const void ∗sendbuf, void ∗recvbuf, int count, SCOREP_Ipc_Datatype datatype,

int root)
• int(∗ SCOREP_Ipc_Scatterv)(const void ∗sendbuf, const int ∗sendcounts, void ∗recvbuf, int recvcount, S←↩

COREP_Ipc_Datatype datatype, int root)
• int(∗ SCOREP_Ipc_Send)(const void ∗buf, int count, SCOREP_Ipc_Datatype datatype, int dest)
• void ∗(∗ SCOREP_Location_GetData)(const struct SCOREP_Location ∗locationData, size_t plugin_id)
• uint64_t(∗ SCOREP_Location_GetGlobalId)(const struct SCOREP_Location ∗locationData)
• uint32_t(∗ SCOREP_Location_GetId)(const struct SCOREP_Location ∗locationData)
• const char ∗(∗ SCOREP_Location_GetName)(const struct SCOREP_Location ∗locationData)
• SCOREP_LocationType(∗ SCOREP_Location_GetType)(const struct SCOREP_Location ∗locationData)
• void(∗ SCOREP_Location_SetData)(const struct SCOREP_Location ∗locationData, size_t plugin_id, void
∗data)

• void(∗ SCOREP_Metric_WriteStrictlySynchronousMetrics)(struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_Substrates_WriteAsynchMetricBeforeEventCb cb)

Tell Score-P to write the current strictly synchronous metrics to cb.

• void(∗ SCOREP_Metric_WriteSynchronousMetrics)(struct SCOREP_Location ∗location, uint64_t times-
tamp, SCOREP_Substrates_WriteAsynchMetricBeforeEventCb cb)

Tell Score-P to write the current synchronous metrics to cb.

• SCOREP_MetricMode(∗ SCOREP_MetricHandle_GetMode)(SCOREP_MetricHandle handle)
• const char ∗(∗ SCOREP_MetricHandle_GetName)(SCOREP_MetricHandle handle)
• SCOREP_MetricProfilingType(∗ SCOREP_MetricHandle_GetProfilingType)(SCOREP_MetricHandle han-

dle)
• SCOREP_MetricSourceType(∗ SCOREP_MetricHandle_GetSourceType)(SCOREP_MetricHandle handle)
• SCOREP_MetricValueType(∗ SCOREP_MetricHandle_GetValueType)(SCOREP_MetricHandle handle)
• SCOREP_ParadigmClass(∗ SCOREP_ParadigmHandle_GetClass)(SCOREP_ParadigmHandle handle)
• const char ∗(∗ SCOREP_ParadigmHandle_GetName)(SCOREP_ParadigmHandle handle)
• SCOREP_ParadigmType(∗ SCOREP_ParadigmHandle_GetType)(SCOREP_ParadigmHandle handle)
• const char ∗(∗ SCOREP_ParameterHandle_GetName)(SCOREP_ParameterHandle handle)
• SCOREP_ParameterType(∗ SCOREP_ParameterHandle_GetType)(SCOREP_ParameterHandle handle)
• SCOREP_LineNo(∗ SCOREP_RegionHandle_GetBeginLine)(SCOREP_RegionHandle handle)
• const char ∗(∗ SCOREP_RegionHandle_GetCanonicalName)(SCOREP_RegionHandle handle)
• SCOREP_LineNo(∗ SCOREP_RegionHandle_GetEndLine)(SCOREP_RegionHandle handle)
• const char ∗(∗ SCOREP_RegionHandle_GetFileName)(SCOREP_RegionHandle handle)

154

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

• uint32_t(∗ SCOREP_RegionHandle_GetId)(SCOREP_RegionHandle handle)

• const char ∗(∗ SCOREP_RegionHandle_GetName)(SCOREP_RegionHandle handle)

• SCOREP_ParadigmType(∗ SCOREP_RegionHandle_GetParadigmType)(SCOREP_RegionHandle handle)

• SCOREP_RegionType(∗ SCOREP_RegionHandle_GetType)(SCOREP_RegionHandle handle)

• const SCOREP_MetricHandle ∗(∗ SCOREP_SamplingSetHandle_GetMetricHandles)(SCOREP_←↩

SamplingSetHandle handle)

• SCOREP_MetricOccurrence(∗ SCOREP_SamplingSetHandle_GetMetricOccurrence)(SCOREP_←↩

SamplingSetHandle handle)

• uint8_t(∗ SCOREP_SamplingSetHandle_GetNumberOfMetrics)(SCOREP_SamplingSetHandle handle)

• SCOREP_SamplingSetClass(∗ SCOREP_SamplingSetHandle_GetSamplingSetClass)(SCOREP_←↩

SamplingSetHandle handle)

• SCOREP_MetricScope(∗ SCOREP_SamplingSetHandle_GetScope)(SCOREP_SamplingSetHandle han-
dle)

• bool(∗ SCOREP_SamplingSetHandle_IsScoped)(SCOREP_SamplingSetHandle handle)

• const char ∗(∗ SCOREP_SourceFileHandle_GetName)(SCOREP_SourceFileHandle handle)

• const char ∗(∗ SCOREP_StringHandle_Get)(SCOREP_StringHandle handle)

I.5.1 Detailed Description

Callbacks that are passed to Substrate plugins via the set_callbacks(...) call. These callbacks can be used by the
plugins to access Score-P internal data and functionality.

Developer notice: New functions should be appended at the end of this struct. When extending this list, increase
SCOREP_SUBSTRATE_PLUGIN_VERSION

I.5.2 Field Documentation

I.5.2.1 SCOREP_CallingContextHandle(∗ SCOREP_SubstratePluginCallbacks::SCOREP_CallingContextHandle_GetParent)
(SCOREP_CallingContextHandle handle)

Returns the parent of a calling context node.

Parameters

handle handle of the calling context node

Returns

parent handle

I.5.2.2 SCOREP_RegionHandle(∗ SCOREP_SubstratePluginCallbacks::SCOREP_CallingContextHandle_GetRegion)
(SCOREP_CallingContextHandle handle)

Returns the region of a calling context node. (see SCOREP_PublicTypes.h)

Parameters

handle handle of the calling context node

Returns

handle to the region that holds the node

155

APPENDIX I. DATA STRUCTURE DOCUMENTATION

I.5.2.3 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_GetExperimentDirName) (void)

Returns the Score-P experiment directory. This should be used to write debug/performance data and is available
at and after init_mpp is called. Data should be placed under SCOREP_GetExperimentDirName()/(plugin-name)/.
Per location data should be placed under SCOREP_GetExperimentDirName()/(plugin-name)/(prefix)(SCOREP←↩

_Location_GetGlobalId(location))(suffix). If you want to use the experiment directory, you have to set the SC←↩

OREP_SUBSTRATES_REQUIREMENT_EXPERIMENT_DIRECTORY flag in the requirements, see SCOREP_←↩

SubstratePluginInfo.get_requirement The name is temporary and the directory might be renamed in the finalization
stage.

I.5.2.4 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Allgather) (const void ∗sendbuf, void ∗recvbuf, int count,
SCOREP_Ipc_Datatype datatype)

Gathers data from every process with an equal amount of sent and received data from each process and distributes
it to all processes. Can be called after Plugin receives init_mpp() call.

Parameters

sendbuf pointer to the buffer of the data that should be sent
recvbuf pointer to buffer there the received data should be stored data is stored in rank order size of

the buffer should be big enough for the data of all processes
count number of elements in buffer

datatype type of data

Returns

return zero on success and something else if an error occurred

I.5.2.5 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Allreduce) (const void ∗sendbuf, void ∗recvbuf, int count,
SCOREP_Ipc_Datatype datatype, SCOREP_Ipc_Operation operation)

Perform a reduce operation (such as sum, max, logical AND, etc.) with the combined data from every process and
distributes the result to all processes. Can be called after Plugin receives init_mpp() call.

Parameters

sendbuf pointer to the buffer of the data that should be sent
recvbuf pointer to buffer there the evaluated data should be stored

count number of elements in buffer
datatype type of data

operation operation that should be performed

Returns

return zero on success and something else if an error occurred

I.5.2.6 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Barrier) (void)

Wait until every process that is part of the MPP paradigm entered the barrier, otherwise return. Can be called after
Plugin receives init_mpp() call.

Returns

return zero on success and something else if an error occurred

156

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

I.5.2.7 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Bcast) (void ∗buf, int count, SCOREP_Ipc_Datatype
datatype, int root)

Send data to every process within the MPP paradigm (if MPP paradigm is used), including self. Can be called after
Plugin receives init_mpp() call.

157

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Parameters

buf pointer to the buffer of the data that should be sent
count number of elements in buffer

datatype type of data
root rank of the source process

Returns

return zero on success and something else if an error occurred

I.5.2.8 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Gather) (const void ∗sendbuf, void ∗recvbuf, int count,
SCOREP_Ipc_Datatype datatype, int root)

Gathers data from every process within the MPP paradigm (if MPP paradigm is used), root included, with an equal
amount of sent for each process.

Can be called after Plugin receives init_mpp() call.

Parameters

sendbuf pointer to the buffer of the data that should be sent
recvbuf pointer to buffer there the received data should be stored data is stored in rank order

size of the buffer should be big enough for the data of all processes (SCOREP_Ipc_Get←↩

Size()∗sizeof(type(datatype)))
count number of elements in buffer

datatype type of data
root rank of the process, that should receive all the data

Returns

return zero on success and something else if an error occurred

I.5.2.9 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Gatherv) (const void ∗sendbuf, int sendcount, void ∗recvbuf,
const int ∗recvcnts, SCOREP_Ipc_Datatype datatype, int root)

Gathers data from every process, root included, with varying amount of sent data from each process. Can be called
after Plugin receives init_mpp() call.

Parameters

sendbuf pointer to the buffer of the data that should be sent
sendcount number of elements in sent buffer

recvbuf pointer to buffer there the received data should be stored data is stored in rank order size of
the buffer should be big enough for the data of all processes

recvcnts array with the number of elements that should be received from each process length should
be the number of process

datatype type of data
root rank of the process, that should receive all the data

Returns

return zero on success and something else if an error occurred

I.5.2.10 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_GetRank) (void)

Get the rank of the process. Can be called after Plugin receives init_mpp() call.

158

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

Returns

If MPP paradigm is used get an identifier within the MPP paradigm (e.g., an MPI rank). If no MPP paradigm is
used return 0

I.5.2.11 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_GetSize) (void)

Get the number of processes in this parallel program. Can be called after Plugin receives init_mpp() call.

Returns

If MPP paradigm is used we get the total number of processes that participate in the MPP paradigm, if no
MPP paradigm is used return 1

I.5.2.12 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Recv) (void ∗buf, int count, SCOREP_Ipc_Datatype
datatype, int source)

Receive data from a specific process (blocking) Can be called after Plugin receives init_mpp() call. Should not be
called if no MPP paradigm is used.

Parameters

buf pointer to buffer there the received data should be stored
count number of elements in buffer

datatype type of data
source rank of the source process (must be smaller than SCOREP_Ipc_GetSize() and different from

SCOREP_Ipc_GetRank())

Returns

return zero on success and something else if an error occurred

I.5.2.13 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Reduce) (const void ∗sendbuf, void ∗recvbuf, int count,
SCOREP_Ipc_Datatype datatype, SCOREP_Ipc_Operation operation, int root)

Perform a reduce operation (such as sum, max, logical AND, etc.) with the combined data from every process. Can
be called after Plugin receives init_mpp() call.

Parameters

sendbuf pointer to the buffer of the data that should be sent
recvbuf pointer to buffer there the evaluated data should be stored

count number of elements in buffer
datatype type of data

operation operation that should be performed
root rank of the process, that should receive the evaluated data

Returns

return zero on success and something else if an error occurred

I.5.2.14 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Scatter) (const void ∗sendbuf, void ∗recvbuf, int count,
SCOREP_Ipc_Datatype datatype, int root)

Send data to each process, root included with an equal amount of received data for each process. Can be called
after Plugin receives init_mpp() call.

159

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Parameters

sendbuf pointer to the buffer of the data that should be sent
recvbuf pointer to buffer there the received data should be stored

count number of elements in buffer
datatype type of data

root rank of the source process

Returns

return zero on success and something else if an error occurred

I.5.2.15 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Scatterv) (const void ∗sendbuf, const int ∗sendcounts, void
∗recvbuf, int recvcount, SCOREP_Ipc_Datatype datatype, int root)

Send data in parts to each process, root included with a varying amount of received data for each process. Can be
called after Plugin receives init_mpp() call.

Parameters

sendbuf pointer to the buffer of the data that should be sent
sendcounts array with the number of elements that should be sent to each process length should be the

number of process
recvbuf pointer to buffer there the received data should be stored

recvcount number of elements in received buffer
datatype type of data

root rank of the source process

Returns

return zero on success and something else if an error occurred

I.5.2.16 int(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Ipc_Send) (const void ∗buf, int count, SCOREP_Ipc_Datatype
datatype, int dest)

Send data do a specific process (blocking) within the MPP paradigm. Can be called after Plugin receives init_mpp()
call. Should not be called if no MPP paradigm is used.

Parameters

bufpointer to the buffer of the data that should be sent
count number of elements in buffer

datatype type of data
dest rank of the receiver process (must be smaller than SCOREP_Ipc_GetSize() and different

from SCOREP_Ipc_GetRank())

Returns

return zero on success and something else if an error occurred

I.5.2.17 void∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Location_GetData) (const struct SCOREP_Location
∗locationData, size_t plugin_id)

Get location private data for a specific location (see SCOREP_Location_SetData) It is save to use it after the
location is created (SCOREP_SubstratePluginInfo.create_location) and before the location is deleted (SCOREP←↩

_SubstratePluginInfo.delete_location)

160

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

Parameters

location handle of the location
plugin_id the id assigned by assign_id

Returns

the data for this location and this plugin

I.5.2.18 uint64_t(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Location_GetGlobalId) (const struct SCOREP_Location
∗locationData)

Get a unique global id of a location This is only to be used after init_mpp() is called.

Parameters

location location given from an event

Returns

global location id

I.5.2.19 uint32_t(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Location_GetId) (const struct SCOREP_Location
∗locationData)

Returns the LOCAL id of the location. (see also SCOREP_Location_GetGlobalId)

Parameters

location location given from an event, or a location function from SCOREP_SubstratePluginInfo

Returns

ID that is unique within the process

I.5.2.20 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Location_GetName) (const struct SCOREP_Location
∗locationData)

Get the name of a location

Parameters

location handle

Returns

location name

I.5.2.21 SCOREP_LocationType(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Location_GetType) (const struct
SCOREP_Location ∗locationData)

Returns the type of the location.

Returns

161

APPENDIX I. DATA STRUCTURE DOCUMENTATION

I.5.2.22 void(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Location_SetData) (const struct SCOREP_Location
∗locationData, size_t plugin_id, void ∗data)

Set location private data for a specific location (see SCOREP_Location_GetData) It is save to use it after the
location is created (SCOREP_SubstratePluginInfo.create_location) and before the location is deleted (SCOREP←↩

_SubstratePluginInfo.delete_location)

Parameters

location handle of the location
plugin_id the id assigned by assign_id

the data for this location and this plugin

I.5.2.23 void(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Metric_WriteStrictlySynchronousMetrics) (struct
SCOREP_Location ∗location, uint64_t timestamp, SCOREP_Substrates_WriteAsynchMetricBeforeEventCb
cb)

Tell Score-P to write the current strictly synchronous metrics to cb.

This function shall only be called while processing enters, exits, and samples.

Parameters

location the location of the runtime event, this is reported back via cb
timestamp the timestamp of the runtime event, this is reported back via cb

cb a callback that processes the strictly synchronous metrics. It follows the definition from the
event for asynchronous metrics

I.5.2.24 void(∗ SCOREP_SubstratePluginCallbacks::SCOREP_Metric_WriteSynchronousMetrics) (struct SCOREP_Location
∗location, uint64_t timestamp, SCOREP_Substrates_WriteAsynchMetricBeforeEventCb cb)

Tell Score-P to write the current synchronous metrics to cb.

This function shall only be called while processing enters, exits, and samples. The callback might be called multiple
times if multiple synchronous sampling sets are present.

Parameters

location the location of the runtime event, this is reported back via cb
timestamp the timestamp of the runtime event, this is reported back via cb

cb a callback that processes the synchronous metrics. It follows the definition from the event for
asynchronous metrics

I.5.2.25 SCOREP_MetricMode(∗ SCOREP_SubstratePluginCallbacks::SCOREP_MetricHandle_GetMode)
(SCOREP_MetricHandle handle)

Returns the mode of a metric.

Parameters

handle handle of the local metric definition.

Returns

mode of a metric.

162

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

See also

SCOREP_MetricTypes.h

I.5.2.26 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_MetricHandle_GetName) (SCOREP_MetricHandle
handle)

Returns the name of a metric.

Parameters

handle handle of the local metric definition.

Returns

name of a metric.

I.5.2.27 SCOREP_MetricProfilingType(∗ SCOREP_SubstratePluginCallbacks::SCOREP_MetricHandle_GetProfilingType)
(SCOREP_MetricHandle handle)

Returns the profiling type of a metric.

Parameters

handle handle of the local metric definition.

Returns

profiling type of a metric.

See also

SCOREP_MetricTypes.h

I.5.2.28 SCOREP_MetricSourceType(∗ SCOREP_SubstratePluginCallbacks::SCOREP_MetricHandle_GetSourceType)
(SCOREP_MetricHandle handle)

Returns the source type of a metric.

Parameters

handle handle of the local metric definition.

Returns

source type of a metric.

See also

SCOREP_MetricTypes.h

I.5.2.29 SCOREP_MetricValueType(∗ SCOREP_SubstratePluginCallbacks::SCOREP_MetricHandle_GetValueType)
(SCOREP_MetricHandle handle)

Returns the value type of a metric.

163

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Parameters

handle handle of the local metric definition.

Returns

value type of a metric.

See also

SCOREP_MetricTypes.h

I.5.2.30 SCOREP_ParadigmClass(∗ SCOREP_SubstratePluginCallbacks::SCOREP_ParadigmHandle_GetClass)
(SCOREP_ParadigmHandle handle)

Returns paradigm class

Parameters

handle handle of the paradigm

Returns

class (e.g. SCOREP_PARADIGM_CLASS_MPP for MPI paradigm)

See also

SCOREP_PublicTypes.h

I.5.2.31 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_ParadigmHandle_GetName)
(SCOREP_ParadigmHandle handle)

Returns paradigm name

Parameters

handle handle of the paradigm

Returns

name (e.g., "MPI")

I.5.2.32 SCOREP_ParadigmType(∗ SCOREP_SubstratePluginCallbacks::SCOREP_ParadigmHandle_GetType)
(SCOREP_ParadigmHandle handle)

Returns paradigm type

Parameters

handle handle of the paradigm

Returns

type (e.g. SCOREP_PARADIGM_MPI for MPI)

See also

SCOREP_PublicTypes.h

164

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

I.5.2.33 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_ParameterHandle_GetName) (SCOREP_ParameterHandle
handle)

Returns the name of a parameter

165

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Parameters

handle handle of the parameter

Returns

name

I.5.2.34 SCOREP_ParameterType(∗ SCOREP_SubstratePluginCallbacks::SCOREP_ParameterHandle_GetType)
(SCOREP_ParameterHandle handle)

Returns parameter type

Parameters

handle handle of the parameter

Returns

type of parameter

See also

SCOREP_PublicTypes.h

I.5.2.35 SCOREP_LineNo(∗ SCOREP_SubstratePluginCallbacks::SCOREP_RegionHandle_GetBeginLine)
(SCOREP_RegionHandle handle)

Returns begin line of a function within the source file

Parameters

handle handle of the region

Returns

begin line

I.5.2.36 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_RegionHandle_GetCanonicalName)
(SCOREP_RegionHandle handle)

Returns regions mangled canonical name

Parameters

handle of the region

Returns

mangled region name

I.5.2.37 SCOREP_LineNo(∗ SCOREP_SubstratePluginCallbacks::SCOREP_RegionHandle_GetEndLine)
(SCOREP_RegionHandle handle)

Returns end line of a function within the source file

166

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

Parameters

handle handle of the region

Returns

end line

I.5.2.38 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_RegionHandle_GetFileName)
(SCOREP_RegionHandle handle)

Returns file name where region is defined

Parameters

handle handle of the region

Returns

file name

I.5.2.39 uint32_t(∗ SCOREP_SubstratePluginCallbacks::SCOREP_RegionHandle_GetId) (SCOREP_RegionHandle handle)

Returns parameter id

Parameters

handle handle of the parameter

Returns

id of parameter

I.5.2.40 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_RegionHandle_GetName) (SCOREP_RegionHandle
handle)

Returns region demangled name

Parameters

handle handle of the region

Returns

demangled region name

I.5.2.41 SCOREP_ParadigmType(∗ SCOREP_SubstratePluginCallbacks::SCOREP_RegionHandle_GetParadigmType)
(SCOREP_RegionHandle handle)

Returns region paradigm

167

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Parameters

handle handle of the region

Returns

paradigm (e.g. SCOREP_PARADIGM_MPI for MPI regions)

See also

SCOREP_PublicTypes.h

I.5.2.42 SCOREP_RegionType(∗ SCOREP_SubstratePluginCallbacks::SCOREP_RegionHandle_GetType)
(SCOREP_RegionHandle handle)

Returns region type

Parameters

handle handle of the region

Returns

type (e.g. SCOREP_REGION_USER for user regions)

See also

SCOREP_PublicTypes.h

I.5.2.43 const SCOREP_MetricHandle∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_SamplingSetHandle_GetMetric←↩

Handles) (SCOREP_SamplingSetHandle handle)

Get the metric handles in a sampling set.

Parameters

handle the handle of the the existing sampling set

Returns

a list of associated metrics. get the length of the list with SCOREP_SamplingSet_GetNunmberOfMetrics

I.5.2.44 SCOREP_MetricOccurrence(∗ SCOREP_SubstratePluginCallbacks::SCOREP_SamplingSetHandle_GetMetric←↩

Occurrence) (SCOREP_SamplingSetHandle handle)

Get the metric occurrence of a sampling set.

Parameters

handle the handle of the the existing sampling set

Returns

the occurrence of handle.

I.5.2.45 uint8_t(∗ SCOREP_SubstratePluginCallbacks::SCOREP_SamplingSetHandle_GetNumberOfMetrics)
(SCOREP_SamplingSetHandle handle)

Get the number of metrics in a sampling set.

168

I.5 SCOREP_SubstratePluginCallbacks Struct Reference

Parameters

handle handle of the the existing sampling set

Returns

the number of associated metrics

I.5.2.46 SCOREP_SamplingSetClass(∗ SCOREP_SubstratePluginCallbacks::SCOREP_SamplingSetHandle_Get←↩

SamplingSetClass) (SCOREP_SamplingSetHandle handle)

Returns the class of the sampling set

Parameters

handle the handle of the the existing sampling set

Returns

sampling set class

I.5.2.47 SCOREP_MetricScope(∗ SCOREP_SubstratePluginCallbacks::SCOREP_SamplingSetHandle_GetScope)
(SCOREP_SamplingSetHandle handle)

Returns the scope of the sampling set or SCOREP_INVALID_METRIC_SCOPE if sampling set is not scoped

Parameters

handle the handle of the the existing sampling set

Returns

scope or (>=SCOREP_INVALID_METRIC_SCOPE) if the sampling set is not scoped or the runtime version
of Score-P is newer than the Score-P version when compiling plugin

I.5.2.48 bool(∗ SCOREP_SubstratePluginCallbacks::SCOREP_SamplingSetHandle_IsScoped)
(SCOREP_SamplingSetHandle handle)

Check whether a sampling set is scoped (belongs to a number of locations).

