
GA no. 671657

D4.2

Prototype READEX Tool Suite

Document type: Report
Dissemination level: Public
Work package: WP4
Editor: Venkatesh Kannan (ICHEC-NUIG)
Contributing partners: TUM, NTNU, TUD, ICHEC-NUIG
Reviewers: Kai Diethelm (GNS)

Zakaria Bendifallah (Intel)
Version: 0.3

READEX D4.2 Deliverable Report

Document history

Version Date Author/Editor Description

0.2 27-Jan-2017

Andreas Gocht, Umbreen Sabir Mian (TUD),
Michael Lysaght, Venkatesh Kannan (ICHEC-NUIG),
Michael Gerndt, Anamika Chowdhury,
Madhura Kumaraswamy (TUM),
Per Gunnar Kjeldsberg, Mohammed Sourouri,
Nico Reissmann (NTNU)

1st review

0.3 13-Feb-2017

Andreas Gocht, Umbreen Sabir Mian (TUD),
Michael Lysaght, Venkatesh Kannan (ICHEC-NUIG),