Parameters

handle the handle of the the existing sampling set

Returns

whether the sampling set is scoped or not

I.5.2.49 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_SourceFileHandle_GetName)
(SCOREP_SourceFileHandle handle)

Returns name of a source file

169

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Parameters

handle handle of the source file

Returns

name

I.5.2.50 const char∗(∗ SCOREP_SubstratePluginCallbacks::SCOREP_StringHandle_Get) (SCOREP_StringHandle handle)

Resolve string handle

Parameters

handle handle of string

Returns

string

The documentation for this struct was generated from the following file:

• SCOREP_SubstratePlugins.h

I.6 SCOREP_SubstratePluginInfo Struct Reference

#include <SCOREP_SubstratePlugins.h>

Data Fields

• void(∗ activate_cpu_location)(const struct SCOREP_Location ∗location, const struct SCOREP_Location
∗parentLocation, uint32_t forkSequenceCount)

• void(∗ assign_id)(size_t pluginId)
• void(∗ core_task_complete)(const struct SCOREP_Location ∗location, SCOREP_TaskHandle taskHandle)
• void(∗ core_task_create)(const struct SCOREP_Location ∗location, SCOREP_TaskHandle taskHandle)
• void(∗ create_location)(const struct SCOREP_Location ∗location, const struct SCOREP_Location ∗parent←↩

Location)
• void(∗ deactivate_cpu_location)(const struct SCOREP_Location ∗location, const struct SCOREP_Location
∗parentLocation)

• void(∗ delete_location)(const struct SCOREP_Location ∗location)
• void(∗ finalize)(void)
• uint32_t(∗ get_event_functions)(SCOREP_Substrates_Mode mode, SCOREP_Substrates_Callback
∗∗functions)

• int64_t(∗ get_requirement)(SCOREP_Substrates_RequirementFlag flag)
• int(∗ init)(void)
• void(∗ init_mpp)(void)
• void(∗ new_definition_handle)(SCOREP_AnyHandle handle, SCOREP_HandleType type)
• uint32_t plugin_version
• void(∗ pre_unify)(void)
• void(∗ set_callbacks)(const SCOREP_SubstratePluginCallbacks ∗callbacks, size_t size)
• void(∗ undeclared [SCOREP_SUBSTRATE_PLUGIN_UNDEFINED_MANAGEMENT_FUNCTIONS])(void)
• void(∗ write_data)(void)

170

I.6 SCOREP_SubstratePluginInfo Struct Reference

I.6.1 Detailed Description

Describes a Substrate plugin. The plugin definition should be done using the SCOREP_SUBSTRATE_PLUGIN_←↩

ENTRY macro The call order of these functions is:

• Called per process

1. (...Score-P initialization part 1, e.g. environment variables...)

2. resolving of SCOREP_SUBSTRATE_PLUGIN_ENTRY, e.g., for SCOREP_SUBSTRATE_PLUGIN←↩

S=foo check whether there is a library called libscorep_substrate_foo.so that provides a SCOREP_S←↩

UBSTRATE_PLUGIN_ENTRY(foo) / holds the function SCOREP_SubstratePlugin_foo_get_info

3. init()

4. set_callbacks()

5. get_event_functions() with mode == SCOREP_SUBSTRATES_RECORDING_ENABLED

6. get_event_functions() with mode == SCOREP_SUBSTRATES_RECORDING_DISABLED

7. From now on at any point in time there can be new definitions created via new_definition_handle().
Definitions are unique in a process context. Thus, two different locations within a process can use the
same definitions and there are no handles that are only valid for a specific location. Plugins should care
for thread safeness when registering handles in internal data structures.

8. From now on at any point in time there can be calls to get_requirement()

9. (...Score-P initialization part 2...)

10. assign_id()

11. create_location() for the main thread

12. As soon as the MPP paradigm is initialized, init_mpp() is called. If the program does not use MPP
paradigms, init_mpp() will also be called

13. (...Score-P initialization part 3...)

14. Called for each location (e.g., thread)

(a) create_location() (Only new locations, remember that the main thread location is already created
earlier!)

(b) if it is a CPU location: activate_cpu_location()

(c) Now there is a sequence of these events

– if it is a CPU location:

* (optional) calls to deactivate_cpu_location() followed by calls to activate_cpu_location()

* (optional) core_task_create(), possibly followed by runtime events, followed by core_task←↩

_complete()

– (optional) runtime events

(d) if it is a CPU location: deactivate_cpu_location()

(e) delete_location()

15. pre_unify()

16. write_data()

17. finalize()

Not implemented functions MUST point to NULL, e.g., info.assign_id = NULL;

Developer notice: When a new function is necessary, append it after the functions, but before undeclared. For each
new function, decrease SCOREP_SUBSTRATE_PLUGIN_UNDEFINED_MANAGEMENT_FUNCTIONS by one. If
this happens, increase SCOREP_PLUGIN_VERSION.

171

APPENDIX I. DATA STRUCTURE DOCUMENTATION

I.6.2 Field Documentation

I.6.2.1 void(∗ SCOREP_SubstratePluginInfo::activate_cpu_location) (const struct SCOREP_Location ∗location, const struct
SCOREP_Location ∗parentLocation, uint32_t forkSequenceCount)

This function is called whenever a location is activated.

See also

create_location
deactivate_cpu_location
delete_location

Parameters

location location which is activated
parentLocation parent of location. May be equal locationData.

forkSequence←↩

Count
an increasing number which defines the current fork from parentLocation. At each fork (or
omp parallel) this increases by 1.

I.6.2.2 void(∗ SCOREP_SubstratePluginInfo::assign_id) (size_t pluginId)

This function assigns a specific ID to the plugin that can be used for accessing thread local storage. However, most
of the internal functionality is not available at the time this function is called. Therefore, only the id should be stored
for now.

The function might be called multiple times when the Online Access interface is used and re-initializes Score-P.

Parameters

plugin_id a specific ID that is assigned to the plugin and can be used to access thread local stor-
ages. (see also SCOREP_Location_SetData and SCOREP_Location_GetData) This ID is
only valid for the current Score-P run.

I.6.2.3 void(∗ SCOREP_SubstratePluginInfo::core_task_complete) (const struct SCOREP_Location ∗location,
SCOREP_TaskHandle taskHandle)

Called when a task (e.g., an OpenMP task) is completed The taskHandle is not defined via define_handle and can
not be converted to SCOREP_AnyHandle

Parameters

location the location that completes the task
taskHandle the completed created task

I.6.2.4 void(∗ SCOREP_SubstratePluginInfo::core_task_create) (const struct SCOREP_Location ∗location,
SCOREP_TaskHandle taskHandle)

Called when a task (e.g., an OpenMP task) is creates The taskHandle is not defined via define_handle and can not
be converted to SCOREP_AnyHandle

Parameters

172

I.6 SCOREP_SubstratePluginInfo Struct Reference

location the location that created the task
taskHandle the newly created task

I.6.2.5 void(∗ SCOREP_SubstratePluginInfo::create_location) (const struct SCOREP_Location ∗location, const struct
SCOREP_Location ∗parentLocation)

The location callbacks notify the subsystem about the lifetime of a location. For CPU locations:

• create_location

– initial activate_cpu_location()

– (optional) interim deactivate_cpu_location(), followed by activate_cpu_location()

– final deactivate_cpu_location()

• delete_location

For none-CPU locations:

1. create_location

2. delete_location This function is called whenever a new location is created, e.g. whenever a new OpenMP
thread is created.

Parameters

location location which is created
parentLocation location that created this location

I.6.2.6 void(∗ SCOREP_SubstratePluginInfo::deactivate_cpu_location) (const struct SCOREP_Location ∗location, const struct
SCOREP_Location ∗parentLocation)

This function is called whenever a location is deactivated

See also

create_location
activate_cpu_location

Parameters

location location which is deactivated
parentLocation parent of location. May be equal locationData.

I.6.2.7 void(∗ SCOREP_SubstratePluginInfo::delete_location) (const struct SCOREP_Location ∗location)

This function is called whenever a location is deleted

See also

create_location

173

APPENDIX I. DATA STRUCTURE DOCUMENTATION

Parameters

location location which is deleted

I.6.2.8 void(∗ SCOREP_SubstratePluginInfo::finalize) (void)

This function is called when the Score-P run finished

I.6.2.9 uint32_t(∗ SCOREP_SubstratePluginInfo::get_event_functions) (SCOREP_Substrates_Mode mode,
SCOREP_Substrates_Callback ∗∗functions)

Get all functions for events, attributed to their SCOREP_Substrates_EventType

Parameters

mode defines which function set should be returned either for disabled or enabled recording.
functions a pointer to the functions that are assigned to the types. The returned array MUST hold SC←↩

OREP_SUBSTRATES_NUM_EVENTS elements. Not-implemented functions should be set
to NULL. The array will NOT be free'd by Score-P.

Returns

MUST return SCOREP_SUBSTRATES_NUM_EVENTS (see SCOREP_SubstrateEvents.h)

I.6.2.10 int64_t(∗ SCOREP_SubstratePluginInfo::get_requirement) (SCOREP_Substrates_RequirementFlag flag)

Provide Score-P with additional information about requirements, see SCOREP_SubstratesRequirementFlag for
details. If this function is not implemented, the default is assumed (0). This can be called at any time by any thread
depending on the flag that is queried. Plugins must take care that they return 0 if flag is greater than SCORE←↩

P_SUBSTRATES_NUM_REQUIREMENT Plugins must always return the same value for a given flag during one
execution.

Parameters

flag the requirement flag that is queried

Returns

the setting for the requirement flag, which highly depends on the type of flag

I.6.2.11 int(∗ SCOREP_SubstratePluginInfo::init) (void)

This function is called before most internal Score-P data is initialized. The plugin should be initialized here and
dependencies should be checked.

Returns

0 if initialization succeeded, otherwise !=0

I.6.2.12 void(∗ SCOREP_SubstratePluginInfo::init_mpp) (void)

This function is called after MPP paradigms are initialized. If the program does not use MPP paradigms this function
is also called. To detect used paradigms check for calls to new_definition_handle with type == SCOREP_HAND←↩

LE_TYPE_PARADIGM.

174

I.6 SCOREP_SubstratePluginInfo Struct Reference

I.6.2.13 void(∗ SCOREP_SubstratePluginInfo::new_definition_handle) (SCOREP_AnyHandle handle,
SCOREP_HandleType type)

This function will be called whenever a new definition is created Plugins can filter the processing of definitions
according to the given type. Plugins should use the callbacks passed by set_callbacks, SCOREP_Public←↩

Handles.h, and SCOREP_PublicTypes.h to make sense from the handle, (e.g., to get the name of a region)

Parameters

handle a handle to the newly created object
type the type of the handle

I.6.2.14 uint32_t SCOREP_SubstratePluginInfo::plugin_version

Must be set to SCOREP_SUBSTRATE_PLUGIN_VERSION (needed for back- and forward compatibility)

I.6.2.15 void(∗ SCOREP_SubstratePluginInfo::pre_unify) (void)

This function is called before the data about different threads and MPI processes is collected and unified, i.e. when
definitions are synchronized.

I.6.2.16 void(∗ SCOREP_SubstratePluginInfo::set_callbacks) (const SCOREP_SubstratePluginCallbacks ∗callbacks,
size_t size)

Provide plugins with pointers to functions that can be used to get meta data about handles.

Parameters

callbacks the provided function callbacks
sizeof(SCORE←↩

P_Substrate←↩

Callbacks)

The plugin should care that its version of SCOREP_SubstrateCallbacks is smaller or equal
size

I.6.2.17 void(∗ SCOREP_SubstratePluginInfo::undeclared[SCOREP_SUBSTRATE_PLUGIN_UNDEFINED_MANA←↩

GEMENT_FUNCTIONS])(void)

for future extensions Plugins must set all entries of this list to 0 (e.g., via memset)

When a new function is added in Score-P, SCOREP_SUBSTRATE_PLUGIN_UNDEFINED_MANAGEMENT_F←↩

UNCTIONS should be decreased by 1. Score-P should check for an appropriate plugin_version before calling the
new function. Otherwise, Score-P is not able to check whether this is set to 0 but might use an invalid function. This
can be avoided by enforcing a correct plugin_version.

I.6.2.18 void(∗ SCOREP_SubstratePluginInfo::write_data) (void)

This function is called after the unification process when traces/profiles are written - right before finalize. This should
be used to flush recorded data.

The documentation for this struct was generated from the following file:

• SCOREP_SubstratePlugins.h

175

APPENDIX I. DATA STRUCTURE DOCUMENTATION

176

Appendix J

File Documentation

J.1 SCOREP_MetricPlugins.h File Reference

Description of the metric plugin header. For information on how to use metric plugins, please refer to ??.

#include <stdbool.h>
#include <scorep/SCOREP_MetricTypes.h>

Data Structures

• struct SCOREP_Metric_Plugin_Info
• struct SCOREP_Metric_Plugin_MetricProperties

Properties describing a metric. Provided by the get_event_info function.

Macros

• #define SCOREP_METRIC_PLUGIN_ENTRY(_name)
• #define SCOREP_METRIC_PLUGIN_VERSION 1

J.1.1 Detailed Description

Description of the metric plugin header. For information on how to use metric plugins, please refer to ??.

J.1.2 Macro Definition Documentation

J.1.2.1 #define SCOREP_METRIC_PLUGIN_ENTRY(_name)

Value:

EXTERN SCOREP_Metric_Plugin_Info \
SCOREP_MetricPlugin_ ## _name ## _get_info(void)

Macro used for implementation of the 'get_info' function

J.1.2.2 #define SCOREP_METRIC_PLUGIN_VERSION 1

The developer of a metric plugin should provide a README file which explains how to compile, install and use the
plugin. In particular, the supported metrics should be described in the README file.

APPENDIX J. FILE DOCUMENTATION

Each metric plugin has to include SCOREP_MetricPlugins.h and implement a 'get_info' function. Therefore,
use the SCOREP_METRIC_PLUGIN_ENTRY macro and provide the name of the plugin library as the argument.
For example, the metric plugin libexample_plugin.so should use SCOREP_METRIC_PLUGIN_ENTRY(example←↩

_plugin).

It is encouraged to use the "_plugin" suffix on the name to avoid conflicts with existing libraries, e.g., libsensors_←↩

plugin.so using the existing libsensors.so.

J.1.3 Mandatory functions

See each function for details.

initialize

Check requirements and initialize the plugin.

get_event_info

A user specifies a SCOREP_METRIC_EXAMPLE_PLUGIN=token1,token2,... This function provides information
about the metric(s) corresponding to this token. The total list of metrics returned for all tokens will then be recorded
by the plugin.

add_counter

The function is called for and sets each of the metrics to be recorded by the plugin. It provides a unique ID for each
metric.

finalize

Clean up the resources used by the metric plugin.

J.1.4 Mandatory variables

run_per

Defines how many threads should record the metrics of a plugin.

sync

Defines synchronicity type of a metric plugin. A metric plugin can

• provide a metric value for each event (SCOREP_METRIC_STRICTLY_SYNC)

• optionally provide a metric value for each Score-P event (SCOREP_METRIC_SYNC)

• measure metric values independently of Score-P events, but collect them in Score-p during a Score-P event
(SCOREP_METRIC_ASYNC_EVENT)

• measure all metric values independently of events and collect them once at the very end of execution (SC←↩

OREP_METRIC_ASYNC)

plugin_version

Should be set to SCOREP_METRIC_PLUGIN_VERSION

Depending on the plugin's synchronicity type there are some optional functions and variables.

J.1.5 Optional functions

get_current_value

Used by strictly synchronous metric plugins only. Returns value of requested metric.

get_optional_value

178

J.2 SCOREP_MetricTypes.h File Reference

Used by synchronous metric plugins, but not by strictly synchronous ones. This function requests current value of a
metric, but it is valid that no value is returned (read: no update for this metric available).

get_all_values

Used by asynchronous metric plugins. This function is used to request values of a asynchronous metric. The metric
will return an arbitrary number of timestamp-value-pairs.

set_clock_function

Used by asynchronous metric plugins. This function passes a function to the plugin, which can be used by the
plugin to get a Score-P valid timestamp.

J.1.6 Optional variables

delta_t

Defines interval between two calls to update metric value. Ignored for strictly synchronous plugins.Current version
of Score-P metric plugin interface

J.2 SCOREP_MetricTypes.h File Reference

Types used by metric service.

#include <stdint.h>

Data Structures

• struct SCOREP_Metric_Properties

• struct SCOREP_MetricTimeValuePair

Enumerations

• enum SCOREP_MetricBase {
SCOREP_METRIC_BASE_BINARY = 0,
SCOREP_METRIC_BASE_DECIMAL = 1,
SCOREP_INVALID_METRIC_BASE }

• enum SCOREP_MetricMode {
SCOREP_METRIC_MODE_ACCUMULATED_START = 0,
SCOREP_METRIC_MODE_ACCUMULATED_POINT = 1,
SCOREP_METRIC_MODE_ACCUMULATED_LAST = 2,
SCOREP_METRIC_MODE_ACCUMULATED_NEXT = 3,
SCOREP_METRIC_MODE_ABSOLUTE_POINT = 4,
SCOREP_METRIC_MODE_ABSOLUTE_LAST = 5,
SCOREP_METRIC_MODE_ABSOLUTE_NEXT = 6,
SCOREP_METRIC_MODE_RELATIVE_POINT = 7,
SCOREP_METRIC_MODE_RELATIVE_LAST = 8,
SCOREP_METRIC_MODE_RELATIVE_NEXT = 9 }

• enum SCOREP_MetricPer {
SCOREP_METRIC_PER_THREAD = 0,
SCOREP_METRIC_PER_PROCESS,
SCOREP_METRIC_PER_HOST,
SCOREP_METRIC_ONCE }

179

APPENDIX J. FILE DOCUMENTATION

• enum SCOREP_MetricProfilingType {
SCOREP_METRIC_PROFILING_TYPE_EXCLUSIVE = 0,
SCOREP_METRIC_PROFILING_TYPE_INCLUSIVE = 1,
SCOREP_METRIC_PROFILING_TYPE_SIMPLE = 2,
SCOREP_METRIC_PROFILING_TYPE_MAX = 3,
SCOREP_METRIC_PROFILING_TYPE_MIN = 4 }

• enum SCOREP_MetricSourceType {
SCOREP_METRIC_SOURCE_TYPE_PAPI = 0,
SCOREP_METRIC_SOURCE_TYPE_RUSAGE = 1,
SCOREP_METRIC_SOURCE_TYPE_USER = 2,
SCOREP_METRIC_SOURCE_TYPE_OTHER = 3,
SCOREP_METRIC_SOURCE_TYPE_TASK = 4,
SCOREP_METRIC_SOURCE_TYPE_PLUGIN = 5,
SCOREP_METRIC_SOURCE_TYPE_PERF = 6 }

• enum SCOREP_MetricSynchronicity {
SCOREP_METRIC_STRICTLY_SYNC = 0,
SCOREP_METRIC_SYNC,
SCOREP_METRIC_ASYNC_EVENT,
SCOREP_METRIC_ASYNC }

• enum SCOREP_MetricSynchronizationMode {
SCOREP_METRIC_SYNCHRONIZATION_MODE_BEGIN,
SCOREP_METRIC_SYNCHRONIZATION_MODE_BEGIN_MPP,
SCOREP_METRIC_SYNCHRONIZATION_MODE_END }

• enum SCOREP_MetricValueType {
SCOREP_METRIC_VALUE_INT64,
SCOREP_METRIC_VALUE_UINT64,
SCOREP_METRIC_VALUE_DOUBLE }

J.2.1 Detailed Description

Types used by metric service.

J.2.2 Enumeration Type Documentation

J.2.2.1 enum SCOREP_MetricBase

Types to be used in defining metric base (SCOREP_Definitions_NewMetric()).

Enumerator

SCOREP_METRIC_BASE_BINARY Binary base.

SCOREP_METRIC_BASE_DECIMAL Decimal base.

SCOREP_INVALID_METRIC_BASE For

J.2.2.2 enum SCOREP_MetricMode

Types to be used in defining metric mode (SCOREP_Definitions_NewMetric()). The mode consists of a timing and
a value semantic. The possible value semantics are:

• Accumulated for classic counters, e.g. number of floating point operations. While they are stored monotoni-
cally increasing in the trace, they are often differentiated as rate over time.

• Absolute values, e.g. temperature. They are stored as is in the trace and typically also displayed as is.

• Relative values.

180

J.2 SCOREP_MetricTypes.h File Reference

The possible timing semantics are:

• Start: The value is valid for the interval from the beginning of the trace to the associated timestamp.

• Point: The value is only valid for the point in time given by the timestamp.

• Last: The value is valid for the interval from the previous to the current timestamp.

• Next: The value is valid for the interval from the current to the next timestamp.

Enumerator

SCOREP_METRIC_MODE_ACCUMULATED_START Accumulated metric, 'START' timing.

SCOREP_METRIC_MODE_ACCUMULATED_POINT Accumulated metric, 'POINT' timing.

SCOREP_METRIC_MODE_ACCUMULATED_LAST Accumulated metric, 'LAST' timing.

SCOREP_METRIC_MODE_ACCUMULATED_NEXT Accumulated metric, 'NEXT' timing.

SCOREP_METRIC_MODE_ABSOLUTE_POINT Absolute metric, 'POINT' timing.

SCOREP_METRIC_MODE_ABSOLUTE_LAST Absolute metric, 'LAST' timing.

SCOREP_METRIC_MODE_ABSOLUTE_NEXT Absolute metric, 'NEXT' timing.

SCOREP_METRIC_MODE_RELATIVE_POINT Relative metric, 'POINT' timing.

SCOREP_METRIC_MODE_RELATIVE_LAST Relative metric, 'LAST' timing.

SCOREP_METRIC_MODE_RELATIVE_NEXT Relative metric, 'NEXT' timing.

J.2.2.3 enum SCOREP_MetricPer

Enumeration to define how many threads should record the metrics of a plugin. Used by SCOREP_Metric_Plugin←↩

_Info::run_per.

Enumerator

SCOREP_METRIC_PER_THREAD Metric values are recorded on all threads of all processes

SCOREP_METRIC_PER_PROCESS If processes use multiple threads, the metric is recorded on the main
thread of each process.

SCOREP_METRIC_PER_HOST Metric values are recorded on a single thread of each node in a parallel
program running on multiple nodes (hosts). Nodes are determined by the platform-specific Score-P node
identifier.

SCOREP_METRIC_ONCE Metric values recorded once within the parallel program. They are recorded on
the first node, first process, first thread.

J.2.2.4 enum SCOREP_MetricProfilingType

Types used to define type of profiling.

Enumerator

SCOREP_METRIC_PROFILING_TYPE_EXCLUSIVE Exclusive values (excludes values from subordinated
items)

SCOREP_METRIC_PROFILING_TYPE_INCLUSIVE Inclusive values (sum including values from subordi-
nated items)

SCOREP_METRIC_PROFILING_TYPE_SIMPLE Single value

SCOREP_METRIC_PROFILING_TYPE_MAX Maximum values

SCOREP_METRIC_PROFILING_TYPE_MIN Minimum values

181

APPENDIX J. FILE DOCUMENTATION

J.2.2.5 enum SCOREP_MetricSourceType

Metric sources to be used in defining a metric member (SCOREP_Definitions_NewMetric()).

Enumerator

SCOREP_METRIC_SOURCE_TYPE_PAPI PAPI counter.

SCOREP_METRIC_SOURCE_TYPE_RUSAGE Resource usage counter.

SCOREP_METRIC_SOURCE_TYPE_USER User metrics.

SCOREP_METRIC_SOURCE_TYPE_OTHER Any other metrics.

SCOREP_METRIC_SOURCE_TYPE_TASK Generated by task profiling.

SCOREP_METRIC_SOURCE_TYPE_PLUGIN Plugin metrics.

SCOREP_METRIC_SOURCE_TYPE_PERF Linux perf metrics

J.2.2.6 enum SCOREP_MetricSynchronicity

Enumeration to define the synchronicity type of a metric. Used by SCOREP_Metric_Plugin_Info::sync.

Enumerator

SCOREP_METRIC_STRICTLY_SYNC The current value of each metric is queried by Score-P whenever an
enter/leave event occurs via get_current_value. The plugin must always be able to provide a current value.
The plugin provides the value itself, the timestamp is provided by Score-P. This setting is used for metrics
that can be measured with minimal runtime costs and updated very frequently.

SCOREP_METRIC_SYNC The current value of each metric is queried by Score-P whenever an enter/leave
event occurs via get_optional_value. Providing a value is optional in case no new value is available in the
plugin. The plugin provides the value itself, the timestamp is provided by Score-P. This setting is used for
metrics that can be measured with minimal runtime costs but do not necessarily always change.

SCOREP_METRIC_ASYNC_EVENT Metric values are be measured at arbitrary points in time, but are col-
lected at enter/leave events. Whenever an enter/leave event occurs, Score-P queries the plugin via get←↩

_all_values for a list of timestamp-value-pairs. This setting can be used for some special cases, SCOR←↩

EP_METRIC_ASYNC is usually easier to implement.

SCOREP_METRIC_ASYNC Metric values are be measured at arbitrary points in time. All values are collected
once at the very end of the execution. Score-P collects the values and associated timestamps via get←↩

_all_values. This setting is used for metrics that are recorded on external systems or within a separate
thread. While it does require additional memory buffers to store the measurement, it usually reduces the
overhead by decoupling the measurement from collection. It is also called post-mortem processing.

J.2.2.7 enum SCOREP_MetricSynchronizationMode

Possible modes of a synchronization point. Express the time when a synchronization happens.

Enumerator

SCOREP_METRIC_SYNCHRONIZATION_MODE_BEGIN Synchronization at the beginning of the measure-
ment

SCOREP_METRIC_SYNCHRONIZATION_MODE_BEGIN_MPP Synchronization at the initialization of a
multi-process paradigm (e.g., MPI)

SCOREP_METRIC_SYNCHRONIZATION_MODE_END Synchronization at the end of the measurement

182

J.3 SCOREP_PublicHandles.h File Reference

J.2.2.8 enum SCOREP_MetricValueType

Types to be used in defining type of metric values (SCOREP_Definitions_NewMetric()). The interface uses UINT64
for all values, the other types should be reinterpreted using a union.

Enumerator

SCOREP_METRIC_VALUE_INT64 64 bit integer

SCOREP_METRIC_VALUE_UINT64 64 bit unsigned integer

SCOREP_METRIC_VALUE_DOUBLE double precision floating point

J.3 SCOREP_PublicHandles.h File Reference

Description of definition handles. This header defines an enumeration to map SCOREP_AnyHandle to specific
handles. It also contains some of these handle definitions.

#include <scorep/SCOREP_PublicTypes.h>

Enumerations

• enum SCOREP_HandleType { ,
SCOREP_HANDLE_TYPE_ATTRIBUTE,
SCOREP_HANDLE_TYPE_CALLING_CONTEXT,
SCOREP_HANDLE_TYPE_CALLPATH,
SCOREP_HANDLE_TYPE_GROUP,
SCOREP_HANDLE_TYPE_INTERIM_COMMUNICATOR,
SCOREP_HANDLE_TYPE_INTERRUPT_GENERATOR,
SCOREP_HANDLE_TYPE_LOCATION,
SCOREP_HANDLE_TYPE_LOCATION_GROUP,
SCOREP_HANDLE_TYPE_LOCATION_PROPERTY,
SCOREP_HANDLE_TYPE_METRIC,
SCOREP_HANDLE_TYPE_PARADIGM,
SCOREP_HANDLE_TYPE_PARAMETER,
SCOREP_HANDLE_TYPE_PROPERTY,
SCOREP_HANDLE_TYPE_REGION,
SCOREP_HANDLE_TYPE_RMA_WINDOW,
SCOREP_HANDLE_TYPE_SAMPLING_SET,
SCOREP_HANDLE_TYPE_SAMPLING_SET_RECORDER,
SCOREP_HANDLE_TYPE_SOURCE_CODE_LOCATION,
SCOREP_HANDLE_TYPE_SOURCE_FILE,
SCOREP_HANDLE_TYPE_STRING,
SCOREP_HANDLE_TYPE_SYSTEM_TREE_NODE,
SCOREP_HANDLE_TYPE_SYSTEM_TREE_NODE_PROPERTY,
SCOREP_HANDLE_TYPE_NUM_HANDLES }

J.3.1 Detailed Description

Description of definition handles. This header defines an enumeration to map SCOREP_AnyHandle to specific
handles. It also contains some of these handle definitions.

J.3.2 Enumeration Type Documentation

183

APPENDIX J. FILE DOCUMENTATION

J.3.2.1 enum SCOREP_HandleType

handle types, lists all handle types that are supported.

Enumerator

SCOREP_HANDLE_TYPE_ATTRIBUTE The handle type is not defined/invalid

SCOREP_HANDLE_TYPE_CALLING_CONTEXT The handle type is SCOREP_AttributeHandle (defined in
src/measurement/definitions/include/SCOREP_DefinitionHandles.h)

SCOREP_HANDLE_TYPE_CALLPATH The handle type is SCOREP_CallingContextHandle

SCOREP_HANDLE_TYPE_GROUP The handle type is SCOREP_CallpathHandle

SCOREP_HANDLE_TYPE_INTERIM_COMMUNICATOR The handle type is SCOREP_GroupHandle

SCOREP_HANDLE_TYPE_INTERRUPT_GENERATOR The handle type is SCOREP_InterimCommunicator←↩

Handle

SCOREP_HANDLE_TYPE_LOCATION The handle type is SCOREP_InterruptGeneratorHandle

SCOREP_HANDLE_TYPE_LOCATION_GROUP The handle type is SCOREP_LocationHandle

SCOREP_HANDLE_TYPE_LOCATION_PROPERTY The handle type is SCOREP_LocationGroupHandle

SCOREP_HANDLE_TYPE_METRIC The handle type is SCOREP_LocationPropertyHandle

SCOREP_HANDLE_TYPE_PARADIGM The handle type is SCOREP_MetricHandle (defined in SCOREP←↩

_PublicTypes.h)

SCOREP_HANDLE_TYPE_PARAMETER The handle type is SCOREP_ParadigmHandle (defined in SCO←↩

REP_PublicTypes.h)

SCOREP_HANDLE_TYPE_PROPERTY The handle type is SCOREP_ParameterHandle

SCOREP_HANDLE_TYPE_REGION The handle type is SCOREP_PropertyHandle

SCOREP_HANDLE_TYPE_RMA_WINDOW The handle type is SCOREP_RegionHandle (defined in SCO←↩

REP_PublicTypes.h)

SCOREP_HANDLE_TYPE_SAMPLING_SET The handle type is SCOREP_RmaWindowHandle

SCOREP_HANDLE_TYPE_SAMPLING_SET_RECORDER The handle type is SCOREP_SamplingSet←↩

Handle (defined in SCOREP_PublicTypes.h)

SCOREP_HANDLE_TYPE_SOURCE_CODE_LOCATION The handle type is SCOREP_SamplingSet←↩

RecorderHandle

SCOREP_HANDLE_TYPE_SOURCE_FILE The handle type is SCOREP_SourceCodeLocationHandle

SCOREP_HANDLE_TYPE_STRING The handle type is SCOREP_SourceFileHandle (defined in SCORE←↩

P_PublicTypes.h)

SCOREP_HANDLE_TYPE_SYSTEM_TREE_NODE The handle type is SCOREP_StringHandle

SCOREP_HANDLE_TYPE_SYSTEM_TREE_NODE_PROPERTY The handle type is SCOREP_System←↩

TreeNodeHandle

SCOREP_HANDLE_TYPE_NUM_HANDLES The handle type is SCOREP_SystemTreeNodeProperty←↩

Handle Not ABI

J.4 SCOREP_PublicTypes.h File Reference

Defines public definitions that are used internally and externally (e.g., by metric plugins, user functions, substrate
plugins)

#include <stdint.h>

184

J.4 SCOREP_PublicTypes.h File Reference

Macros

• #define SCOREP_INVALID_LINE_NO 0
• #define SCOREP_INVALID_METRIC SCOREP_MOVABLE_NULL
• #define SCOREP_INVALID_PARADIGM SCOREP_MOVABLE_NULL
• #define SCOREP_INVALID_REGION SCOREP_MOVABLE_NULL
• #define SCOREP_INVALID_ROOT_RANK -1
• #define SCOREP_INVALID_SAMPLING_SET SCOREP_MOVABLE_NULL
• #define SCOREP_INVALID_SOURCE_FILE SCOREP_MOVABLE_NULL
• #define SCOREP_LOCATION_TYPES
• #define SCOREP_MOVABLE_NULL 0

Typedefs

• typedef uint32_t SCOREP_Allocator_MovableMemory
• typedef SCOREP_Allocator_MovableMemory SCOREP_AnyHandle
• typedef uint32_t SCOREP_LineNo
• typedef SCOREP_AnyHandle SCOREP_MetricHandle
• typedef int SCOREP_MpiRank
• typedef uint64_t SCOREP_MpiRequestId
• typedef SCOREP_AnyHandle SCOREP_ParadigmHandle
• typedef SCOREP_AnyHandle SCOREP_RegionHandle
• typedef SCOREP_AnyHandle SCOREP_SamplingSetHandle
• typedef SCOREP_AnyHandle SCOREP_SourceFileHandle
• typedef struct SCOREP_Task ∗ SCOREP_TaskHandle

Enumerations

• enum SCOREP_CollectiveType {
SCOREP_COLLECTIVE_BARRIER,
SCOREP_COLLECTIVE_BROADCAST,
SCOREP_COLLECTIVE_GATHER,
SCOREP_COLLECTIVE_GATHERV,
SCOREP_COLLECTIVE_SCATTER,
SCOREP_COLLECTIVE_SCATTERV,
SCOREP_COLLECTIVE_ALLGATHER,
SCOREP_COLLECTIVE_ALLGATHERV,
SCOREP_COLLECTIVE_ALLTOALL,
SCOREP_COLLECTIVE_ALLTOALLV,
SCOREP_COLLECTIVE_ALLTOALLW,
SCOREP_COLLECTIVE_ALLREDUCE,
SCOREP_COLLECTIVE_REDUCE,
SCOREP_COLLECTIVE_REDUCE_SCATTER,
SCOREP_COLLECTIVE_REDUCE_SCATTER_BLOCK,
SCOREP_COLLECTIVE_SCAN,
SCOREP_COLLECTIVE_EXSCAN,
SCOREP_COLLECTIVE_CREATE_HANDLE,
SCOREP_COLLECTIVE_DESTROY_HANDLE,
SCOREP_COLLECTIVE_ALLOCATE,
SCOREP_COLLECTIVE_DEALLOCATE,
SCOREP_COLLECTIVE_CREATE_HANDLE_AND_ALLOCATE,
SCOREP_COLLECTIVE_DESTROY_HANDLE_AND_DEALLOCATE }

Types to specify the used collectives in calls to SCOREP_MpiCollectiveBegin and SCOREP_RmaCollectiveBegin.

• enum SCOREP_Ipc_Datatype

specifies an inter process communication data types

185

APPENDIX J. FILE DOCUMENTATION

• enum SCOREP_Ipc_Operation

specifies an inter process communication operation for reduce function

• enum SCOREP_LocationType { , SCOREP_INVALID_LOCATION_TYPE }
• enum SCOREP_LockType {

SCOREP_LOCK_EXCLUSIVE,
SCOREP_LOCK_SHARED,
SCOREP_INVALID_LOCK_TYPE }

• enum SCOREP_MetricOccurrence {
SCOREP_METRIC_OCCURRENCE_SYNCHRONOUS_STRICT = 0,
SCOREP_METRIC_OCCURRENCE_SYNCHRONOUS = 1,
SCOREP_METRIC_OCCURRENCE_ASYNCHRONOUS = 2,
SCOREP_INVALID_METRIC_OCCURRENCE }

Types to be used in defining the occurrence of a sampling set.

• enum SCOREP_MetricScope {
SCOREP_METRIC_SCOPE_LOCATION = 0,
SCOREP_METRIC_SCOPE_LOCATION_GROUP = 1,
SCOREP_METRIC_SCOPE_SYSTEM_TREE_NODE = 2,
SCOREP_METRIC_SCOPE_GROUP = 3,
SCOREP_INVALID_METRIC_SCOPE }

Types to be used in defining the scope of a scoped sampling set.

• enum SCOREP_ParadigmClass { SCOREP_INVALID_PARADIGM_CLASS }

defines classes of paradigms that are monitored Types:

• enum SCOREP_ParadigmType { SCOREP_INVALID_PARADIGM_TYPE }

defines paradigms that are be monitored

• enum SCOREP_ParameterType {
SCOREP_PARAMETER_INT64,
SCOREP_PARAMETER_UINT64,
SCOREP_PARAMETER_STRING,
SCOREP_INVALID_PARAMETER_TYPE }

defines types to be used in defining a parameter for parameter based profiling (SCOREP_Definitions_New←↩

Parameter()).

• enum SCOREP_RegionType { , SCOREP_INVALID_REGION_TYPE }

specifies a Region

• enum SCOREP_RmaAtomicType

specifies a RMA Atomic Operation Type.

• enum SCOREP_RmaSyncLevel

specifies a RMA synchronization level, used by RMA records to be passed to SCOREP_Rma∗() functions.

• enum SCOREP_RmaSyncType { SCOREP_INVALID_RMA_SYNC_TYPE }

Type of direct RMA synchronization call.

• enum SCOREP_SamplingSetClass {
SCOREP_SAMPLING_SET_ABSTRACT,
SCOREP_SAMPLING_SET_CPU,
SCOREP_SAMPLING_SET_GPU }

Class of locations which recorded a sampling set.

• enum SCOREP_Substrates_RequirementFlag {
SCOREP_SUBSTRATES_REQUIREMENT_EXPERIMENT_DIRECTORY = 0,
SCOREP_SUBSTRATES_REQUIREMENT_CONSTANT_METRIC_SET = 0,
SCOREP_SUBSTRATES_NUM_REQUIREMENT }

J.4.1 Detailed Description

Defines public definitions that are used internally and externally (e.g., by metric plugins, user functions, substrate
plugins)

186

J.5 SCOREP_SubstrateEvents.h File Reference

J.5 SCOREP_SubstrateEvents.h File Reference

Description of the substrate plugin events header. For information on how to use substrate plugins, please refer to
section 5.12.

#include <stdbool.h>
#include <stddef.h>
#include <scorep/SCOREP_MetricTypes.h>
#include <scorep/SCOREP_PublicTypes.h>
#include <scorep/SCOREP_PublicHandles.h>

Typedefs

• typedef void(∗ SCOREP_Substrates_Callback) (void)
• typedef void(∗ SCOREP_Substrates_CallingContextEnterCb) (struct SCOREP_Location ∗location, uint64←↩

_t timestamp, SCOREP_CallingContextHandle callingContext, SCOREP_CallingContextHandle previous←↩

CallingContext, uint32_t unwindDistance, uint64_t ∗metricValues)
• typedef void(∗ SCOREP_Substrates_CallingContextExitCb) (struct SCOREP_Location ∗location, uint64←↩

_t timestamp, SCOREP_CallingContextHandle callingContext, SCOREP_CallingContextHandle previous←↩

CallingContext, uint32_t unwindDistance, uint64_t ∗metricValues)
• typedef void(∗ SCOREP_Substrates_DisableRecordingCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)
• typedef void(∗ SCOREP_Substrates_EnableRecordingCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)
• typedef void(∗ SCOREP_Substrates_EnterRegionCb) (struct SCOREP_Location ∗location, uint64_t times-

tamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)
• typedef void(∗ SCOREP_Substrates_EnterRewindRegionCb) (struct SCOREP_Location ∗location, uint64_t

timestamp, SCOREP_RegionHandle regionHandle)
• typedef void(∗ SCOREP_Substrates_ExitRegionCb) (struct SCOREP_Location ∗location, uint64_t times-

tamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)
• typedef void(∗ SCOREP_Substrates_ExitRewindRegionCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RegionHandle regionHandle, bool doRewind)
• typedef void(∗ SCOREP_Substrates_MpiCollectiveBeginCb) (struct SCOREP_Location ∗location, uint64_t

timestamp)
• typedef void(∗ SCOREP_Substrates_MpiCollectiveEndCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_InterimCommunicatorHandle communicatorHandle, SCOREP_MpiRank rootRank,
SCOREP_CollectiveType collectiveType, uint64_t bytesSent, uint64_t bytesReceived)

• typedef void(∗ SCOREP_Substrates_MpiIrecvCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRank sourceRank, SCOREP_InterimCommunicatorHandle communicatorHandle, uint32_←↩

t tag, uint64_t bytesReceived, SCOREP_MpiRequestId requestId)
• typedef void(∗ SCOREP_Substrates_MpiIrecvRequestCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_MpiRequestId requestId)
• typedef void(∗ SCOREP_Substrates_MpiIsendCb) (struct SCOREP_Location ∗location, uint64_t times-

tamp, SCOREP_MpiRank destinationRank, SCOREP_InterimCommunicatorHandle communicatorHandle,
uint32_t tag, uint64_t bytesSent, SCOREP_MpiRequestId requestId)

• typedef void(∗ SCOREP_Substrates_MpiIsendCompleteCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_MpiRequestId requestId)

• typedef void(∗ SCOREP_Substrates_MpiRecvCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRank sourceRank, SCOREP_InterimCommunicatorHandle communicatorHandle, uint32_←↩

t tag, uint64_t bytesReceived)
• typedef void(∗ SCOREP_Substrates_MpiRequestCancelledCb) (struct SCOREP_Location ∗location,

uint64_t timestamp, SCOREP_MpiRequestId requestId)
• typedef void(∗ SCOREP_Substrates_MpiRequestTestedCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_MpiRequestId requestId)

187

APPENDIX J. FILE DOCUMENTATION

• typedef void(∗ SCOREP_Substrates_MpiSendCb) (struct SCOREP_Location ∗location, uint64_t times-
tamp, SCOREP_MpiRank destinationRank, SCOREP_InterimCommunicatorHandle communicatorHandle,
uint32_t tag, uint64_t bytesSent)

• typedef void(∗ SCOREP_Substrates_OnTracingBufferFlushBeginCb) (struct SCOREP_Location ∗location,
uint64_t timestamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)

• typedef void(∗ SCOREP_Substrates_OnTracingBufferFlushEndCb) (struct SCOREP_Location ∗location,
uint64_t timestamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)

• typedef void(∗ SCOREP_Substrates_RmaAcquireLockCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t lockId, SCOREP_←↩

LockType lockType)
• typedef void(∗ SCOREP_Substrates_RmaAtomicCb) (struct SCOREP_Location ∗location, uint64_t times-

tamp, SCOREP_RmaWindowHandle windowHandle, uint32_t remote, SCOREP_RmaAtomicType type,
uint64_t bytesSent, uint64_t bytesReceived, uint64_t matchingId)

• typedef void(∗ SCOREP_Substrates_RmaCollectiveBeginCb) (struct SCOREP_Location ∗location, uint64←↩

_t timestamp)
• typedef void(∗ SCOREP_Substrates_RmaCollectiveEndCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_CollectiveType collectiveOp, SCOREP_RmaSyncLevel syncLevel, SCOREP_Rma←↩

WindowHandle windowHandle, uint32_t root, uint64_t bytesSent, uint64_t bytesReceived)
• typedef void(∗ SCOREP_Substrates_RmaGroupSyncCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RmaSyncLevel syncLevel, SCOREP_RmaWindowHandle windowHandle, SCOR←↩

EP_GroupHandle groupHandle)
• typedef void(∗ SCOREP_Substrates_RmaOpCompleteRemoteCb) (struct SCOREP_Location ∗location,

uint64_t timestamp, SCOREP_RmaWindowHandle windowHandle, uint64_t matchingId)
• typedef void(∗ SCOREP_Substrates_RmaOpTestCb) (struct SCOREP_Location ∗location, uint64_t times-

tamp, SCOREP_RmaWindowHandle windowHandle, uint64_t matchingId)
• typedef void(∗ SCOREP_Substrates_RmaReleaseLockCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t lockId)
• typedef void(∗ SCOREP_Substrates_RmaRequestLockCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t lockId, SCOREP_←↩

LockType lockType)
• typedef void(∗ SCOREP_Substrates_RmaSyncCb) (struct SCOREP_Location ∗location, uint64_t timestamp,

SCOREP_RmaWindowHandle windowHandle, uint32_t remote, SCOREP_RmaSyncType syncType)
• typedef void(∗ SCOREP_Substrates_RmaTryLockCb) (struct SCOREP_Location ∗location, uint64_t times-

tamp, SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t lockId, SCOREP_LockType
lockType)

• typedef void(∗ SCOREP_Substrates_RmaWaitChangeCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RmaWindowHandle windowHandle)
• typedef void(∗ SCOREP_Substrates_RmaWinCreateCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RmaWindowHandle windowHandle)
• typedef void(∗ SCOREP_Substrates_RmaWinDestroyCb) (struct SCOREP_Location ∗location, uint64_←↩

t timestamp, SCOREP_RmaWindowHandle windowHandle)
• typedef void(∗ SCOREP_Substrates_SampleCb) (struct SCOREP_Location ∗location, uint64_t timestamp,

SCOREP_CallingContextHandle callingContext, SCOREP_CallingContextHandle previousCallingContext,
uint32_t unwindDistance, SCOREP_InterruptGeneratorHandle interruptGeneratorHandle, uint64_t ∗metric←↩

Values)
• typedef void(∗ SCOREP_Substrates_ThreadForkJoinForkCb) (struct SCOREP_Location ∗location, uint64←↩

_t timestamp, SCOREP_ParadigmType paradigm, uint32_t nRequestedThreads, uint32_t forkSequence←↩

Count)
• typedef void(∗ SCOREP_Substrates_ThreadForkJoinJoinCb) (struct SCOREP_Location ∗location, uint64_t

timestamp, SCOREP_ParadigmType paradigm)
• typedef void(∗ SCOREP_Substrates_ThreadForkJoinTaskCreateCb) (struct SCOREP_Location ∗location,

uint64_t timestamp, SCOREP_ParadigmType paradigm, SCOREP_InterimCommunicatorHandle thread←↩

Team, uint32_t threadId, uint32_t generationNumber)
• typedef void(∗ SCOREP_Substrates_ThreadForkJoinTaskSwitchCb) (struct SCOREP_Location ∗location,

uint64_t timestamp, uint64_t ∗metricValues, SCOREP_ParadigmType paradigm, SCOREP_Interim←↩

CommunicatorHandle threadTeam, uint32_t threadId, uint32_t generationNumber, SCOREP_TaskHandle
taskHandle)

188

J.5 SCOREP_SubstrateEvents.h File Reference

• typedef void(∗ SCOREP_Substrates_TrackAllocCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
uint64_t addrAllocated, size_t bytesAllocated, void ∗substrateData[], size_t bytesAllocatedMetric, size_←↩

t bytesAllocatedProcess)

• typedef void(∗ SCOREP_Substrates_TrackFreeCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
uint64_t addrFreed, size_t bytesFreed, void ∗substrateData[], size_t bytesAllocatedMetric, size_t bytes←↩

AllocatedProcess)

• typedef void(∗ SCOREP_Substrates_TrackReallocCb) (struct SCOREP_Location ∗location, uint64_t times-
tamp, uint64_t oldAddr, size_t oldBytesAllocated, void ∗oldSubstrateData[], uint64_t newAddr, size_t new←↩

BytesAllocated, void ∗newSubstrateData[], size_t bytesAllocatedMetric, size_t bytesAllocatedProcess)

• typedef void(∗ SCOREP_Substrates_TriggerParameterStringCb) (struct SCOREP_Location ∗location,
uint64_t timestamp, SCOREP_ParameterHandle parameterHandle, SCOREP_StringHandle string_handle)

• typedef void(∗ SCOREP_Substrates_WriteAsynchMetricBeforeEventCb) (struct SCOREP_Location
∗location, uint64_t timestamp, SCOREP_SamplingSetHandle samplingSet, const uint64_t ∗metricValues)

• typedef void(∗ SCOREP_Substrates_RmaPutCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t bytes, uint64_t matchingId)

• typedef void(∗ SCOREP_Substrates_RmaOpCompleteBlockingCb) (struct SCOREP_Location ∗location,
uint64_t timestamp, SCOREP_RmaWindowHandle windowHandle, uint64_t matchingId)

• typedef void(∗ SCOREP_Substrates_ThreadAcquireLockCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_ParadigmType paradigm, uint32_t lockId, uint32_t acquisitionOrder)

• typedef void(∗ SCOREP_Substrates_TriggerCounterInt64Cb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_SamplingSetHandle counterHandle, int64_t value)

• typedef void(∗ SCOREP_Substrates_TriggerParameterInt64Cb) (struct SCOREP_Location ∗location,
uint64_t timestamp, SCOREP_ParameterHandle parameterHandle, int64_t value)

• typedef void(∗ SCOREP_Substrates_ThreadForkJoinTeamBeginCb) (struct SCOREP_Location ∗location,
uint64_t timestamp, SCOREP_ParadigmType paradigm, SCOREP_InterimCommunicatorHandle thread←↩

Team)

• typedef void(∗ SCOREP_Substrates_ThreadForkJoinTaskBeginCb) (struct SCOREP_Location ∗location,
uint64_t timestamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues, SCOREP_←↩

ParadigmType paradigm, SCOREP_InterimCommunicatorHandle threadTeam, uint32_t threadId, uint32_t
generationNumber, SCOREP_TaskHandle taskHandle)

• typedef void(∗ SCOREP_Substrates_ThreadCreateWaitCreateCb) (struct SCOREP_Location ∗location,
uint64_t timestamp, SCOREP_ParadigmType paradigm, SCOREP_InterimCommunicatorHandle thread←↩

Team, uint32_t createSequenceCount)

189

APPENDIX J. FILE DOCUMENTATION

Enumerations

• enum SCOREP_Substrates_EventType {
SCOREP_EVENT_ENABLE_RECORDING = 0,
SCOREP_EVENT_DISABLE_RECORDING,
SCOREP_EVENT_ON_TRACING_BUFFER_FLUSH_BEGIN,
SCOREP_EVENT_ON_TRACING_BUFFER_FLUSH_END,
SCOREP_EVENT_ENTER_REGION,
SCOREP_EVENT_EXIT_REGION,
SCOREP_EVENT_SAMPLE,
SCOREP_EVENT_CALLING_CONTEXT_ENTER,
SCOREP_EVENT_CALLING_CONTEXT_EXIT,
SCOREP_EVENT_ENTER_REWIND_REGION,
SCOREP_EVENT_EXIT_REWIND_REGION,
SCOREP_EVENT_MPI_SEND,
SCOREP_EVENT_MPI_RECV,
SCOREP_EVENT_MPI_COLLECTIVE_BEGIN,
SCOREP_EVENT_MPI_COLLECTIVE_END,
SCOREP_EVENT_MPI_ISEND_COMPLETE,
SCOREP_EVENT_MPI_IRECV_REQUEST,
SCOREP_EVENT_MPI_REQUEST_TESTED,
SCOREP_EVENT_MPI_REQUEST_CANCELLED,
SCOREP_EVENT_MPI_ISEND,
SCOREP_EVENT_MPI_IRECV,
SCOREP_EVENT_RMA_WIN_CREATE,
SCOREP_EVENT_RMA_WIN_DESTROY,
SCOREP_EVENT_RMA_COLLECTIVE_BEGIN,
SCOREP_EVENT_RMA_COLLECTIVE_END,
SCOREP_EVENT_RMA_TRY_LOCK,
SCOREP_EVENT_RMA_ACQUIRE_LOCK,
SCOREP_EVENT_RMA_REQUEST_LOCK,
SCOREP_EVENT_RMA_RELEASE_LOCK,
SCOREP_EVENT_RMA_SYNC,
SCOREP_EVENT_RMA_GROUP_SYNC,
SCOREP_EVENT_RMA_PUT,
SCOREP_EVENT_RMA_GET,
SCOREP_EVENT_RMA_ATOMIC,
SCOREP_EVENT_RMA_WAIT_CHANGE,
SCOREP_EVENT_RMA_OP_COMPLETE_BLOCKING,
SCOREP_EVENT_RMA_OP_COMPLETE_NON_BLOCKING,
SCOREP_EVENT_RMA_OP_TEST,
SCOREP_EVENT_RMA_OP_COMPLETE_REMOTE,
SCOREP_EVENT_THREAD_ACQUIRE_LOCK,
SCOREP_EVENT_THREAD_RELEASE_LOCK,
SCOREP_EVENT_TRIGGER_COUNTER_INT64,
SCOREP_EVENT_TRIGGER_COUNTER_UINT64,
SCOREP_EVENT_TRIGGER_COUNTER_DOUBLE,
SCOREP_EVENT_TRIGGER_PARAMETER_INT64,
SCOREP_EVENT_TRIGGER_PARAMETER_UINT64,
SCOREP_EVENT_TRIGGER_PARAMETER_STRING,
SCOREP_EVENT_THREAD_FORK_JOIN_FORK,
SCOREP_EVENT_THREAD_FORK_JOIN_JOIN,
SCOREP_EVENT_THREAD_FORK_JOIN_TEAM_BEGIN,
SCOREP_EVENT_THREAD_FORK_JOIN_TEAM_END,
SCOREP_EVENT_THREAD_FORK_JOIN_TASK_CREATE,
SCOREP_EVENT_THREAD_FORK_JOIN_TASK_SWITCH,
SCOREP_EVENT_THREAD_FORK_JOIN_TASK_BEGIN,
SCOREP_EVENT_THREAD_FORK_JOIN_TASK_END,
SCOREP_EVENT_THREAD_CREATE_WAIT_CREATE,
SCOREP_EVENT_THREAD_CREATE_WAIT_WAIT,
SCOREP_EVENT_THREAD_CREATE_WAIT_BEGIN,
SCOREP_EVENT_THREAD_CREATE_WAIT_END,
SCOREP_EVENT_TRACK_ALLOC,
SCOREP_EVENT_TRACK_REALLOC,
SCOREP_EVENT_TRACK_FREE,
SCOREP_EVENT_WRITE_ASYNC_METRIC_BEFORE_EVENT ,

190

J.5 SCOREP_SubstrateEvents.h File Reference

SCOREP_SUBSTRATES_NUM_EVENTS }

Substrate events. Lists every event that is going to be used by the substrate mechanism. More details can be found
in the respective functions.

• enum SCOREP_Substrates_Mode {
SCOREP_SUBSTRATES_RECORDING_ENABLED = 0,
SCOREP_SUBSTRATES_RECORDING_DISABLED,
SCOREP_SUBSTRATES_NUM_MODES }

J.5.1 Detailed Description

Description of the substrate plugin events header. For information on how to use substrate plugins, please refer to
section 5.12.

J.5.2 Typedef Documentation

J.5.2.1 typedef void(∗ SCOREP_Substrates_Callback) (void)

J.5.3 Advice

Do not include this file directly, but include SCOREP_SubstratePlugins.h Generic void function pointer for substrate
functions.

J.5.3.1 typedef void(∗ SCOREP_Substrates_CallingContextEnterCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_CallingContextHandle callingContext, SCOREP_CallingContextHandle previousCallingContext, uint32_t
unwindDistance, uint64_t ∗metricValues)

called when entering a region via a instrumentation adapter and Score-P is recording calling contexts (i.e., unwinding
is enabled), alternative to SCOREP_Substrates_EnterRegionCb

Parameters

location location which creates this event
timestamp timestamp for this event

callingContext callstack at timestamp
previous←↩

CallingContext
calling context of the last SCOREP_Substrates_SampleCb

unwindDistance number of stack levels changed since the last sample
metricValues synchronous metrics at timestamp The synchronous metric belong to the last sampling set

definition whose metric occurrence is SCOREP_METRIC_OCCURRENCE_SYNCHRON←↩

OUS_STRICT and whose class is SCOREP_SAMPLING_SET_CPU

J.5.3.2 typedef void(∗ SCOREP_Substrates_CallingContextExitCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_CallingContextHandle callingContext, SCOREP_CallingContextHandle previousCallingContext, uint32_t
unwindDistance, uint64_t ∗metricValues)

called when exiting a region via a instrumentation adapter and Score-P is recording calling contexts (i.e., unwinding
is enabled). alternative to SCOREP_Substrates_ExitRegionCb

See also

SCOREP_Substrates_CallingContextEnterCb

191

APPENDIX J. FILE DOCUMENTATION

J.5.3.3 typedef void(∗ SCOREP_Substrates_DisableRecordingCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)

called when disabling the recording on a process and its sub-locations This is triggered by user instrumentation and
can not be called when in parallel This event will be generated for SCOREP_Substrates_Mode ENABLED, right
before the disabling starts. It is currently not called for SCOREP_Substrates_Mode DISABLED. This might change
in the future.

See also

SCOREP_Substrates_EnableRecordingCb

J.5.3.4 typedef void(∗ SCOREP_Substrates_EnableRecordingCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)

called when enabling the recording on a process and its sub-locations This is triggered by user instrumentation
and can not be called when in parallel The default mode is enabled. If the default mode is set to disabled by
user instrumentation, an enabled event is called before the substrate is finalized. This event will be generated for
SCOREP_Substrates_Mode ENABLED, right after the enabling finished. It is currently not called for SCOREP_←↩

Substrates_Mode DISABLED. This might change in the future.

Parameters

location location which creates this event.
timestamp timestamp for this event

regionHandle "MEASUREMENT OFF" region
metricValues synchronous metrics at timestamp

J.5.3.5 typedef void(∗ SCOREP_Substrates_EnterRegionCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)

called when entering a region via some instrumentation adapter. If unwinding is enabled, the event CALLING_C←↩

ONTEXT_ENTER will be called instead.

Parameters

location location which creates this event
timestamp timestamp for this event

regionHandle region that is entered
metricValues synchronous metrics at timestamp. The synchronous metric belong to the last sampling set

definition whose metric occurrence is SCOREP_METRIC_OCCURRENCE_SYNCHRON←↩

OUS_STRICT and whose class is SCOREP_SAMPLING_SET_CPU

J.5.3.6 typedef void(∗ SCOREP_Substrates_EnterRewindRegionCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RegionHandle regionHandle)

called when the user adapter enters a rewind region. The recording of the region and any following region informa-
tion after this should be discarded when the next SCOREP_Substrates_ExitRewindRegionCb for this regionHandle
is called with do_rewind == true

Parameters

location location which creates this event

192

J.5 SCOREP_SubstrateEvents.h File Reference

timestamp timestamp for this event
regionHandle region that is entered

J.5.3.7 typedef void(∗ SCOREP_Substrates_ExitRegionCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)

called when exiting a region via some instrumentation adapter If unwinding is enabled, the event CALLING_CON←↩

TEXT_EXIT will be called instead.

See also

SCOREP_Substrates_EnterRegionCb

J.5.3.8 typedef void(∗ SCOREP_Substrates_ExitRewindRegionCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RegionHandle regionHandle, bool doRewind)

called when the user adapter exits a rewind region. The recording of the region and any previous regions since
SCOREP_Substrates_ExitRewindRegionCb for this regionHandle should be discarded if do_rewind == true

Parameters

location location which creates this event
timestamp timestamp for this event

regionHandle region that is entered
doRewind whether to discard previously recorded data or not

J.5.3.9 typedef void(∗ SCOREP_Substrates_MpiCollectiveBeginCb) (struct SCOREP_Location ∗location, uint64_t timestamp)

Called when an MPI collective is recognized by the MPI adapter before it is started. See also the MPI specifications
at https://www.mpi-forum.org/docs/ More information on the type is passed with the SCOREP_←↩

Substrates_MpiCollectiveEndCb callback

Parameters

location location which creates this event
timestamp timestamp for this event

J.5.3.10 typedef void(∗ SCOREP_Substrates_MpiCollectiveEndCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_InterimCommunicatorHandle communicatorHandle, SCOREP_MpiRank rootRank,
SCOREP_CollectiveType collectiveType, uint64_t bytesSent, uint64_t bytesReceived)

called when an MPI collective is recognized by the MPI adapter after it is finished. see also the MPI specifications
at https://www.mpi-forum.org/docs/

Parameters

location location which creates this event
timestamp timestamp for this event

communicator←↩

Handle
communicator handle to which the location rank and the destinationRank belong

193

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

APPENDIX J. FILE DOCUMENTATION

rootRank rank that sent the message that is to be received
tag provided MPI tag for this message

bytesSent number of bytes received with this message
bytesReceived number of bytes received with this message

J.5.3.11 typedef void(∗ SCOREP_Substrates_MpiIrecvCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRank sourceRank, SCOREP_InterimCommunicatorHandle communicatorHandle, uint32_t tag,
uint64_t bytesReceived, SCOREP_MpiRequestId requestId)

Finishes an MpiIrecvRequest see also the MPI specifications at https://www.mpi-forum.org/docs/

Parameters

location location which sends an MPI message
timestamp timestamp for this event

sourceRank rank that sent the message
communicator←↩

Handle
communicator of this location and the source rank

tag MPI tag
bytesReceived number of bytes received with this message

requestId request ID of the non blocking communication to be canceled (see MPI standard)

J.5.3.12 typedef void(∗ SCOREP_Substrates_MpiIrecvRequestCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRequestId requestId)

Called from MPI adapter when an MPI_Irecv is initialized see also the MPI specifications at https://www.←↩

mpi-forum.org/docs/ Previously there should be a SCOREP_Substrates_MpiIrecvCb with the same
requestId

Parameters

location location which creates this event
timestamp timestamp for this event
requestId request ID of the MPI_Irecv (see MPI standard)

J.5.3.13 typedef void(∗ SCOREP_Substrates_MpiIsendCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRank destinationRank, SCOREP_InterimCommunicatorHandle communicatorHandle, uint32_t tag,
uint64_t bytesSent, SCOREP_MpiRequestId requestId)

Initialize a non blocking send via MPI see also the MPI specifications at https://www.mpi-forum.←↩

org/docs/

Parameters

location location which creates this event
timestamp timestamp for this event

destinationRank rank that will receive the message
communicator←↩

Handle
communicator of this location and the target rank

tag MPI tag
bytesSent number of sent bytes

194

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

J.5 SCOREP_SubstrateEvents.h File Reference

requestId request ID of the non blocking communication to be canceled (see MPI standard)

J.5.3.14 typedef void(∗ SCOREP_Substrates_MpiIsendCompleteCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRequestId requestId)

Called from MPI adapter when an MPI_Isend is completed see also the MPI specifications at https://www.←↩

mpi-forum.org/docs/ Previously there should be a SCOREP_Substrates_MpiIsendCb with the same
requestId

Parameters

location location which creates this event
timestamp timestamp for this event
requestId request ID of the MPI_Isend (see MPI standard)

J.5.3.15 typedef void(∗ SCOREP_Substrates_MpiRecvCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRank sourceRank, SCOREP_InterimCommunicatorHandle communicatorHandle, uint32_t tag,
uint64_t bytesReceived)

called when an MPI_Recv is recognized by the MPI adapter see also the MPI specifications at https://www.←↩

mpi-forum.org/docs/ There should be a SCOREP_Substrates_MpiSendCb call on the location of the
sourceRank.

Parameters

location location which creates this event
timestamp timestamp for this event

sourceRank rank that sent the message that is to be received
communicator←↩

Handle
communicator handle to which the location rank and the destinationRank belong

tag provided MPI tag for this message
bytesReceived number of bytes received with this message

J.5.3.16 typedef void(∗ SCOREP_Substrates_MpiRequestCancelledCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_MpiRequestId requestId)

Called from MPI adapter when a non-blocking communication is cancelled see also the MPI specifications at
https://www.mpi-forum.org/docs/ Previously there should be an initialization of the non-blocking com-
munication with the same requestId

Parameters

location location which creates this event
timestamp timestamp for this event
requestId request ID of the non blocking communication to be canceled (see MPI standard)

J.5.3.17 typedef void(∗ SCOREP_Substrates_MpiRequestTestedCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRequestId requestId)

Called from MPI adapter when the status of a non-blocking communication is tested see also the MPI specifications
at https://www.mpi-forum.org/docs/ Previously there should be an initialization of the non-blocking
communication with the same requestId

195

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

APPENDIX J. FILE DOCUMENTATION

Parameters

location location which creates this event
timestamp timestamp for this event
requestId request ID of the non blocking communication to be tested (see MPI standard)

J.5.3.18 typedef void(∗ SCOREP_Substrates_MpiSendCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_MpiRank destinationRank, SCOREP_InterimCommunicatorHandle communicatorHandle, uint32_t tag,
uint64_t bytesSent)

called when an MPI_Send is recognized by the MPI adapter see also the MPI specifications at https://www.←↩

mpi-forum.org/docs/ There should be a SCOREP_Substrates_MpiRecvCb call on the location of the
destinationRank.

Parameters

location location which creates this event
timestamp timestamp for this event

destinationRank rank that should receive the message
communicator←↩

Handle
communicator handle to which the location rank and the destinationRank belong

tag provided MPI tag for this message
bytesSent number of bytes sent with this message

J.5.3.19 typedef void(∗ SCOREP_Substrates_OnTracingBufferFlushBeginCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)

called when flushing the tracing buffer of a location

Parameters

location location which creates this event
timestamp timestamp for this event

regionHandle "TRACE BUFFER FLUSH" region
metricValues synchronous metrics at timestamp

J.5.3.20 typedef void(∗ SCOREP_Substrates_OnTracingBufferFlushEndCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues)

called after flushing the tracing buffer of a location,

See also

SCOREP_Substrates_OnTracingBufferFlushBeginCb

J.5.3.21 typedef void(∗ SCOREP_Substrates_RmaAcquireLockCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t lockId, SCOREP_LockType lockType)

Marks the time that a lock is granted. This is the typical situation. It has to be followed by a matching SCOREP_←↩

Substrates_RmaRequestLockCb record later on.

196

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

J.5 SCOREP_SubstrateEvents.h File Reference

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle Memory window.
remote Rank of target in context of window.
lockId Lock id in context of window.

lockType Type of lock (shared vs. exclusive).

J.5.3.22 typedef void(∗ SCOREP_Substrates_RmaAtomicCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint32_t remote, SCOREP_RmaAtomicType type, uint64_t
bytesSent, uint64_t bytesReceived, uint64_t matchingId)

The atomic RMA operations are similar to the get and put operations. As an additional field they provide the type of
operation. Depending on the type, data may be received, sent, or both, therefore, the sizes are specified separately.
Matching the local and optionally remote completion works the same way as for get and put operations.

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle Window.
remote Rank of target in context of window.

type Type of atomic operation (see SCOREP_RmaAtomicType).
bytesSent Number of bytes transferred to remote target.

bytesReceived Number of bytes transferred from remote target.
matchingId Matching number.

J.5.3.23 typedef void(∗ SCOREP_Substrates_RmaCollectiveBeginCb) (struct SCOREP_Location ∗location, uint64_t timestamp)

begin a collective operation on an MPI remote memory access window see also the MPI specifications at https←↩

://www.mpi-forum.org/docs/ More information is passed with the next call SCOREP_Substrates_Rma←↩

CollectiveEndCb

Parameters

location location which creates this event
timestamp timestamp for this event

J.5.3.24 typedef void(∗ SCOREP_Substrates_RmaCollectiveEndCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_CollectiveType collectiveOp, SCOREP_RmaSyncLevel syncLevel, SCOREP_RmaWindowHandle
windowHandle, uint32_t root, uint64_t bytesSent, uint64_t bytesReceived)

end a collective operation on an MPI remote memory access window see also the MPI specifications at https←↩

://www.mpi-forum.org/docs/

Parameters

location location which creates this event
timestamp timestamp for this event

collectiveOp type of the collective operation
syncLevel synchronization level

197

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

APPENDIX J. FILE DOCUMENTATION

windowHandle the previously defined and created window handle
root Root process/rank if there is one

bytesSent number of bytes sent
bytesReceived number of bytes received

J.5.3.25 typedef void(∗ SCOREP_Substrates_RmaGroupSyncCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaSyncLevel syncLevel, SCOREP_RmaWindowHandle windowHandle, SCOREP_GroupHandle
groupHandle)

This record marks the synchronization of a sub-group of the locations associated with the given memory window. It
needs to be recorded for all participating locations.

Parameters

location location which creates this event
timestamp timestamp for this event
syncLevel Synchronization level.

windowHandle Memory window.
groupHandle Group of participating processes or threads.

J.5.3.26 typedef void(∗ SCOREP_Substrates_RmaOpCompleteBlockingCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_RmaWindowHandle windowHandle, uint64_t matchingId)

The completion records mark the end of RMA operations. Local completion for every RMA operation (get, put,
or atomic operation) always has to be marked with either SCOREP_Substrates_RmaOpCompleteBlockingCb or
SCOREP_Substrates_RmaOpCompleteNonBlockingCb using the same matching number as the RMA operation
record. An RMA operation is blocking when the operation completes locally before leaving the call, for non-blocking
operations local completion has to be ensured by a subsequent call.

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle Memory window.
matchingId Matching number.

J.5.3.27 typedef void(∗ SCOREP_Substrates_RmaOpCompleteRemoteCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_RmaWindowHandle windowHandle, uint64_t matchingId)

An optional remote completion point can be specified with SCOREP_Substrates_RmaOpCompleteRemoteCb. It is
recorded on the same location as the RMA operation itself. Again, multiple RMA operations may map to the same
SCOREP_Substrates_RmaOpCompleteRemoteCb. The target locations are not explicitly specified but implicitly as
all those that were referenced in matching RMA operations.

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle Memory window.
matchingId Matching number.

198

J.5 SCOREP_SubstrateEvents.h File Reference

J.5.3.28 typedef void(∗ SCOREP_Substrates_RmaOpTestCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint64_t matchingId)

This record indicates a test for completion. It is only useful for non-blocking RMA calls where the API supports such
a test. The test record stands for a negative outcome, otherwise a completion record is written (see SCOREP_←↩

Substrates_RmaOpCompleteRemoteCb).

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle Memory window.
matchingId Matching number.

J.5.3.29 typedef void(∗ SCOREP_Substrates_RmaPutCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t bytes, uint64_t matchingId)

The get and put operations access remote memory addresses. The corresponding get and put records mark when
they are issued. The actual start and the completion may happen later.

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle Memory window.
remote Rank of target in context of window.

bytes Number of bytes transferred.
matchingId Matching number.

Note

The matching number allows to reference the point of completion of the operation. It will reappear in a com-
pletion record on the same location.

J.5.3.30 typedef void(∗ SCOREP_Substrates_RmaReleaseLockCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t lockId)

Marks the time the lock is freed. It contains all fields that are necessary to match it to either an earlier SCOR←↩

EP_Substrates_RmaAcquireLockCb or SCOREP_Substrates_RmaRequestLockCb event and is required to follow
either of the two.

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle Memory window.
remote Rank of target in context of window.
lockId Lock id in context of window.

J.5.3.31 typedef void(∗ SCOREP_Substrates_RmaRequestLockCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t lockId, SCOREP_LockType lockType)

This record marks the time that a request for a lock is issued where the RMA model ensures that the lock is granted
eventually without further notification. As of now this is specific for MPI. In this case, the SCOREP_RmaAcquireLock
event is not present.

199

APPENDIX J. FILE DOCUMENTATION

Parameters

location location which creates this event
timestamp timestamp for this event

win Memory window.
remote Rank of target in context of window.
lockId Lock id in context of window.

lockType Type of lock (shared vs. exclusive).

J.5.3.32 typedef void(∗ SCOREP_Substrates_RmaSyncCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint32_t remote, SCOREP_RmaSyncType syncType)

This record marks a simple pairwise synchronization.

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle Memory window.
remote Rank of target in context of window.

syncType Type of direct RMA synchronization call (e.g. SCOREP_RMA_SYNC_TYPE_MEMORY, S←↩

COREP_RMA_SYNC_TYPE_NOTIFY_IN, SCOREP_RMA_SYNC_TYPE_NOTIFY_OUT).

J.5.3.33 typedef void(∗ SCOREP_Substrates_RmaTryLockCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle, uint32_t remote, uint64_t lockId, SCOREP_LockType lockType)

An attempt to acquire a lock which turns out negative can be marked with SCOREP_Substrates_RmaTryLockCb.
In this case, no release record may follow. With this a series of unsuccessful locking attempts can be identified.
If an lock attempt is successful, it is marked with SCOREP_Substrates_RmaAcquireLockCb right away instead of
a pair of SCOREP_Substrates_RmaTryLockCb and @ SCOREP_Substrates_RmaAcquireLockCb. see also the
MPI specifications at https://www.mpi-forum.org/docs/

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle the previously defined and created window handle
remote Rank of target in context of window
lockId Lock id in context of window.

lockType Type of lock (shared vs. exclusive).

J.5.3.34 typedef void(∗ SCOREP_Substrates_RmaWaitChangeCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle)

The SCOREP_EVENT_RMA_WAIT_CHANGE event marks a synchronization point that blocks until a remote op-
eration modifies a given memory field. This event marks the beginning of the waiting period. The memory field in
question is part of the specified window.

Parameters

location location which creates this event
timestamp timestamp for this event

200

https://www.mpi-forum.org/docs/

J.5 SCOREP_SubstrateEvents.h File Reference

windowHandle Memory window.

J.5.3.35 typedef void(∗ SCOREP_Substrates_RmaWinCreateCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle)

create a remote memory access window see also the MPI specifications at https://www.mpi-forum.←↩

org/docs/

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle previously defined window handle

J.5.3.36 typedef void(∗ SCOREP_Substrates_RmaWinDestroyCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_RmaWindowHandle windowHandle)

destroy a remote memory access window see also the MPI specifications at https://www.mpi-forum.←↩

org/docs/

Parameters

location location which creates this event
timestamp timestamp for this event

windowHandle previously defined and created window handle

J.5.3.37 typedef void(∗ SCOREP_Substrates_SampleCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_CallingContextHandle callingContext, SCOREP_CallingContextHandle previousCallingContext, uint32_t
unwindDistance, SCOREP_InterruptGeneratorHandle interruptGeneratorHandle, uint64_t ∗metricValues)

called when a sampling adapter interrupts the workload and records a sample. Called from a signal handler, so
used functions should be async-signal safe. If a function is not signal safe, but is interrupted by a signal (i.e., a
sample event) and used within the signal context, its behavior is unpredictable.

Parameters

location location which creates this event
timestamp timestamp for this event

callingContext callstack at timestamp
previous←↩

CallingContext
calling context of the last SCOREP_Substrates_SampleCb

unwindDistance number of stack levels changed since the last sample
interrupt←↩

Generator←↩

Handle

source that interrupted the workload

metricValues synchronous metrics at timestamp The synchronous metric belong to the last sampling set
definition whose metric occurrence is SCOREP_METRIC_OCCURRENCE_SYNCHRON←↩

OUS_STRICT and whose class is SCOREP_SAMPLING_SET_CPU

J.5.3.38 typedef void(∗ SCOREP_Substrates_ThreadAcquireLockCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_ParadigmType paradigm, uint32_t lockId, uint32_t acquisitionOrder)

Process a thread acquire/release lock event in the measurement system.

201

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

APPENDIX J. FILE DOCUMENTATION

Parameters

location location which creates this event
timestamp timestamp for this event
paradigm the underlying parallelization paradigm of the lock

lockId A unique ID to identify the lock, maintained by the caller.
acquisitionOrder A monotonically increasing id to determine the order of lock acquisitions. Same for corre-

sponding acquire-release events.

J.5.3.39 typedef void(∗ SCOREP_Substrates_ThreadCreateWaitCreateCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_ParadigmType paradigm, SCOREP_InterimCommunicatorHandle threadTeam, uint32_t
createSequenceCount)

process a thread event for a create/wait thread model instrumentation adapter e.g., pthreads

Parameters

location location which creates this event
timestamp timestamp for this event
paradigm One of the predefined threading models.

threadTeam previously defined thread team
create←↩

SequenceCount
a process unique increasing number that is increased at every SCOREP_Substrates_←↩

ThreadCreateWaitCreateCb and SCOREP_Substrates_ThreadForkJoinForkCb

J.5.3.40 typedef void(∗ SCOREP_Substrates_ThreadForkJoinForkCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_ParadigmType paradigm, uint32_t nRequestedThreads, uint32_t forkSequenceCount)

called from threading instrumentation adapters before a thread team is forked, e.g., before an OpenMP parallel
region

Parameters

location location which creates this event
timestamp timestamp for this event
paradigm threading paradigm

nRequested←↩

Threads
number of threads to be forked. Note that this does not necessarily represent actual threads
but threads can also be reused, e..g, in OpenMP runtimes.

forkSequence←↩

Count
an increasing number, unique for each process that allows to identify a parallel region

J.5.3.41 typedef void(∗ SCOREP_Substrates_ThreadForkJoinJoinCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_ParadigmType paradigm)

called from threading instrumentation after a thread team is joined, e.g., after an OpenMP parallel region

Parameters

location location which creates this event
timestamp timestamp for this event
paradigm threading paradigm

202

J.5 SCOREP_SubstrateEvents.h File Reference

J.5.3.42 typedef void(∗ SCOREP_Substrates_ThreadForkJoinTaskBeginCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_RegionHandle regionHandle, uint64_t ∗metricValues, SCOREP_ParadigmType
paradigm, SCOREP_InterimCommunicatorHandle threadTeam, uint32_t threadId, uint32_t generationNumber,
SCOREP_TaskHandle taskHandle)

Process a task begin/end event

203

APPENDIX J. FILE DOCUMENTATION

Parameters

location location which creates this event
timestamp timestamp for this event

metricValues synchronous metrics
paradigm One of the predefined threading models.

regionHandle Region handle of the task region.
threadTeam previously defined thread team

threadId Id of the this thread within the team of threads that constitute the parallel region.
generation←↩

Number
The sequence number for this task. Each task created gets a thread private generation
number attached. Combined with the threadId, this constitutes a unique task ID inside the
parallel region.

taskHandle A handle to the executed task

J.5.3.43 typedef void(∗ SCOREP_Substrates_ThreadForkJoinTaskCreateCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_ParadigmType paradigm, SCOREP_InterimCommunicatorHandle threadTeam, uint32_t
threadId, uint32_t generationNumber)

Process a task create event in the measurement system.

Parameters

location location which creates this event
timestamp timestamp for this event
paradigm One of the predefined threading models.

threadTeam previously defined thread team
threadId Id of the this thread within the team of threads that constitute the parallel region.

generation←↩

Number
The sequence number for this task. Each task gets a thread private generation number of
the creating thread attached. Combined with the threadId, this constitutes a unique task ID
inside the parallel region.

J.5.3.44 typedef void(∗ SCOREP_Substrates_ThreadForkJoinTaskSwitchCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, uint64_t ∗metricValues, SCOREP_ParadigmType paradigm, SCOREP_InterimCommunicatorHandle
threadTeam, uint32_t threadId, uint32_t generationNumber, SCOREP_TaskHandle taskHandle)

Process a task switch event

Parameters

location location which creates this event
timestamp timestamp for this event

metricValues synchronous metrics
paradigm One of the predefined threading models.

threadTeam previously defined thread team
threadId Id of the this thread within the team of threads that constitute the parallel region.

generation←↩

Number
The sequence number for this task. Each task gets a thread private generation number of
the creating thread attached. Combined with the threadId, this constitutes a unique task ID
inside the parallel region.

taskHandle A handle to the resumed task.

J.5.3.45 typedef void(∗ SCOREP_Substrates_ThreadForkJoinTeamBeginCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_ParadigmType paradigm, SCOREP_InterimCommunicatorHandle threadTeam)

called from threading instrumentation after a thread team is created/before it is joined.

204

J.5 SCOREP_SubstrateEvents.h File Reference

Parameters

location location which creates this event
timestamp timestamp for this event
paradigm threading paradigm

threadTeam previously defined thread team

J.5.3.46 typedef void(∗ SCOREP_Substrates_TrackAllocCb) (struct SCOREP_Location ∗location, uint64_t timestamp, uint64_t
addrAllocated, size_t bytesAllocated, void ∗substrateData[], size_t bytesAllocatedMetric, size_t bytesAllocatedProcess)

Event for allocating memory using malloc/calloc

Parameters

location location which creates this event
timestamp timestamp for this event

addrAllocated allocated address, should be converted to void∗
bytesAllocated number of bytes allocated
substrateData Internal substrates may register data for this address. They should use their substrate id to

access their specific item. Substrate plugins should NOT access this variable.
bytesAllocated←↩

Metric
The total size of the metric. E.g., all memory regions tracked with the memory adapters count
into a specific metric

bytesAllocated←↩

Process
total number of bytes allocated in the process

J.5.3.47 typedef void(∗ SCOREP_Substrates_TrackFreeCb) (struct SCOREP_Location ∗location, uint64_t timestamp, uint64_t
addrFreed, size_t bytesFreed, void ∗substrateData[], size_t bytesAllocatedMetric, size_t bytesAllocatedProcess)

Event for freeing memory using free

Parameters

location location which creates this event
timestamp timestamp for this event
addrFreed address passed to free

bytesFreed number of bytes freed
substrateData Internal substrates get previously registered data for addrFreed. They should use their sub-

strate id to access their specific item. Substrate plugins should NOT access this variable.
bytesAllocated←↩

Metric
The total size of the metric. E.g., all memory regions tracked with the memory adapters count
into a specific metric

bytesAllocated←↩

Process
total number of bytes allocated in the process

J.5.3.48 typedef void(∗ SCOREP_Substrates_TrackReallocCb) (struct SCOREP_Location ∗location, uint64_t timestamp,
uint64_t oldAddr, size_t oldBytesAllocated, void ∗oldSubstrateData[], uint64_t newAddr, size_t newBytesAllocated,
void ∗newSubstrateData[], size_t bytesAllocatedMetric, size_t bytesAllocatedProcess)

Event for allocating/freeing memory using realloc

Parameters

location location which creates this event

205

APPENDIX J. FILE DOCUMENTATION

timestamp timestamp for this event
oldAddr address passed to realloc

oldBytes←↩

Allocated
size allocated to oldAddr before calling realloc

oldSubstrate←↩

Data
Internal substrates get their previously registered data for oldAddr. They should use their
substrate id to access their specific item. Substrate plugins should NOT access this variable.

newAddr address gained from realloc
newBytes←↩

Allocated
size of object at newAddr after realloc

newSubstrate←↩

Data
Internal substrates can register data for newAddr. They should use their substrate id to
access their specific item. Substrate plugins should NOT access this variable.

bytesAllocated←↩

Metric
The total size of the metric. E.g., all memory regions tracked with the memory adapters count
into a specific metric

bytesAllocated←↩

Process
total number of bytes allocated in the process

J.5.3.49 typedef void(∗ SCOREP_Substrates_TriggerCounterInt64Cb) (struct SCOREP_Location ∗location, uint64_t timestamp,
SCOREP_SamplingSetHandle counterHandle, int64_t value)

Trigger a counter, which represents more or less a metric

See also

also SCOREP_User_TriggerMetricInt64 SCOREP_User_TriggerMetricUint64 SCOREP_User_Trigger←↩

MetricDouble

Parameters

location location which creates this event
timestamp timestamp for this event

counterHandle previously defined counter handle
value value of the counter when triggered. The datatype depends on the called function

J.5.3.50 typedef void(∗ SCOREP_Substrates_TriggerParameterInt64Cb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_ParameterHandle parameterHandle, int64_t value)

Trigger a user defined parameter with a specific value

See also

also SCOREP_User_ParameterInt64 SCOREP_User_ParameterUint64

Parameters

location location which creates this event
timestamp timestamp for this event

parameter←↩

Handle
previously defined parameter handle

value value of the parameter when triggered. The datatype depends on the called function

J.5.3.51 typedef void(∗ SCOREP_Substrates_TriggerParameterStringCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_ParameterHandle parameterHandle, SCOREP_StringHandle string_handle)

Trigger a user defined parameter with a specific value

206

J.5 SCOREP_SubstrateEvents.h File Reference

See also

also SCOREP_User_ParameterString

Parameters

location location which creates this event
timestamp timestamp for this event

parameter←↩

Handle
previously defined parameter handle

string_handle previously defined string when the parameter is triggered.

J.5.3.52 typedef void(∗ SCOREP_Substrates_WriteAsynchMetricBeforeEventCb) (struct SCOREP_Location ∗location, uint64_t
timestamp, SCOREP_SamplingSetHandle samplingSet, const uint64_t ∗metricValues)

Records metrics before every ENTER_REGION, EXIT_REGION, SAMPLE, CALLING_CONTEXT_ENTER and C←↩

ALLING_CONTEXT_EXIT. Only SCOREP_METRIC_ASYNC_EVENT metrics are written, if (strictly) synchronous
metrics should be read, use:

• internally SCOREP_Metric_WriteStrictlySynchronousMetrics and SCOREP_Metric_WriteSynchronous←↩

Metrics

• plugins: SCOREP_SubstratePluginCallbacks.SCOREP_Metric_WriteStrictlySynchronousMetrics and SC←↩

OREP_SubstratePluginCallbacks.SCOREP_Metric_WriteStrictlySynchronousMetrics At the end of the mea-
surement, but before the main location is deactivated, SCOREP_METRIC_ASYNC metrics are written.

Parameters

location A pointer to the thread location data of the thread that executed the metric event.
timestamp The timestamp, when the metric event occurred.

samplingSet The sampling set with metrics
metricValues Array of the metric values.

J.5.4 Enumeration Type Documentation

J.5.4.1 enum SCOREP_Substrates_EventType

Substrate events. Lists every event that is going to be used by the substrate mechanism. More details can be found
in the respective functions.

Enumerator

SCOREP_EVENT_ENABLE_RECORDING enable recording of events, see SCOREP_Substrates_Enable←↩

RecordingCb()

SCOREP_EVENT_DISABLE_RECORDING disable recording of events, see SCOREP_Substrates_←↩

DisableRecordingCb()

SCOREP_EVENT_ON_TRACING_BUFFER_FLUSH_BEGIN start flushing trace buffer to disk, see SCOR←↩

EP_Substrates_OnTracingBufferFlushBeginCb()

SCOREP_EVENT_ON_TRACING_BUFFER_FLUSH_END end flushing trace buffer to disk, see SCOREP←↩

_Substrates_OnTracingBufferFlushEndCb()

SCOREP_EVENT_ENTER_REGION enter an instrumented region, see SCOREP_Substrates_Enter←↩

RegionCb()

SCOREP_EVENT_EXIT_REGION exit an instrumented region, see SCOREP_Substrates_ExitRegionCb()

SCOREP_EVENT_SAMPLE record a calling context from sampling, see SCOREP_Substrates_SampleCb()

207

APPENDIX J. FILE DOCUMENTATION

SCOREP_EVENT_CALLING_CONTEXT_ENTER enter an instrumented region with calling context infor-
mation, replaces SCOREP_EVENT_ENTER_REGION when unwinding is enabled, see SCOREP_←↩

Substrates_CallingContextEnterCb()

SCOREP_EVENT_CALLING_CONTEXT_EXIT exit an instrumented region with calling context information,
replaces SCOREP_EVENT_EXIT_REGION when unwinding is enabled, see SCOREP_Substrates_←↩

CallingContextExitCb()

SCOREP_EVENT_ENTER_REWIND_REGION enter rewinding, see SCOREP_Substrates_EnterRewind←↩

RegionCb()

SCOREP_EVENT_EXIT_REWIND_REGION exit rewinding, see SCOREP_Substrates_ExitRewindRegion←↩

Cb()

SCOREP_EVENT_MPI_SEND MPI_Send, see SCOREP_Substrates_MpiSendCb()

SCOREP_EVENT_MPI_RECV MPI_Recv, see SCOREP_Substrates_MpiRecvCb()

SCOREP_EVENT_MPI_COLLECTIVE_BEGIN starts an MPI collective, see SCOREP_Substrates_Mpi←↩

CollectiveBeginCb()

SCOREP_EVENT_MPI_COLLECTIVE_END ends an MPI collective, see SCOREP_Substrates_Mpi←↩

CollectiveEndCb()

SCOREP_EVENT_MPI_ISEND_COMPLETE marks the completion of an MPI_Isend, see SCOREP_←↩

Substrates_MpiIsendCompleteCb()

SCOREP_EVENT_MPI_IRECV_REQUEST marks the request for an MPI_Irecv, see SCOREP_Substrates←↩

_MpiIrecvRequestCb()

SCOREP_EVENT_MPI_REQUEST_TESTED marks the test of an MPI request (e.g., in an MPI_Waitsome(...)
), see SCOREP_Substrates_MpiRequestTestedCb()

SCOREP_EVENT_MPI_REQUEST_CANCELLED marks the cancellation of an MPI request (e.g., an MP←↩

I_Test_cancelled(...) call that returned true in its second parameter), see SCOREP_Substrates_Mpi←↩

RequestCancelledCb()

SCOREP_EVENT_MPI_ISEND marks the start of an MPI_ISend, see SCOREP_Substrates_MpiIsendCb()

SCOREP_EVENT_MPI_IRECV marks the start of an MPI_IRecv, see SCOREP_Substrates_MpiIrecvCb()

SCOREP_EVENT_RMA_WIN_CREATE marks the creation of an RMA window (used by cuda, opencl, and
shmem), see SCOREP_Substrates_RmaWinCreateCb()

SCOREP_EVENT_RMA_WIN_DESTROY marks the destruction of an RMA window (used by cuda, opencl,
and shmem), see SCOREP_Substrates_RmaWinDestroyCb()

SCOREP_EVENT_RMA_COLLECTIVE_BEGIN marks the start of an RMA collective (used by shmem), see
SCOREP_Substrates_RmaCollectiveBeginCb()

SCOREP_EVENT_RMA_COLLECTIVE_END marks the start of an RMA collective (used by shmem), see
SCOREP_Substrates_RmaCollectiveEndCb()

SCOREP_EVENT_RMA_TRY_LOCK marks an RMA trylock (used by shmem), see SCOREP_Substrates←↩

_RmaTryLockCb()

SCOREP_EVENT_RMA_ACQUIRE_LOCK marks the acquisition of an RMA lock (used by shmem), see S←↩

COREP_Substrates_RmaAcquireLockCb()

SCOREP_EVENT_RMA_REQUEST_LOCK marks a request for an RMA lock (used by shmem), see SCO←↩

REP_Substrates_RmaRequestLockCb()

SCOREP_EVENT_RMA_RELEASE_LOCK marks a release of an RMA lock (used by shmem), see SCO←↩

REP_Substrates_RmaReleaseLockCb()

SCOREP_EVENT_RMA_SYNC marks a simple pairwise RMA synchronization, see SCOREP_Substrates←↩

_RmaSyncCb()

SCOREP_EVENT_RMA_GROUP_SYNC marks an RMA synchronization of a sub-group of locations on a
given window, see SCOREP_Substrates_RmaGroupSyncCb()

SCOREP_EVENT_RMA_PUT marks a put operation to an RMA memory (used by cuda, opencl, and shmem),
see SCOREP_Substrates_RmaPutCb()

SCOREP_EVENT_RMA_GET marks a get operation from an RMA memory (used by cuda, opencl, and
shmem), see SCOREP_Substrates_RmaGetCb()

208

J.5 SCOREP_SubstrateEvents.h File Reference

SCOREP_EVENT_RMA_ATOMIC marks an atomic RMA operation (used by shmem), see SCOREP_←↩

Substrates_RmaAtomicCb()

SCOREP_EVENT_RMA_WAIT_CHANGE marks a blocks until a remote operation modifies a given RMA
memory field (used by shmem), see SCOREP_Substrates_RmaWaitChangeCb()

SCOREP_EVENT_RMA_OP_COMPLETE_BLOCKING marks completion of a blocking RMA operation
(used by cuda, opencl, and shmem), see SCOREP_Substrates_RmaOpCompleteBlockingCb()

SCOREP_EVENT_RMA_OP_COMPLETE_NON_BLOCKING marks completion of a non-blocking RMA op-
eration, see SCOREP_Substrates_RmaOpCompleteNonBlockingCb()

SCOREP_EVENT_RMA_OP_TEST marks a test for completion of a non-blocking RMA operation, see SC←↩

OREP_Substrates_RmaOpTestCb()

SCOREP_EVENT_RMA_OP_COMPLETE_REMOTE marks a remote completion point, see SCOREP_←↩

Substrates_RmaOpCompleteRemoteCb()

SCOREP_EVENT_THREAD_ACQUIRE_LOCK marks when a thread acquires a lock (pthreads, explicit and
implicit OpenMP locks), see SCOREP_Substrates_ThreadAcquireLockCb()

SCOREP_EVENT_THREAD_RELEASE_LOCK marks when a thread releases a lock (pthreads, explicit and
implicit OpenMP locks), see SCOREP_Substrates_ThreadreleaseLockCb()

SCOREP_EVENT_TRIGGER_COUNTER_INT64 called when an int64 counter is triggered, see SCOREP←↩

_Substrates_TriggerCounterInt64Cb()

SCOREP_EVENT_TRIGGER_COUNTER_UINT64 called when an uint64 counter is triggered, see SCOR←↩

EP_Substrates_TriggerCounterUint64Cb()

SCOREP_EVENT_TRIGGER_COUNTER_DOUBLE called when an double counter is triggered, see SCO←↩

REP_Substrates_TriggerCounterDoubleCb()

SCOREP_EVENT_TRIGGER_PARAMETER_INT64 called when an int64 parameter is triggered, called from
user instrumentation, see SCOREP_Substrates_TriggerParameterInt64Cb()

SCOREP_EVENT_TRIGGER_PARAMETER_UINT64 called when an uint64 parameter is triggered, called
from user instrumentation, see SCOREP_Substrates_TriggerParameterUint64Cb()

SCOREP_EVENT_TRIGGER_PARAMETER_STRING called when an string parameter is triggered, called
from user instrumentation, see SCOREP_Substrates_TriggerParameterStringCb()

SCOREP_EVENT_THREAD_FORK_JOIN_FORK called before a fork-join based thread-parallel program-
ming model (e.g., OpenMP) forks its threads logically, see SCOREP_Substrates_ThreadForkJoinFork←↩

Cb()

SCOREP_EVENT_THREAD_FORK_JOIN_JOIN called after a fork-join based thread-parallel programming
model (e.g., OpenMP) joins its threads logically, see SCOREP_Substrates_ThreadForkJoinJoinCb()

SCOREP_EVENT_THREAD_FORK_JOIN_TEAM_BEGIN begin of a parallel execution on a thread created
by either SCOREP_ThreadForkJoin_Fork, is called by all created threads, see SCOREP_Substrates_←↩

ThreadForkJoinTeamBeginCb()

SCOREP_EVENT_THREAD_FORK_JOIN_TEAM_END end of a parallel execution on a thread created by
either SCOREP_ThreadForkJoin_Fork, is called by all created threads, see SCOREP_Substrates_←↩

ThreadForkJoinTeamBeginCb()

SCOREP_EVENT_THREAD_FORK_JOIN_TASK_CREATE creation of a task in a fork-join based thread-
parallel programming model (e.g., OpenMP), see SCOREP_Substrates_ThreadForkJoinTaskCreateCb()

SCOREP_EVENT_THREAD_FORK_JOIN_TASK_SWITCH switching of tasks in a fork-join based thread-
parallel programming model (e.g., OpenMP), see SCOREP_Substrates_ThreadForkJoinTaskSwitchCb()

SCOREP_EVENT_THREAD_FORK_JOIN_TASK_BEGIN begin of a task in a fork-join based thread-parallel
programming model (e.g., OpenMP), see SCOREP_Substrates_ThreadForkJoinTaskBeginCb()

SCOREP_EVENT_THREAD_FORK_JOIN_TASK_END end of a task in a fork-join based thread-parallel pro-
gramming model (e.g., OpenMP), see SCOREP_Substrates_ThreadForkJoinTaskEndCb()

SCOREP_EVENT_THREAD_CREATE_WAIT_CREATE create a new thread in a create-wait based thread-
parallel programming model (e.g., pthreads), called by parent, see SCOREP_Substrates_ThreadCreate←↩

WaitCreateCb()

209

APPENDIX J. FILE DOCUMENTATION

SCOREP_EVENT_THREAD_CREATE_WAIT_WAIT wait and join a thread in a create-wait based thread-
parallel programming model (e.g., pthreads), usually called by parent, see SCOREP_Substrates_←↩

ThreadCreateWaitWaitCb()

SCOREP_EVENT_THREAD_CREATE_WAIT_BEGIN begin a new thread in a create-wait based thread-
parallel programming model (e.g., pthreads), called by new thread, see SCOREP_Substrates_Thread←↩

CreateWaitBeginCb()

SCOREP_EVENT_THREAD_CREATE_WAIT_END end a thread in a create-wait based thread-parallel pro-
gramming model (e.g., pthreads), see SCOREP_Substrates_ThreadCreateWaitEndCb()

SCOREP_EVENT_TRACK_ALLOC track malloc/calloc memory allocation, see SCOREP_Substrates_←↩

TrackAllocCb()

SCOREP_EVENT_TRACK_REALLOC track realloc memory (de-)allocation, see SCOREP_Substrates_←↩

TrackReallocCb()

SCOREP_EVENT_TRACK_FREE track realloc memory deallocation, see SCOREP_Substrates_Track←↩

FreeCb()

SCOREP_EVENT_WRITE_ASYNC_METRIC_BEFORE_EVENT write asynchronous event metrics before
events and asynchronous metrics post mortem

SCOREP_SUBSTRATES_NUM_EVENTS Non-ABI, marks the end of the currently supported events and can
change with different versions of Score-P (increases with increasing Score-P version)

J.5.4.2 enum SCOREP_Substrates_Mode

Substrates need to provide two sets of callbacks for the modes SCOREP_SUBSTATES_RECORDING_ENABLED
and SCOREP_SUBSTRATES_RECORDING_DISABLED. This enum is used as an array index.

Enumerator

SCOREP_SUBSTRATES_RECORDING_ENABLED The recording of events is enabled (default)

SCOREP_SUBSTRATES_RECORDING_DISABLED The recording of events is disabled

SCOREP_SUBSTRATES_NUM_MODES Non-ABI

J.6 SCOREP_SubstratePlugins.h File Reference

Description of the substrate plugin header. For information on how to use substrate plugins, please refer to section
5.12.

#include <stdlib.h>
#include <stddef.h>
#include <scorep/SCOREP_PublicTypes.h>
#include <scorep/SCOREP_PublicHandles.h>
#include <scorep/SCOREP_SubstrateEvents.h>

Data Structures

• struct SCOREP_SubstratePluginCallbacks
• struct SCOREP_SubstratePluginInfo

Macros

• #define SCOREP_SUBSTRATE_PLUGIN_ENTRY(_name)
• #define SCOREP_SUBSTRATE_PLUGIN_UNDEFINED_MANAGEMENT_FUNCTIONS 100
• #define SCOREP_SUBSTRATE_PLUGIN_VERSION 1

210

J.6 SCOREP_SubstratePlugins.h File Reference

J.6.1 Detailed Description

Description of the substrate plugin header. For information on how to use substrate plugins, please refer to section
5.12.

J.6.2 Macro Definition Documentation

J.6.2.1 #define SCOREP_SUBSTRATE_PLUGIN_ENTRY(_name)

Value:

EXTERN SCOREP_SubstratePluginInfo \
SCOREP_SubstratePlugin_ ## _name ## _get_info(void)

Macro used for implementation of the 'get_info' function

J.6.2.2 #define SCOREP_SUBSTRATE_PLUGIN_UNDEFINED_MANAGEMENT_FUNCTIONS 100

This should be reduced by 1 for each new function added to SCOREP_SubstratePluginInfo

J.6.2.3 #define SCOREP_SUBSTRATE_PLUGIN_VERSION 1

J.6.3 Advice for developers

The developer of a substrate plugin should provide a README file which explains how to compile, install and use
the plugin. In particular, the supported substrates should be described in the README file.

Each substrate plugin has to include SCOREP_SubstratePlugins.h and implement a 'get_info' function.
Therefore, use the SCOREP_SUBSTRATE_PLUGIN_ENTRY macro and provide the name of the plugin library as
the argument. The plugin library must be called libscorep_substrate_<libraryname>.so For example, the example
substrate plugin libscorep_substrate_example.so should use SCOREP_SUBSTRATE_PLUGIN_ENTRY(example
). Substrate plugins that implement event functions should also include SCOREP_SubstrateEvents.h Plugin
writers should also refer to SCOREP_PublicHandles.h and SCOREP_PublicTypes.h to handle SCOR←↩

EP handles given in event functions.

J.6.4 Functions

See each function for details. All functions except init are optional!

init

Check requirements and initialize the plugin.

assign_id

The plugin gets an id that can be used later to store location specific data.

init_mpp

If an MPP paradigm is used, it will be initialized when this call occurs. If no MPP paradigm is used, this function will
be called as well.

finalize

Finalization of Score-P.

create_location

Create a new location (e.g., when a thread is created)

delete_location

211

APPENDIX J. FILE DOCUMENTATION

Delete an existing location

activate_cpu_location

Activate a CPU location to write events. Called, for example, after create_location on CPU locations.

deactivate_cpu_location

Deactivate a CPU location. Called, for example, before delete_location.

pre_unify

Called before the unify step, after the measurement.

write_data

Called after the measurement when writing data.

core_task_create

Create a task (e.g., an OpenMP task)

core_task_complete

Complete a task (e.g., an OpenMP task)

new_definition_handle

Called when a handle is defined, which could define, for example a region or a metric. Plugins can use callbacks to
get meta data for this handle.

get_event_functions

Called twice with different modes. Get a list of events that shall be passed to the plugin.

set_callbacks

Called before get_event_functions. Set a list of callbacks so that the plugin can get meta data for handles.

undeclared

MUST be set to zero. Added for extendability.

J.6.5 Mandatory variable

plugin_version

Must be set to SCOREP_SUBSTRATE_PLUGIN_VERSIONCurrent version of Score-P substrate plugin interface

J.7 SCOREP_User.h File Reference

This file contains the interface for the manual user instrumentation.

#include <scorep/SCOREP_User_Variables.h>
#include <scorep/SCOREP_User_Functions.h>

Macros

Macros for region instrumentation

• #define SCOREP_USER_FUNC_DEFINE()
• #define SCOREP_USER_OA_PHASE_BEGIN(handle, name, type)
• #define SCOREP_USER_OA_PHASE_END(handle) SCOREP_User_OaPhaseEnd(handle);
• #define SCOREP_USER_REGION_DEFINE(handle) static SCOREP_User_RegionHandle handle = S←↩

COREP_USER_INVALID_REGION;
• #define SCOREP_USER_REGION_ENTER(handle) SCOREP_User_RegionEnter(handle);

212

J.8 SCOREP_User_Types.h File Reference

• #define SCOREP_USER_REGION_BEGIN(handle, name, type)
• #define SCOREP_USER_REGION_INIT(handle, name, type)
• #define SCOREP_USER_REGION_END(handle) SCOREP_User_RegionEnd(handle);
• #define SCOREP_USER_FUNC_BEGIN()
• #define SCOREP_USER_FUNC_END() SCOREP_User_RegionEnd(scorep_user_func_handle);
• #define SCOREP_USER_GLOBAL_REGION_DEFINE(handle) SCOREP_User_RegionHandle handle =

SCOREP_USER_INVALID_REGION;
• #define SCOREP_USER_GLOBAL_REGION_EXTERNAL(handle) extern SCOREP_User_Region←↩

Handle handle;

Macros for parameter instrumentation

• #define SCOREP_USER_PARAMETER_INT64(name, value)
• #define SCOREP_USER_PARAMETER_UINT64(name, value)
• #define SCOREP_USER_PARAMETER_STRING(name, value)

Macros to provide user metrics

• #define SCOREP_USER_METRIC_LOCAL(metricHandle)
• #define SCOREP_USER_METRIC_GLOBAL(metricHandle)
• #define SCOREP_USER_METRIC_EXTERNAL(metricHandle) extern SCOREP_SamplingSetHandle

metricHandle;
• #define SCOREP_USER_METRIC_INIT(metricHandle, name, unit, type, context) SCOREP_User_Init←↩

Metric(&metricHandle, name, unit, type, context);
• #define SCOREP_USER_METRIC_INT64(metricHandle, value)
• #define SCOREP_USER_METRIC_UINT64(metricHandle, value)
• #define SCOREP_USER_METRIC_DOUBLE(metricHandle, value)

C++ specific macros for region instrumentation

• #define SCOREP_USER_REGION(name, type)

Macros for measurement control

• #define SCOREP_RECORDING_ON() SCOREP_User_EnableRecording();
• #define SCOREP_RECORDING_OFF() SCOREP_User_DisableRecording();
• #define SCOREP_RECORDING_IS_ON() SCOREP_User_RecordingEnabled()

J.7.1 Detailed Description

This file contains the interface for the manual user instrumentation.

J.8 SCOREP_User_Types.h File Reference

This file contains type definitions for manual user instrumentation.

#include <scorep/SCOREP_PublicTypes.h>

Macros

• #define SCOREP_USER_INVALID_PARAMETER -1
• #define SCOREP_USER_INVALID_REGION NULL

Region types

• #define SCOREP_USER_REGION_TYPE_COMMON 0

213

APPENDIX J. FILE DOCUMENTATION

• #define SCOREP_USER_REGION_TYPE_FUNCTION 1
• #define SCOREP_USER_REGION_TYPE_LOOP 2
• #define SCOREP_USER_REGION_TYPE_DYNAMIC 4
• #define SCOREP_USER_REGION_TYPE_PHASE 8

Metric types

• #define SCOREP_USER_METRIC_TYPE_INT64 0
• #define SCOREP_USER_METRIC_TYPE_UINT64 1
• #define SCOREP_USER_METRIC_TYPE_DOUBLE 2

Metric contexts

• #define SCOREP_USER_METRIC_CONTEXT_GLOBAL 0
• #define SCOREP_USER_METRIC_CONTEXT_CALLPATH 1

Typedefs

• typedef uint32_t SCOREP_User_MetricType
• typedef uint64_t SCOREP_User_ParameterHandle
• typedef struct SCOREP_User_Region ∗ SCOREP_User_RegionHandle
• typedef uint32_t SCOREP_User_RegionType

J.8.1 Detailed Description

This file contains type definitions for manual user instrumentation.

J.8.2 Macro Definition Documentation

J.8.2.1 #define SCOREP_USER_INVALID_PARAMETER -1

Marks an parameter handle as invalid or uninitialized

J.8.2.2 #define SCOREP_USER_INVALID_REGION NULL

Value for uninitialized or invalid region handles

J.8.3 Typedef Documentation

J.8.3.1 typedef uint32_t SCOREP_User_MetricType

Type for the user metric type

J.8.3.2 typedef uint64_t SCOREP_User_ParameterHandle

Type for parameter handles

J.8.3.3 typedef struct SCOREP_User_Region∗ SCOREP_User_RegionHandle

Type for region handles in the user adapter.

J.8.3.4 typedef uint32_t SCOREP_User_RegionType

Type for the region type

214

Index

activate_cpu_location
SCOREP_SubstratePluginInfo, 172

add_counter
SCOREP_Metric_Plugin_Info, 147

assign_id
SCOREP_SubstratePluginInfo, 172

base
SCOREP_Metric_Plugin_MetricProperties, 151
SCOREP_Metric_Properties, 152

core_task_complete
SCOREP_SubstratePluginInfo, 172

core_task_create
SCOREP_SubstratePluginInfo, 172

create_location
SCOREP_SubstratePluginInfo, 173

deactivate_cpu_location
SCOREP_SubstratePluginInfo, 173

delete_location
SCOREP_SubstratePluginInfo, 173

delta_t
SCOREP_Metric_Plugin_Info, 148

description
SCOREP_Metric_Plugin_MetricProperties, 151
SCOREP_Metric_Properties, 152

exponent
SCOREP_Metric_Plugin_MetricProperties, 151
SCOREP_Metric_Properties, 152

finalize
SCOREP_Metric_Plugin_Info, 148
SCOREP_SubstratePluginInfo, 174

get_all_values
SCOREP_Metric_Plugin_Info, 148

get_current_value
SCOREP_Metric_Plugin_Info, 148

get_event_functions
SCOREP_SubstratePluginInfo, 174

get_event_info
SCOREP_Metric_Plugin_Info, 149

get_optional_value
SCOREP_Metric_Plugin_Info, 149

get_requirement
SCOREP_SubstratePluginInfo, 174

init
SCOREP_SubstratePluginInfo, 174

init_mpp
SCOREP_SubstratePluginInfo, 174

initialize
SCOREP_Metric_Plugin_Info, 149

mode
SCOREP_Metric_Plugin_MetricProperties, 151
SCOREP_Metric_Properties, 152

name
SCOREP_Metric_Plugin_MetricProperties, 151
SCOREP_Metric_Properties, 152

new_definition_handle
SCOREP_SubstratePluginInfo, 174

plugin_version
SCOREP_Metric_Plugin_Info, 149
SCOREP_SubstratePluginInfo, 175

pre_unify
SCOREP_SubstratePluginInfo, 175

profiling_type
SCOREP_Metric_Properties, 152

reserved
SCOREP_Metric_Plugin_Info, 150

run_per
SCOREP_Metric_Plugin_Info, 150

SCOREP_Allocator_MovableMemory
type definitions and enums used in Score-P, 138

SCOREP_AnyHandle
type definitions and enums used in Score-P, 138

SCOREP_COLLECTIVE_ALLGATHER
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_ALLGATHERV
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_ALLOCATE
type definitions and enums used in Score-P, 140

SCOREP_COLLECTIVE_ALLREDUCE
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_ALLTOALL
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_ALLTOALLV
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_ALLTOALLW
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_BARRIER
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_BROADCAST
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_CREATE_HANDLE

INDEX

type definitions and enums used in Score-P, 140
SCOREP_COLLECTIVE_CREATE_HANDLE_AND_←↩

ALLOCATE
type definitions and enums used in Score-P, 140

SCOREP_COLLECTIVE_DEALLOCATE
type definitions and enums used in Score-P, 140

SCOREP_COLLECTIVE_DESTROY_HANDLE
type definitions and enums used in Score-P, 140

SCOREP_COLLECTIVE_DESTROY_HANDLE_AND←↩

_DEALLOCATE
type definitions and enums used in Score-P, 140

SCOREP_COLLECTIVE_EXSCAN
type definitions and enums used in Score-P, 140

SCOREP_COLLECTIVE_GATHER
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_GATHERV
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_REDUCE
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_REDUCE_SCATTER
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_REDUCE_SCATTER_BLO←↩

CK
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_SCAN
type definitions and enums used in Score-P, 140

SCOREP_COLLECTIVE_SCATTER
type definitions and enums used in Score-P, 139

SCOREP_COLLECTIVE_SCATTERV
type definitions and enums used in Score-P, 139

SCOREP_CallingContextHandle_GetParent
SCOREP_SubstratePluginCallbacks, 155

SCOREP_CallingContextHandle_GetRegion
SCOREP_SubstratePluginCallbacks, 155

SCOREP_CollectiveType
type definitions and enums used in Score-P, 139

SCOREP_EVENT_CALLING_CONTEXT_ENTER
SCOREP_SubstrateEvents.h, 207

SCOREP_EVENT_CALLING_CONTEXT_EXIT
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_DISABLE_RECORDING
SCOREP_SubstrateEvents.h, 207

SCOREP_EVENT_ENABLE_RECORDING
SCOREP_SubstrateEvents.h, 207

SCOREP_EVENT_ENTER_REGION
SCOREP_SubstrateEvents.h, 207

SCOREP_EVENT_ENTER_REWIND_REGION
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_EXIT_REGION
SCOREP_SubstrateEvents.h, 207

SCOREP_EVENT_EXIT_REWIND_REGION
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_COLLECTIVE_BEGIN
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_COLLECTIVE_END
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_IRECV
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_IRECV_REQUEST
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_ISEND
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_ISEND_COMPLETE
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_RECV
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_REQUEST_CANCELLED
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_REQUEST_TESTED
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_MPI_SEND
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_ON_TRACING_BUFFER_FLUSH←↩

_BEGIN
SCOREP_SubstrateEvents.h, 207

SCOREP_EVENT_ON_TRACING_BUFFER_FLUSH←↩

_END
SCOREP_SubstrateEvents.h, 207

SCOREP_EVENT_RMA_ACQUIRE_LOCK
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_ATOMIC
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_COLLECTIVE_BEGIN
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_COLLECTIVE_END
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_GET
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_GROUP_SYNC
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_OP_COMPLETE_BLOCKI←↩

NG
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_RMA_OP_COMPLETE_NON_BL←↩

OCKING
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_RMA_OP_COMPLETE_REMOTE
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_RMA_OP_TEST
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_RMA_PUT
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_RELEASE_LOCK
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_REQUEST_LOCK
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_SYNC
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_TRY_LOCK
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_WAIT_CHANGE
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_RMA_WIN_CREATE
SCOREP_SubstrateEvents.h, 208

SCOREP_EVENT_RMA_WIN_DESTROY
SCOREP_SubstrateEvents.h, 208

216

INDEX

SCOREP_EVENT_SAMPLE
SCOREP_SubstrateEvents.h, 207

SCOREP_EVENT_THREAD_ACQUIRE_LOCK
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_CREATE_WAIT_BEGIN
SCOREP_SubstrateEvents.h, 210

SCOREP_EVENT_THREAD_CREATE_WAIT_CRE←↩

ATE
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_CREATE_WAIT_END
SCOREP_SubstrateEvents.h, 210

SCOREP_EVENT_THREAD_CREATE_WAIT_WAIT
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_FORK_JOIN_FORK
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_FORK_JOIN_JOIN
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_FORK_JOIN_TASK_B←↩

EGIN
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_FORK_JOIN_TASK_C←↩

REATE
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_FORK_JOIN_TASK_E←↩

ND
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_FORK_JOIN_TASK_S←↩

WITCH
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_FORK_JOIN_TEAM_B←↩

EGIN
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_FORK_JOIN_TEAM_E←↩

ND
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_THREAD_RELEASE_LOCK
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_TRACK_ALLOC
SCOREP_SubstrateEvents.h, 210

SCOREP_EVENT_TRACK_FREE
SCOREP_SubstrateEvents.h, 210

SCOREP_EVENT_TRACK_REALLOC
SCOREP_SubstrateEvents.h, 210

SCOREP_EVENT_TRIGGER_COUNTER_DOUBLE
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_TRIGGER_COUNTER_INT64
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_TRIGGER_COUNTER_UINT64
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_TRIGGER_PARAMETER_INT64
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_TRIGGER_PARAMETER_STRING
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_TRIGGER_PARAMETER_UINT64
SCOREP_SubstrateEvents.h, 209

SCOREP_EVENT_WRITE_ASYNC_METRIC_BEFO←↩

RE_EVENT
SCOREP_SubstrateEvents.h, 210

SCOREP_GetExperimentDirName
SCOREP_SubstratePluginCallbacks, 155

SCOREP_HANDLE_TYPE_ATTRIBUTE
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_CALLING_CONTEXT
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_CALLPATH
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_GROUP
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_INTERIM_COMMUNICA←↩

TOR
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_INTERRUPT_GENERAT←↩

OR
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_LOCATION
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_LOCATION_GROUP
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_LOCATION_PROPERTY
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_METRIC
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_NUM_HANDLES
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_PARADIGM
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_PARAMETER
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_PROPERTY
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_REGION
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_RMA_WINDOW
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_SAMPLING_SET
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_SAMPLING_SET_RECO←↩

RDER
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_SOURCE_CODE_LOCA←↩

TION
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_SOURCE_FILE
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_STRING
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_SYSTEM_TREE_NODE
SCOREP_PublicHandles.h, 184

SCOREP_HANDLE_TYPE_SYSTEM_TREE_NODE←↩

_PROPERTY
SCOREP_PublicHandles.h, 184

SCOREP_HandleType
SCOREP_PublicHandles.h, 183

SCOREP_INVALID_LINE_NO
type definitions and enums used in Score-P, 137

SCOREP_INVALID_LOCATION_TYPE

217

INDEX

type definitions and enums used in Score-P, 141
SCOREP_INVALID_LOCK_TYPE

type definitions and enums used in Score-P, 141
SCOREP_INVALID_METRIC

type definitions and enums used in Score-P, 137
SCOREP_INVALID_METRIC_BASE

SCOREP_MetricTypes.h, 180
SCOREP_INVALID_METRIC_OCCURRENCE

type definitions and enums used in Score-P, 141
SCOREP_INVALID_METRIC_SCOPE

type definitions and enums used in Score-P, 141
SCOREP_INVALID_PARADIGM

type definitions and enums used in Score-P, 137
SCOREP_INVALID_PARADIGM_CLASS

type definitions and enums used in Score-P, 142
SCOREP_INVALID_PARADIGM_TYPE

type definitions and enums used in Score-P, 142
SCOREP_INVALID_PARAMETER_TYPE

type definitions and enums used in Score-P, 142
SCOREP_INVALID_REGION

type definitions and enums used in Score-P, 137
SCOREP_INVALID_REGION_TYPE

type definitions and enums used in Score-P, 144
SCOREP_INVALID_RMA_SYNC_TYPE

type definitions and enums used in Score-P, 145
SCOREP_INVALID_ROOT_RANK

type definitions and enums used in Score-P, 137
SCOREP_INVALID_SAMPLING_SET

type definitions and enums used in Score-P, 137
SCOREP_INVALID_SOURCE_FILE

type definitions and enums used in Score-P, 137
SCOREP_Ipc_Allgather

SCOREP_SubstratePluginCallbacks, 156
SCOREP_Ipc_Allreduce

SCOREP_SubstratePluginCallbacks, 156
SCOREP_Ipc_Barrier

SCOREP_SubstratePluginCallbacks, 156
SCOREP_Ipc_Bcast

SCOREP_SubstratePluginCallbacks, 156
SCOREP_Ipc_Datatype

type definitions and enums used in Score-P, 140
SCOREP_Ipc_Gather

SCOREP_SubstratePluginCallbacks, 158
SCOREP_Ipc_Gatherv

SCOREP_SubstratePluginCallbacks, 158
SCOREP_Ipc_GetRank

SCOREP_SubstratePluginCallbacks, 158
SCOREP_Ipc_GetSize

SCOREP_SubstratePluginCallbacks, 159
SCOREP_Ipc_Operation

type definitions and enums used in Score-P, 140
SCOREP_Ipc_Recv

SCOREP_SubstratePluginCallbacks, 159
SCOREP_Ipc_Reduce

SCOREP_SubstratePluginCallbacks, 159
SCOREP_Ipc_Scatter

SCOREP_SubstratePluginCallbacks, 159
SCOREP_Ipc_Scatterv

SCOREP_SubstratePluginCallbacks, 160
SCOREP_Ipc_Send

SCOREP_SubstratePluginCallbacks, 160
SCOREP_LOCATION_TYPES

type definitions and enums used in Score-P, 137
SCOREP_LOCK_EXCLUSIVE

type definitions and enums used in Score-P, 141
SCOREP_LOCK_SHARED

type definitions and enums used in Score-P, 141
SCOREP_LineNo

type definitions and enums used in Score-P, 138
SCOREP_Location_GetData

SCOREP_SubstratePluginCallbacks, 160
SCOREP_Location_GetGlobalId

SCOREP_SubstratePluginCallbacks, 161
SCOREP_Location_GetId

SCOREP_SubstratePluginCallbacks, 161
SCOREP_Location_GetName

SCOREP_SubstratePluginCallbacks, 161
SCOREP_Location_GetType

SCOREP_SubstratePluginCallbacks, 161
SCOREP_Location_SetData

SCOREP_SubstratePluginCallbacks, 161
SCOREP_LocationType

type definitions and enums used in Score-P, 140
SCOREP_LockType

type definitions and enums used in Score-P, 141
SCOREP_METRIC_ASYNC

SCOREP_MetricTypes.h, 182
SCOREP_METRIC_ASYNC_EVENT

SCOREP_MetricTypes.h, 182
SCOREP_METRIC_BASE_BINARY

SCOREP_MetricTypes.h, 180
SCOREP_METRIC_BASE_DECIMAL

SCOREP_MetricTypes.h, 180
SCOREP_METRIC_MODE_ABSOLUTE_LAST

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_ABSOLUTE_NEXT

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_ABSOLUTE_POINT

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_ACCUMULATED_LAST

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_ACCUMULATED_NEXT

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_ACCUMULATED_POINT

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_ACCUMULATED_START

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_RELATIVE_LAST

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_RELATIVE_NEXT

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_MODE_RELATIVE_POINT

SCOREP_MetricTypes.h, 181
SCOREP_METRIC_OCCURRENCE_ASYNCHRON←↩

OUS
type definitions and enums used in Score-P, 141

218

INDEX

SCOREP_METRIC_OCCURRENCE_SYNCHRONO←↩

US
type definitions and enums used in Score-P, 141

SCOREP_METRIC_OCCURRENCE_SYNCHRONO←↩

US_STRICT
type definitions and enums used in Score-P, 141

SCOREP_METRIC_ONCE
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_PER_HOST
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_PER_PROCESS
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_PER_THREAD
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_PLUGIN_ENTRY
SCOREP_MetricPlugins.h, 177

SCOREP_METRIC_PLUGIN_VERSION
SCOREP_MetricPlugins.h, 177

SCOREP_METRIC_PROFILING_TYPE_EXCLUSIVE
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_PROFILING_TYPE_INCLUSIVE
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_PROFILING_TYPE_MAX
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_PROFILING_TYPE_MIN
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_PROFILING_TYPE_SIMPLE
SCOREP_MetricTypes.h, 181

SCOREP_METRIC_SCOPE_GROUP
type definitions and enums used in Score-P, 141

SCOREP_METRIC_SCOPE_LOCATION
type definitions and enums used in Score-P, 141

SCOREP_METRIC_SCOPE_LOCATION_GROUP
type definitions and enums used in Score-P, 141

SCOREP_METRIC_SCOPE_SYSTEM_TREE_NODE
type definitions and enums used in Score-P, 141

SCOREP_METRIC_SOURCE_TYPE_OTHER
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SOURCE_TYPE_PAPI
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SOURCE_TYPE_PERF
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SOURCE_TYPE_PLUGIN
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SOURCE_TYPE_RUSAGE
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SOURCE_TYPE_TASK
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SOURCE_TYPE_USER
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_STRICTLY_SYNC
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SYNC
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SYNCHRONIZATION_MODE_B←↩

EGIN
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SYNCHRONIZATION_MODE_B←↩

EGIN_MPP
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_SYNCHRONIZATION_MODE_E←↩

ND
SCOREP_MetricTypes.h, 182

SCOREP_METRIC_VALUE_DOUBLE
SCOREP_MetricTypes.h, 183

SCOREP_METRIC_VALUE_INT64
SCOREP_MetricTypes.h, 183

SCOREP_METRIC_VALUE_UINT64
SCOREP_MetricTypes.h, 183

SCOREP_MOVABLE_NULL
type definitions and enums used in Score-P, 137

SCOREP_Metric_Plugin_Info, 147
add_counter, 147
delta_t, 148
finalize, 148
get_all_values, 148
get_current_value, 148
get_event_info, 149
get_optional_value, 149
initialize, 149
plugin_version, 149
reserved, 150
run_per, 150
set_clock_function, 150
sync, 150
synchronize, 150

SCOREP_Metric_Plugin_MetricProperties, 151
base, 151
description, 151
exponent, 151
mode, 151
name, 151
unit, 151
value_type, 151

SCOREP_Metric_Properties, 152
base, 152
description, 152
exponent, 152
mode, 152
name, 152
profiling_type, 152
source_type, 153
unit, 153
value_type, 153

SCOREP_Metric_WriteStrictlySynchronousMetrics
SCOREP_SubstratePluginCallbacks, 162

SCOREP_Metric_WriteSynchronousMetrics
SCOREP_SubstratePluginCallbacks, 162

SCOREP_MetricBase
SCOREP_MetricTypes.h, 180

SCOREP_MetricHandle
type definitions and enums used in Score-P, 138

SCOREP_MetricHandle_GetMode
SCOREP_SubstratePluginCallbacks, 162

SCOREP_MetricHandle_GetName

219

INDEX

SCOREP_SubstratePluginCallbacks, 163
SCOREP_MetricHandle_GetProfilingType

SCOREP_SubstratePluginCallbacks, 163
SCOREP_MetricHandle_GetSourceType

SCOREP_SubstratePluginCallbacks, 163
SCOREP_MetricHandle_GetValueType

SCOREP_SubstratePluginCallbacks, 163
SCOREP_MetricMode

SCOREP_MetricTypes.h, 180
SCOREP_MetricOccurrence

type definitions and enums used in Score-P, 141
SCOREP_MetricPer

SCOREP_MetricTypes.h, 181
SCOREP_MetricPlugins.h, 177

SCOREP_METRIC_PLUGIN_ENTRY, 177
SCOREP_METRIC_PLUGIN_VERSION, 177

SCOREP_MetricProfilingType
SCOREP_MetricTypes.h, 181

SCOREP_MetricScope
type definitions and enums used in Score-P, 141

SCOREP_MetricSourceType
SCOREP_MetricTypes.h, 181

SCOREP_MetricSynchronicity
SCOREP_MetricTypes.h, 182

SCOREP_MetricSynchronizationMode
SCOREP_MetricTypes.h, 182

SCOREP_MetricTimeValuePair, 153
timestamp, 153
value, 153

SCOREP_MetricTypes.h, 179
SCOREP_INVALID_METRIC_BASE, 180
SCOREP_METRIC_ASYNC, 182
SCOREP_METRIC_ASYNC_EVENT, 182
SCOREP_METRIC_BASE_BINARY, 180
SCOREP_METRIC_BASE_DECIMAL, 180
SCOREP_METRIC_MODE_ABSOLUTE_LAST,

181
SCOREP_METRIC_MODE_ABSOLUTE_NEXT,

181
SCOREP_METRIC_MODE_ABSOLUTE_POINT,

181
SCOREP_METRIC_MODE_ACCUMULATED_L←↩

AST, 181
SCOREP_METRIC_MODE_ACCUMULATED_←↩

NEXT, 181
SCOREP_METRIC_MODE_ACCUMULATED_←↩

POINT, 181
SCOREP_METRIC_MODE_ACCUMULATED_←↩

START, 181
SCOREP_METRIC_MODE_RELATIVE_LAST,

181
SCOREP_METRIC_MODE_RELATIVE_NEXT,

181
SCOREP_METRIC_MODE_RELATIVE_POINT,

181
SCOREP_METRIC_ONCE, 181
SCOREP_METRIC_PER_HOST, 181
SCOREP_METRIC_PER_PROCESS, 181

SCOREP_METRIC_PER_THREAD, 181
SCOREP_METRIC_PROFILING_TYPE_EXCL←↩

USIVE, 181
SCOREP_METRIC_PROFILING_TYPE_INCLU←↩

SIVE, 181
SCOREP_METRIC_PROFILING_TYPE_MAX,

181
SCOREP_METRIC_PROFILING_TYPE_MIN, 181
SCOREP_METRIC_PROFILING_TYPE_SIMPLE,

181
SCOREP_METRIC_SOURCE_TYPE_OTHER,

182
SCOREP_METRIC_SOURCE_TYPE_PAPI, 182
SCOREP_METRIC_SOURCE_TYPE_PERF, 182
SCOREP_METRIC_SOURCE_TYPE_PLUGIN,

182
SCOREP_METRIC_SOURCE_TYPE_RUSAGE,

182
SCOREP_METRIC_SOURCE_TYPE_TASK, 182
SCOREP_METRIC_SOURCE_TYPE_USER, 182
SCOREP_METRIC_STRICTLY_SYNC, 182
SCOREP_METRIC_SYNC, 182
SCOREP_METRIC_SYNCHRONIZATION_MO←↩

DE_BEGIN, 182
SCOREP_METRIC_SYNCHRONIZATION_MO←↩

DE_BEGIN_MPP, 182
SCOREP_METRIC_SYNCHRONIZATION_MO←↩

DE_END, 182
SCOREP_METRIC_VALUE_DOUBLE, 183
SCOREP_METRIC_VALUE_INT64, 183
SCOREP_METRIC_VALUE_UINT64, 183
SCOREP_MetricBase, 180
SCOREP_MetricMode, 180
SCOREP_MetricPer, 181
SCOREP_MetricProfilingType, 181
SCOREP_MetricSourceType, 181
SCOREP_MetricSynchronicity, 182
SCOREP_MetricSynchronizationMode, 182
SCOREP_MetricValueType, 182

SCOREP_MetricValueType
SCOREP_MetricTypes.h, 182

SCOREP_MpiRank
type definitions and enums used in Score-P, 138

SCOREP_MpiRequestId
type definitions and enums used in Score-P, 138

SCOREP_PARAMETER_INT64
type definitions and enums used in Score-P, 142

SCOREP_PARAMETER_STRING
type definitions and enums used in Score-P, 142

SCOREP_PARAMETER_UINT64
type definitions and enums used in Score-P, 142

SCOREP_ParadigmClass
type definitions and enums used in Score-P, 141

SCOREP_ParadigmHandle
type definitions and enums used in Score-P, 138

SCOREP_ParadigmHandle_GetClass
SCOREP_SubstratePluginCallbacks, 164

SCOREP_ParadigmHandle_GetName

220

INDEX

SCOREP_SubstratePluginCallbacks, 164
SCOREP_ParadigmHandle_GetType

SCOREP_SubstratePluginCallbacks, 164
SCOREP_ParadigmType

type definitions and enums used in Score-P, 142
SCOREP_ParameterHandle_GetName

SCOREP_SubstratePluginCallbacks, 164
SCOREP_ParameterHandle_GetType

SCOREP_SubstratePluginCallbacks, 166
SCOREP_ParameterType

type definitions and enums used in Score-P, 142
SCOREP_PublicHandles.h, 183

SCOREP_HANDLE_TYPE_ATTRIBUTE, 184
SCOREP_HANDLE_TYPE_CALLING_CONTE←↩

XT, 184
SCOREP_HANDLE_TYPE_CALLPATH, 184
SCOREP_HANDLE_TYPE_GROUP, 184
SCOREP_HANDLE_TYPE_INTERIM_COMMU←↩

NICATOR, 184
SCOREP_HANDLE_TYPE_INTERRUPT_GEN←↩

ERATOR, 184
SCOREP_HANDLE_TYPE_LOCATION, 184
SCOREP_HANDLE_TYPE_LOCATION_GROUP,

184
SCOREP_HANDLE_TYPE_LOCATION_PROP←↩

ERTY, 184
SCOREP_HANDLE_TYPE_METRIC, 184
SCOREP_HANDLE_TYPE_NUM_HANDLES, 184
SCOREP_HANDLE_TYPE_PARADIGM, 184
SCOREP_HANDLE_TYPE_PARAMETER, 184
SCOREP_HANDLE_TYPE_PROPERTY, 184
SCOREP_HANDLE_TYPE_REGION, 184
SCOREP_HANDLE_TYPE_RMA_WINDOW, 184
SCOREP_HANDLE_TYPE_SAMPLING_SET, 184
SCOREP_HANDLE_TYPE_SAMPLING_SET_R←↩

ECORDER, 184
SCOREP_HANDLE_TYPE_SOURCE_CODE_L←↩

OCATION, 184
SCOREP_HANDLE_TYPE_SOURCE_FILE, 184
SCOREP_HANDLE_TYPE_STRING, 184
SCOREP_HANDLE_TYPE_SYSTEM_TREE_N←↩

ODE, 184
SCOREP_HANDLE_TYPE_SYSTEM_TREE_N←↩

ODE_PROPERTY, 184
SCOREP_HandleType, 183

SCOREP_PublicTypes.h, 184
SCOREP_RECORDING_IS_ON

Score-P User Adapter, 117
SCOREP_RECORDING_OFF

Score-P User Adapter, 117
SCOREP_RECORDING_ON

Score-P User Adapter, 117
SCOREP_RegionHandle

type definitions and enums used in Score-P, 138
SCOREP_RegionHandle_GetBeginLine

SCOREP_SubstratePluginCallbacks, 166
SCOREP_RegionHandle_GetCanonicalName

SCOREP_SubstratePluginCallbacks, 166

SCOREP_RegionHandle_GetEndLine
SCOREP_SubstratePluginCallbacks, 166

SCOREP_RegionHandle_GetFileName
SCOREP_SubstratePluginCallbacks, 167

SCOREP_RegionHandle_GetId
SCOREP_SubstratePluginCallbacks, 167

SCOREP_RegionHandle_GetName
SCOREP_SubstratePluginCallbacks, 167

SCOREP_RegionHandle_GetParadigmType
SCOREP_SubstratePluginCallbacks, 167

SCOREP_RegionHandle_GetType
SCOREP_SubstratePluginCallbacks, 168

SCOREP_RegionType
type definitions and enums used in Score-P, 142

SCOREP_RmaAtomicType
type definitions and enums used in Score-P, 144

SCOREP_RmaSyncLevel
type definitions and enums used in Score-P, 144

SCOREP_RmaSyncType
type definitions and enums used in Score-P, 145

SCOREP_SAMPLING_SET_ABSTRACT
type definitions and enums used in Score-P, 145

SCOREP_SAMPLING_SET_CPU
type definitions and enums used in Score-P, 145

SCOREP_SAMPLING_SET_GPU
type definitions and enums used in Score-P, 145

SCOREP_SUBSTRATE_PLUGIN_ENTRY
SCOREP_SubstratePlugins.h, 211

SCOREP_SUBSTRATE_PLUGIN_UNDEFINED_MA←↩

NAGEMENT_FUNCTIONS
SCOREP_SubstratePlugins.h, 211

SCOREP_SUBSTRATE_PLUGIN_VERSION
SCOREP_SubstratePlugins.h, 211

SCOREP_SUBSTRATES_NUM_EVENTS
SCOREP_SubstrateEvents.h, 210

SCOREP_SUBSTRATES_NUM_MODES
SCOREP_SubstrateEvents.h, 210

SCOREP_SUBSTRATES_NUM_REQUIREMENT
type definitions and enums used in Score-P, 145

SCOREP_SUBSTRATES_RECORDING_DISABLED
SCOREP_SubstrateEvents.h, 210

SCOREP_SUBSTRATES_RECORDING_ENABLED
SCOREP_SubstrateEvents.h, 210

SCOREP_SUBSTRATES_REQUIREMENT_CONST←↩

ANT_METRIC_SET
type definitions and enums used in Score-P, 145

SCOREP_SUBSTRATES_REQUIREMENT_EXPERI←↩

MENT_DIRECTORY
type definitions and enums used in Score-P, 145

SCOREP_SamplingSetClass
type definitions and enums used in Score-P, 145

SCOREP_SamplingSetHandle
type definitions and enums used in Score-P, 138

SCOREP_SamplingSetHandle_GetMetricHandles
SCOREP_SubstratePluginCallbacks, 168

SCOREP_SamplingSetHandle_GetMetricOccurrence
SCOREP_SubstratePluginCallbacks, 168

SCOREP_SamplingSetHandle_GetNumberOfMetrics

221

INDEX

SCOREP_SubstratePluginCallbacks, 168
SCOREP_SamplingSetHandle_GetSamplingSetClass

SCOREP_SubstratePluginCallbacks, 169
SCOREP_SamplingSetHandle_GetScope

SCOREP_SubstratePluginCallbacks, 169
SCOREP_SamplingSetHandle_IsScoped

SCOREP_SubstratePluginCallbacks, 169
SCOREP_SourceFileHandle

type definitions and enums used in Score-P, 139
SCOREP_SourceFileHandle_GetName

SCOREP_SubstratePluginCallbacks, 169
SCOREP_StringHandle_Get

SCOREP_SubstratePluginCallbacks, 170
SCOREP_SubstrateEvents.h, 187

SCOREP_EVENT_CALLING_CONTEXT_ENTER,
207

SCOREP_EVENT_CALLING_CONTEXT_EXIT,
208

SCOREP_EVENT_DISABLE_RECORDING, 207
SCOREP_EVENT_ENABLE_RECORDING, 207
SCOREP_EVENT_ENTER_REGION, 207
SCOREP_EVENT_ENTER_REWIND_REGION,

208
SCOREP_EVENT_EXIT_REGION, 207
SCOREP_EVENT_EXIT_REWIND_REGION, 208
SCOREP_EVENT_MPI_COLLECTIVE_BEGIN,

208
SCOREP_EVENT_MPI_COLLECTIVE_END, 208
SCOREP_EVENT_MPI_IRECV, 208
SCOREP_EVENT_MPI_IRECV_REQUEST, 208
SCOREP_EVENT_MPI_ISEND, 208
SCOREP_EVENT_MPI_ISEND_COMPLETE, 208
SCOREP_EVENT_MPI_RECV, 208
SCOREP_EVENT_MPI_REQUEST_CANCELL←↩

ED, 208
SCOREP_EVENT_MPI_REQUEST_TESTED, 208
SCOREP_EVENT_MPI_SEND, 208
SCOREP_EVENT_ON_TRACING_BUFFER_FL←↩

USH_BEGIN, 207
SCOREP_EVENT_ON_TRACING_BUFFER_FL←↩

USH_END, 207
SCOREP_EVENT_RMA_ACQUIRE_LOCK, 208
SCOREP_EVENT_RMA_ATOMIC, 208
SCOREP_EVENT_RMA_COLLECTIVE_BEGIN,

208
SCOREP_EVENT_RMA_COLLECTIVE_END, 208
SCOREP_EVENT_RMA_GET, 208
SCOREP_EVENT_RMA_GROUP_SYNC, 208
SCOREP_EVENT_RMA_OP_COMPLETE_BLO←↩

CKING, 209
SCOREP_EVENT_RMA_OP_COMPLETE_NO←↩

N_BLOCKING, 209
SCOREP_EVENT_RMA_OP_COMPLETE_RE←↩

MOTE, 209
SCOREP_EVENT_RMA_OP_TEST, 209
SCOREP_EVENT_RMA_PUT, 208
SCOREP_EVENT_RMA_RELEASE_LOCK, 208
SCOREP_EVENT_RMA_REQUEST_LOCK, 208

SCOREP_EVENT_RMA_SYNC, 208
SCOREP_EVENT_RMA_TRY_LOCK, 208
SCOREP_EVENT_RMA_WAIT_CHANGE, 209
SCOREP_EVENT_RMA_WIN_CREATE, 208
SCOREP_EVENT_RMA_WIN_DESTROY, 208
SCOREP_EVENT_SAMPLE, 207
SCOREP_EVENT_THREAD_ACQUIRE_LOCK,

209
SCOREP_EVENT_THREAD_CREATE_WAIT_←↩

BEGIN, 210
SCOREP_EVENT_THREAD_CREATE_WAIT_←↩

CREATE, 209
SCOREP_EVENT_THREAD_CREATE_WAIT_←↩

END, 210
SCOREP_EVENT_THREAD_CREATE_WAIT_←↩

WAIT, 209
SCOREP_EVENT_THREAD_FORK_JOIN_FO←↩

RK, 209
SCOREP_EVENT_THREAD_FORK_JOIN_JOIN,

209
SCOREP_EVENT_THREAD_FORK_JOIN_TAS←↩

K_BEGIN, 209
SCOREP_EVENT_THREAD_FORK_JOIN_TAS←↩

K_CREATE, 209
SCOREP_EVENT_THREAD_FORK_JOIN_TAS←↩

K_END, 209
SCOREP_EVENT_THREAD_FORK_JOIN_TAS←↩

K_SWITCH, 209
SCOREP_EVENT_THREAD_FORK_JOIN_TEA←↩

M_BEGIN, 209
SCOREP_EVENT_THREAD_FORK_JOIN_TEA←↩

M_END, 209
SCOREP_EVENT_THREAD_RELEASE_LOCK,

209
SCOREP_EVENT_TRACK_ALLOC, 210
SCOREP_EVENT_TRACK_FREE, 210
SCOREP_EVENT_TRACK_REALLOC, 210
SCOREP_EVENT_TRIGGER_COUNTER_DOU←↩

BLE, 209
SCOREP_EVENT_TRIGGER_COUNTER_INT64,

209
SCOREP_EVENT_TRIGGER_COUNTER_UIN←↩

T64, 209
SCOREP_EVENT_TRIGGER_PARAMETER_I←↩

NT64, 209
SCOREP_EVENT_TRIGGER_PARAMETER_S←↩

TRING, 209
SCOREP_EVENT_TRIGGER_PARAMETER_U←↩

INT64, 209
SCOREP_EVENT_WRITE_ASYNC_METRIC_B←↩

EFORE_EVENT, 210
SCOREP_SUBSTRATES_NUM_EVENTS, 210
SCOREP_SUBSTRATES_NUM_MODES, 210
SCOREP_SUBSTRATES_RECORDING_DISA←↩

BLED, 210
SCOREP_SUBSTRATES_RECORDING_ENAB←↩

LED, 210
SCOREP_Substrates_Callback, 191

222

INDEX

SCOREP_Substrates_CallingContextEnterCb, 191
SCOREP_Substrates_CallingContextExitCb, 191
SCOREP_Substrates_DisableRecordingCb, 191
SCOREP_Substrates_EnableRecordingCb, 192
SCOREP_Substrates_EnterRegionCb, 192
SCOREP_Substrates_EnterRewindRegionCb, 192
SCOREP_Substrates_EventType, 207
SCOREP_Substrates_ExitRegionCb, 193
SCOREP_Substrates_ExitRewindRegionCb, 193
SCOREP_Substrates_Mode, 210
SCOREP_Substrates_MpiCollectiveBeginCb, 193
SCOREP_Substrates_MpiCollectiveEndCb, 193
SCOREP_Substrates_MpiIrecvCb, 194
SCOREP_Substrates_MpiIrecvRequestCb, 194
SCOREP_Substrates_MpiIsendCb, 194
SCOREP_Substrates_MpiIsendCompleteCb, 195
SCOREP_Substrates_MpiRecvCb, 195
SCOREP_Substrates_MpiRequestCancelledCb,

195
SCOREP_Substrates_MpiRequestTestedCb, 195
SCOREP_Substrates_MpiSendCb, 196
SCOREP_Substrates_OnTracingBufferFlush←↩

BeginCb, 196
SCOREP_Substrates_OnTracingBufferFlushEnd←↩

Cb, 196
SCOREP_Substrates_RmaAcquireLockCb, 196
SCOREP_Substrates_RmaAtomicCb, 197
SCOREP_Substrates_RmaCollectiveBeginCb,

197
SCOREP_Substrates_RmaCollectiveEndCb, 197
SCOREP_Substrates_RmaGroupSyncCb, 198
SCOREP_Substrates_RmaOpCompleteBlocking←↩

Cb, 198
SCOREP_Substrates_RmaOpCompleteRemote←↩

Cb, 198
SCOREP_Substrates_RmaOpTestCb, 198
SCOREP_Substrates_RmaPutCb, 199
SCOREP_Substrates_RmaReleaseLockCb, 199
SCOREP_Substrates_RmaRequestLockCb, 199
SCOREP_Substrates_RmaSyncCb, 200
SCOREP_Substrates_RmaTryLockCb, 200
SCOREP_Substrates_RmaWaitChangeCb, 200
SCOREP_Substrates_RmaWinCreateCb, 201
SCOREP_Substrates_RmaWinDestroyCb, 201
SCOREP_Substrates_SampleCb, 201
SCOREP_Substrates_ThreadAcquireLockCb, 201
SCOREP_Substrates_ThreadCreateWaitCreate←↩

Cb, 202
SCOREP_Substrates_ThreadForkJoinForkCb,

202
SCOREP_Substrates_ThreadForkJoinJoinCb, 202
SCOREP_Substrates_ThreadForkJoinTask←↩

BeginCb, 202
SCOREP_Substrates_ThreadForkJoinTask←↩

CreateCb, 204
SCOREP_Substrates_ThreadForkJoinTask←↩

SwitchCb, 204

SCOREP_Substrates_ThreadForkJoinTeam←↩

BeginCb, 204
SCOREP_Substrates_TrackAllocCb, 205
SCOREP_Substrates_TrackFreeCb, 205
SCOREP_Substrates_TrackReallocCb, 205
SCOREP_Substrates_TriggerCounterInt64Cb, 206
SCOREP_Substrates_TriggerParameterInt64Cb,

206
SCOREP_Substrates_TriggerParameterStringCb,

206
SCOREP_Substrates_WriteAsynchMetricBefore←↩

EventCb, 207
SCOREP_SubstratePluginCallbacks, 153

SCOREP_CallingContextHandle_GetParent, 155
SCOREP_CallingContextHandle_GetRegion, 155
SCOREP_GetExperimentDirName, 155
SCOREP_Ipc_Allgather, 156
SCOREP_Ipc_Allreduce, 156
SCOREP_Ipc_Barrier, 156
SCOREP_Ipc_Bcast, 156
SCOREP_Ipc_Gather, 158
SCOREP_Ipc_Gatherv, 158
SCOREP_Ipc_GetRank, 158
SCOREP_Ipc_GetSize, 159
SCOREP_Ipc_Recv, 159
SCOREP_Ipc_Reduce, 159
SCOREP_Ipc_Scatter, 159
SCOREP_Ipc_Scatterv, 160
SCOREP_Ipc_Send, 160
SCOREP_Location_GetData, 160
SCOREP_Location_GetGlobalId, 161
SCOREP_Location_GetId, 161
SCOREP_Location_GetName, 161
SCOREP_Location_GetType, 161
SCOREP_Location_SetData, 161
SCOREP_Metric_WriteStrictlySynchronous←↩

Metrics, 162
SCOREP_Metric_WriteSynchronousMetrics, 162
SCOREP_MetricHandle_GetMode, 162
SCOREP_MetricHandle_GetName, 163
SCOREP_MetricHandle_GetProfilingType, 163
SCOREP_MetricHandle_GetSourceType, 163
SCOREP_MetricHandle_GetValueType, 163
SCOREP_ParadigmHandle_GetClass, 164
SCOREP_ParadigmHandle_GetName, 164
SCOREP_ParadigmHandle_GetType, 164
SCOREP_ParameterHandle_GetName, 164
SCOREP_ParameterHandle_GetType, 166
SCOREP_RegionHandle_GetBeginLine, 166
SCOREP_RegionHandle_GetCanonicalName,

166
SCOREP_RegionHandle_GetEndLine, 166
SCOREP_RegionHandle_GetFileName, 167
SCOREP_RegionHandle_GetId, 167
SCOREP_RegionHandle_GetName, 167
SCOREP_RegionHandle_GetParadigmType, 167
SCOREP_RegionHandle_GetType, 168

223

INDEX

SCOREP_SamplingSetHandle_GetMetricHandles,
168

SCOREP_SamplingSetHandle_GetMetric←↩

Occurrence, 168
SCOREP_SamplingSetHandle_GetNumberOf←↩

Metrics, 168
SCOREP_SamplingSetHandle_GetSamplingSet←↩

Class, 169
SCOREP_SamplingSetHandle_GetScope, 169
SCOREP_SamplingSetHandle_IsScoped, 169
SCOREP_SourceFileHandle_GetName, 169
SCOREP_StringHandle_Get, 170

SCOREP_SubstratePluginInfo, 170
activate_cpu_location, 172
assign_id, 172
core_task_complete, 172
core_task_create, 172
create_location, 173
deactivate_cpu_location, 173
delete_location, 173
finalize, 174
get_event_functions, 174
get_requirement, 174
init, 174
init_mpp, 174
new_definition_handle, 174
plugin_version, 175
pre_unify, 175
set_callbacks, 175
undeclared, 175
write_data, 175

SCOREP_SubstratePlugins.h, 210
SCOREP_SUBSTRATE_PLUGIN_ENTRY, 211
SCOREP_SUBSTRATE_PLUGIN_UNDEFINED←↩

_MANAGEMENT_FUNCTIONS, 211
SCOREP_SUBSTRATE_PLUGIN_VERSION, 211

SCOREP_Substrates_Callback
SCOREP_SubstrateEvents.h, 191

SCOREP_Substrates_CallingContextEnterCb
SCOREP_SubstrateEvents.h, 191

SCOREP_Substrates_CallingContextExitCb
SCOREP_SubstrateEvents.h, 191

SCOREP_Substrates_DisableRecordingCb
SCOREP_SubstrateEvents.h, 191

SCOREP_Substrates_EnableRecordingCb
SCOREP_SubstrateEvents.h, 192

SCOREP_Substrates_EnterRegionCb
SCOREP_SubstrateEvents.h, 192

SCOREP_Substrates_EnterRewindRegionCb
SCOREP_SubstrateEvents.h, 192

SCOREP_Substrates_EventType
SCOREP_SubstrateEvents.h, 207

SCOREP_Substrates_ExitRegionCb
SCOREP_SubstrateEvents.h, 193

SCOREP_Substrates_ExitRewindRegionCb
SCOREP_SubstrateEvents.h, 193

SCOREP_Substrates_Mode
SCOREP_SubstrateEvents.h, 210

SCOREP_Substrates_MpiCollectiveBeginCb
SCOREP_SubstrateEvents.h, 193

SCOREP_Substrates_MpiCollectiveEndCb
SCOREP_SubstrateEvents.h, 193

SCOREP_Substrates_MpiIrecvCb
SCOREP_SubstrateEvents.h, 194

SCOREP_Substrates_MpiIrecvRequestCb
SCOREP_SubstrateEvents.h, 194

SCOREP_Substrates_MpiIsendCb
SCOREP_SubstrateEvents.h, 194

SCOREP_Substrates_MpiIsendCompleteCb
SCOREP_SubstrateEvents.h, 195

SCOREP_Substrates_MpiRecvCb
SCOREP_SubstrateEvents.h, 195

SCOREP_Substrates_MpiRequestCancelledCb
SCOREP_SubstrateEvents.h, 195

SCOREP_Substrates_MpiRequestTestedCb
SCOREP_SubstrateEvents.h, 195

SCOREP_Substrates_MpiSendCb
SCOREP_SubstrateEvents.h, 196

SCOREP_Substrates_OnTracingBufferFlushBeginCb
SCOREP_SubstrateEvents.h, 196

SCOREP_Substrates_OnTracingBufferFlushEndCb
SCOREP_SubstrateEvents.h, 196

SCOREP_Substrates_RequirementFlag
type definitions and enums used in Score-P, 145

SCOREP_Substrates_RmaAcquireLockCb
SCOREP_SubstrateEvents.h, 196

SCOREP_Substrates_RmaAtomicCb
SCOREP_SubstrateEvents.h, 197

SCOREP_Substrates_RmaCollectiveBeginCb
SCOREP_SubstrateEvents.h, 197

SCOREP_Substrates_RmaCollectiveEndCb
SCOREP_SubstrateEvents.h, 197

SCOREP_Substrates_RmaGroupSyncCb
SCOREP_SubstrateEvents.h, 198

SCOREP_Substrates_RmaOpCompleteBlockingCb
SCOREP_SubstrateEvents.h, 198

SCOREP_Substrates_RmaOpCompleteRemoteCb
SCOREP_SubstrateEvents.h, 198

SCOREP_Substrates_RmaOpTestCb
SCOREP_SubstrateEvents.h, 198

SCOREP_Substrates_RmaPutCb
SCOREP_SubstrateEvents.h, 199

SCOREP_Substrates_RmaReleaseLockCb
SCOREP_SubstrateEvents.h, 199

SCOREP_Substrates_RmaRequestLockCb
SCOREP_SubstrateEvents.h, 199

SCOREP_Substrates_RmaSyncCb
SCOREP_SubstrateEvents.h, 200

SCOREP_Substrates_RmaTryLockCb
SCOREP_SubstrateEvents.h, 200

SCOREP_Substrates_RmaWaitChangeCb
SCOREP_SubstrateEvents.h, 200

SCOREP_Substrates_RmaWinCreateCb
SCOREP_SubstrateEvents.h, 201

SCOREP_Substrates_RmaWinDestroyCb
SCOREP_SubstrateEvents.h, 201

224

INDEX

SCOREP_Substrates_SampleCb
SCOREP_SubstrateEvents.h, 201

SCOREP_Substrates_ThreadAcquireLockCb
SCOREP_SubstrateEvents.h, 201

SCOREP_Substrates_ThreadCreateWaitCreateCb
SCOREP_SubstrateEvents.h, 202

SCOREP_Substrates_ThreadForkJoinForkCb
SCOREP_SubstrateEvents.h, 202

SCOREP_Substrates_ThreadForkJoinJoinCb
SCOREP_SubstrateEvents.h, 202

SCOREP_Substrates_ThreadForkJoinTaskBeginCb
SCOREP_SubstrateEvents.h, 202

SCOREP_Substrates_ThreadForkJoinTaskCreateCb
SCOREP_SubstrateEvents.h, 204

SCOREP_Substrates_ThreadForkJoinTaskSwitchCb
SCOREP_SubstrateEvents.h, 204

SCOREP_Substrates_ThreadForkJoinTeamBeginCb
SCOREP_SubstrateEvents.h, 204

SCOREP_Substrates_TrackAllocCb
SCOREP_SubstrateEvents.h, 205

SCOREP_Substrates_TrackFreeCb
SCOREP_SubstrateEvents.h, 205

SCOREP_Substrates_TrackReallocCb
SCOREP_SubstrateEvents.h, 205

SCOREP_Substrates_TriggerCounterInt64Cb
SCOREP_SubstrateEvents.h, 206

SCOREP_Substrates_TriggerParameterInt64Cb
SCOREP_SubstrateEvents.h, 206

SCOREP_Substrates_TriggerParameterStringCb
SCOREP_SubstrateEvents.h, 206

SCOREP_Substrates_WriteAsynchMetricBefore←↩

EventCb
SCOREP_SubstrateEvents.h, 207

SCOREP_TaskHandle
type definitions and enums used in Score-P, 139

SCOREP_USER_FUNC_BEGIN
Score-P User Adapter, 118

SCOREP_USER_FUNC_DEFINE
Score-P User Adapter, 119

SCOREP_USER_FUNC_END
Score-P User Adapter, 119

SCOREP_USER_GLOBAL_REGION_DEFINE
Score-P User Adapter, 119

SCOREP_USER_GLOBAL_REGION_EXTERNAL
Score-P User Adapter, 120

SCOREP_USER_INVALID_PARAMETER
SCOREP_User_Types.h, 214

SCOREP_USER_INVALID_REGION
SCOREP_User_Types.h, 214

SCOREP_USER_METRIC_CONTEXT_CALLPATH
Score-P User Adapter, 121

SCOREP_USER_METRIC_CONTEXT_GLOBAL
Score-P User Adapter, 121

SCOREP_USER_METRIC_DOUBLE
Score-P User Adapter, 121

SCOREP_USER_METRIC_EXTERNAL
Score-P User Adapter, 122

SCOREP_USER_METRIC_GLOBAL

Score-P User Adapter, 122
SCOREP_USER_METRIC_INIT

Score-P User Adapter, 123
SCOREP_USER_METRIC_INT64

Score-P User Adapter, 124
SCOREP_USER_METRIC_LOCAL

Score-P User Adapter, 124
SCOREP_USER_METRIC_TYPE_DOUBLE

Score-P User Adapter, 125
SCOREP_USER_METRIC_TYPE_INT64

Score-P User Adapter, 125
SCOREP_USER_METRIC_TYPE_UINT64

Score-P User Adapter, 125
SCOREP_USER_METRIC_UINT64

Score-P User Adapter, 125
SCOREP_USER_OA_PHASE_BEGIN

Score-P User Adapter, 127
SCOREP_USER_OA_PHASE_END

Score-P User Adapter, 128
SCOREP_USER_PARAMETER_INT64

Score-P User Adapter, 128
SCOREP_USER_PARAMETER_STRING

Score-P User Adapter, 129
SCOREP_USER_PARAMETER_UINT64

Score-P User Adapter, 129
SCOREP_USER_REGION

Score-P User Adapter, 130
SCOREP_USER_REGION_BEGIN

Score-P User Adapter, 130
SCOREP_USER_REGION_DEFINE

Score-P User Adapter, 131
SCOREP_USER_REGION_END

Score-P User Adapter, 132
SCOREP_USER_REGION_ENTER

Score-P User Adapter, 132
SCOREP_USER_REGION_INIT

Score-P User Adapter, 133
SCOREP_USER_REGION_TYPE_COMMON

Score-P User Adapter, 133
SCOREP_USER_REGION_TYPE_DYNAMIC

Score-P User Adapter, 133
SCOREP_USER_REGION_TYPE_FUNCTION

Score-P User Adapter, 133
SCOREP_USER_REGION_TYPE_LOOP

Score-P User Adapter, 134
SCOREP_USER_REGION_TYPE_PHASE

Score-P User Adapter, 134
SCOREP_User.h, 212
SCOREP_User_MetricType

SCOREP_User_Types.h, 214
SCOREP_User_ParameterHandle

SCOREP_User_Types.h, 214
SCOREP_User_RegionHandle

SCOREP_User_Types.h, 214
SCOREP_User_RegionType

SCOREP_User_Types.h, 214
SCOREP_User_Types.h, 213

SCOREP_USER_INVALID_PARAMETER, 214

225

INDEX

SCOREP_USER_INVALID_REGION, 214
SCOREP_User_MetricType, 214
SCOREP_User_ParameterHandle, 214
SCOREP_User_RegionHandle, 214
SCOREP_User_RegionType, 214

Score-P User Adapter, 115
SCOREP_RECORDING_IS_ON, 117
SCOREP_RECORDING_OFF, 117
SCOREP_RECORDING_ON, 117
SCOREP_USER_FUNC_BEGIN, 118
SCOREP_USER_FUNC_DEFINE, 119
SCOREP_USER_FUNC_END, 119
SCOREP_USER_GLOBAL_REGION_DEFINE,

119
SCOREP_USER_GLOBAL_REGION_EXTERN←↩

AL, 120
SCOREP_USER_METRIC_CONTEXT_CALLP←↩

ATH, 121
SCOREP_USER_METRIC_CONTEXT_GLOBAL,

121
SCOREP_USER_METRIC_DOUBLE, 121
SCOREP_USER_METRIC_EXTERNAL, 122
SCOREP_USER_METRIC_GLOBAL, 122
SCOREP_USER_METRIC_INIT, 123
SCOREP_USER_METRIC_INT64, 124
SCOREP_USER_METRIC_LOCAL, 124
SCOREP_USER_METRIC_TYPE_DOUBLE, 125
SCOREP_USER_METRIC_TYPE_INT64, 125
SCOREP_USER_METRIC_TYPE_UINT64, 125
SCOREP_USER_METRIC_UINT64, 125
SCOREP_USER_OA_PHASE_BEGIN, 127
SCOREP_USER_OA_PHASE_END, 128
SCOREP_USER_PARAMETER_INT64, 128
SCOREP_USER_PARAMETER_STRING, 129
SCOREP_USER_PARAMETER_UINT64, 129
SCOREP_USER_REGION, 130
SCOREP_USER_REGION_BEGIN, 130
SCOREP_USER_REGION_DEFINE, 131
SCOREP_USER_REGION_END, 132
SCOREP_USER_REGION_ENTER, 132
SCOREP_USER_REGION_INIT, 133
SCOREP_USER_REGION_TYPE_COMMON,

133
SCOREP_USER_REGION_TYPE_DYNAMIC,

133
SCOREP_USER_REGION_TYPE_FUNCTION,

133
SCOREP_USER_REGION_TYPE_LOOP, 134
SCOREP_USER_REGION_TYPE_PHASE, 134

set_callbacks
SCOREP_SubstratePluginInfo, 175

set_clock_function
SCOREP_Metric_Plugin_Info, 150

source_type
SCOREP_Metric_Properties, 153

sync
SCOREP_Metric_Plugin_Info, 150

synchronize

SCOREP_Metric_Plugin_Info, 150

timestamp
SCOREP_MetricTimeValuePair, 153

type definitions and enums used in Score-P, 135
SCOREP_Allocator_MovableMemory, 138
SCOREP_AnyHandle, 138
SCOREP_COLLECTIVE_ALLGATHER, 139
SCOREP_COLLECTIVE_ALLGATHERV, 139
SCOREP_COLLECTIVE_ALLOCATE, 140
SCOREP_COLLECTIVE_ALLREDUCE, 139
SCOREP_COLLECTIVE_ALLTOALL, 139
SCOREP_COLLECTIVE_ALLTOALLV, 139
SCOREP_COLLECTIVE_ALLTOALLW, 139
SCOREP_COLLECTIVE_BARRIER, 139
SCOREP_COLLECTIVE_BROADCAST, 139
SCOREP_COLLECTIVE_CREATE_HANDLE, 140
SCOREP_COLLECTIVE_CREATE_HANDLE_A←↩

ND_ALLOCATE, 140
SCOREP_COLLECTIVE_DEALLOCATE, 140
SCOREP_COLLECTIVE_DESTROY_HANDLE,

140
SCOREP_COLLECTIVE_DESTROY_HANDLE←↩

_AND_DEALLOCATE, 140
SCOREP_COLLECTIVE_EXSCAN, 140
SCOREP_COLLECTIVE_GATHER, 139
SCOREP_COLLECTIVE_GATHERV, 139
SCOREP_COLLECTIVE_REDUCE, 139
SCOREP_COLLECTIVE_REDUCE_SCATTER,

139
SCOREP_COLLECTIVE_REDUCE_SCATTER←↩

_BLOCK, 139
SCOREP_COLLECTIVE_SCAN, 140
SCOREP_COLLECTIVE_SCATTER, 139
SCOREP_COLLECTIVE_SCATTERV, 139
SCOREP_CollectiveType, 139
SCOREP_INVALID_LINE_NO, 137
SCOREP_INVALID_LOCATION_TYPE, 141
SCOREP_INVALID_LOCK_TYPE, 141
SCOREP_INVALID_METRIC, 137
SCOREP_INVALID_METRIC_OCCURRENCE,

141
SCOREP_INVALID_METRIC_SCOPE, 141
SCOREP_INVALID_PARADIGM, 137
SCOREP_INVALID_PARADIGM_CLASS, 142
SCOREP_INVALID_PARADIGM_TYPE, 142
SCOREP_INVALID_PARAMETER_TYPE, 142
SCOREP_INVALID_REGION, 137
SCOREP_INVALID_REGION_TYPE, 144
SCOREP_INVALID_RMA_SYNC_TYPE, 145
SCOREP_INVALID_ROOT_RANK, 137
SCOREP_INVALID_SAMPLING_SET, 137
SCOREP_INVALID_SOURCE_FILE, 137
SCOREP_Ipc_Datatype, 140
SCOREP_Ipc_Operation, 140
SCOREP_LOCATION_TYPES, 137
SCOREP_LOCK_EXCLUSIVE, 141
SCOREP_LOCK_SHARED, 141
SCOREP_LineNo, 138

226

INDEX

SCOREP_LocationType, 140
SCOREP_LockType, 141
SCOREP_METRIC_OCCURRENCE_ASYNCH←↩

RONOUS, 141
SCOREP_METRIC_OCCURRENCE_SYNCHR←↩

ONOUS, 141
SCOREP_METRIC_OCCURRENCE_SYNCHR←↩

ONOUS_STRICT, 141
SCOREP_METRIC_SCOPE_GROUP, 141
SCOREP_METRIC_SCOPE_LOCATION, 141
SCOREP_METRIC_SCOPE_LOCATION_GRO←↩

UP, 141
SCOREP_METRIC_SCOPE_SYSTEM_TREE_←↩

NODE, 141
SCOREP_MOVABLE_NULL, 137
SCOREP_MetricHandle, 138
SCOREP_MetricOccurrence, 141
SCOREP_MetricScope, 141
SCOREP_MpiRank, 138
SCOREP_MpiRequestId, 138
SCOREP_PARAMETER_INT64, 142
SCOREP_PARAMETER_STRING, 142
SCOREP_PARAMETER_UINT64, 142
SCOREP_ParadigmClass, 141
SCOREP_ParadigmHandle, 138
SCOREP_ParadigmType, 142
SCOREP_ParameterType, 142
SCOREP_RegionHandle, 138
SCOREP_RegionType, 142
SCOREP_RmaAtomicType, 144
SCOREP_RmaSyncLevel, 144
SCOREP_RmaSyncType, 145
SCOREP_SAMPLING_SET_ABSTRACT, 145
SCOREP_SAMPLING_SET_CPU, 145
SCOREP_SAMPLING_SET_GPU, 145
SCOREP_SUBSTRATES_NUM_REQUIREME←↩

NT, 145
SCOREP_SUBSTRATES_REQUIREMENT_CO←↩

NSTANT_METRIC_SET, 145
SCOREP_SUBSTRATES_REQUIREMENT_EX←↩

PERIMENT_DIRECTORY, 145
SCOREP_SamplingSetClass, 145
SCOREP_SamplingSetHandle, 138
SCOREP_SourceFileHandle, 139
SCOREP_Substrates_RequirementFlag, 145
SCOREP_TaskHandle, 139

undeclared
SCOREP_SubstratePluginInfo, 175

unit
SCOREP_Metric_Plugin_MetricProperties, 151
SCOREP_Metric_Properties, 153

value
SCOREP_MetricTimeValuePair, 153

value_type
SCOREP_Metric_Plugin_MetricProperties, 151
SCOREP_Metric_Properties, 153

write_data
SCOREP_SubstratePluginInfo, 175

227

	Contents
	1 Introduction
	1.1 About this Document
	1.2 Getting Help and Support
	1.3 Basics of Performance Optimization
	1.4 Score-P Software Architecture Overview
	1.5 Acknowledgment

	2 Getting Started
	2.1 Score-P Quick Installation
	2.1.1 Prerequisites
	2.1.2 General Autotools Build Options
	2.1.3 Score-P Specific Build Options

	2.2 Instrumentation
	2.3 Measurement and Analysis
	2.4 Report Examination
	2.5 Simple Example

	3 Application Instrumentation
	3.1 Automatic Compiler Instrumentation
	3.2 Manual Region Instrumentation
	3.3 Instrumentation for Parameter-Based Profiling
	3.4 Measurement Control Instrumentation
	3.5 Source-Code Instrumentation Enabling Online Access
	3.6 Semi-Automatic Instrumentation of POMP2 User Regions
	3.7 Preprocessing before POMP2 and OpenMP instrumentation
	3.8 Source-Code Instrumentation Using PDT
	3.8.1 Limitations

	3.9 Enforce Linking of Static/Shared Score-P Libraries

	4 Application Sampling
	4.1 Introduction
	4.2 Prerequisites
	4.3 Configure Options
	4.3.1 libunwind

	4.4 Sampling Related Score-P Measurement Configuration Variables
	4.5 Use Cases
	4.5.1 Enable unwinding in instrumented programs
	4.5.2 Instrument a hybrid parallel program and enable sampling

	4.6 Test Environment
	4.6.1 Instrument NAS BT-MZ code
	4.6.2 Run instrumented binary

	5 Application Measurement
	5.1 Profiling
	5.1.1 Parameter-Based Profiling
	5.1.2 Phase Profiling
	5.1.3 Dynamic Region Profiling
	5.1.4 Clustering
	5.1.5 Enabling additional debug output on inconsistent profiles

	5.2 Tracing
	5.3 Filtering
	5.3.1 Source File Name Filter Block
	5.3.2 Region Name Filter Block

	5.4 Selective Recording
	5.5 Trace Buffer Rewind
	5.6 Recording Performance Metrics
	5.6.1 PAPI Hardware Performance Counters
	5.6.2 Resource Usage Counters
	5.6.3 Recording Linux Perf Metrics
	5.6.4 Metric Plugins

	5.7 MPI Performance Measurement
	5.7.1 Selection of MPI Groups
	5.7.2 Recording MPI Communicator Names

	5.8 CUDA Performance Measurement
	5.9 OpenCL Performance Measurement
	5.10 OpenACC Performance Measurement
	5.11 Online Access Interface
	5.12 Substrate Plugins

	6 Usage of scorep-score
	6.1 Basic usage
	6.2 Additional per-region information
	6.3 Defining and testing a filter
	6.4 Calculating the effects of recording hardware counters

	7 Performance Analysis Workflow Using Score-P
	7.1 Program Instrumentation
	7.2 Summary Measurement Collection
	7.3 Summary report examination
	7.4 Summary experiment scoring
	7.5 Advanced summary measurement collection
	7.6 Advanced summary report examination
	7.7 Event trace collection and examination

	Appendix A Score-P INSTALL
	Appendix B MPI wrapper affiliation
	B.1 Function to group
	B.2 Group to function

	Appendix C Score-P Metric Plugin Example
	Appendix D Score-P Substrate Plugin Example
	Appendix E Score-P Tools
	E.1 scorep
	E.2 scorep-config
	E.3 scorep-info
	E.4 scorep-score
	E.5 scorep-backend-info

	Appendix F Score-P Measurement Configuration
	Appendix G Score-P wrapper usage
	Appendix H Module Documentation
	H.1 Score-P User Adapter
	H.1.1 Detailed Description
	H.1.2 Macro Definition Documentation

	H.2 type definitions and enums used in Score-P
	H.2.1 Detailed Description
	H.2.2 Macro Definition Documentation
	H.2.3 Typedef Documentation
	H.2.4 Enumeration Type Documentation

	Appendix I Data Structure Documentation
	I.1 SCOREP_Metric_Plugin_Info Struct Reference
	I.1.1 Detailed Description
	I.1.2 Field Documentation

	I.2 SCOREP_Metric_Plugin_MetricProperties Struct Reference
	I.2.1 Detailed Description
	I.2.2 Field Documentation

	I.3 SCOREP_Metric_Properties Struct Reference
	I.3.1 Detailed Description
	I.3.2 Field Documentation

	I.4 SCOREP_MetricTimeValuePair Struct Reference
	I.4.1 Detailed Description
	I.4.2 Field Documentation

	I.5 SCOREP_SubstratePluginCallbacks Struct Reference
	I.5.1 Detailed Description
	I.5.2 Field Documentation

	I.6 SCOREP_SubstratePluginInfo Struct Reference
	I.6.1 Detailed Description
	I.6.2 Field Documentation

	Appendix J File Documentation
	J.1 SCOREP_MetricPlugins.h File Reference
	J.1.1 Detailed Description
	J.1.2 Macro Definition Documentation
	J.1.3 Mandatory functions
	J.1.4 Mandatory variables
	J.1.5 Optional functions
	J.1.6 Optional variables

	J.2 SCOREP_MetricTypes.h File Reference
	J.2.1 Detailed Description
	J.2.2 Enumeration Type Documentation

	J.3 SCOREP_PublicHandles.h File Reference
	J.3.1 Detailed Description
	J.3.2 Enumeration Type Documentation

	J.4 SCOREP_PublicTypes.h File Reference
	J.4.1 Detailed Description

	J.5 SCOREP_SubstrateEvents.h File Reference
	J.5.1 Detailed Description
	J.5.2 Typedef Documentation
	J.5.3 Advice
	J.5.4 Enumeration Type Documentation

	J.6 SCOREP_SubstratePlugins.h File Reference
	J.6.1 Detailed Description
	J.6.2 Macro Definition Documentation
	J.6.3 Advice for developers
	J.6.4 Functions
	J.6.5 Mandatory variable

	J.7 SCOREP_User.h File Reference
	J.7.1 Detailed Description

	J.8 SCOREP_User_Types.h File Reference
	J.8.1 Detailed Description
	J.8.2 Macro Definition Documentation
	J.8.3 Typedef Documentation

	Appendix Index

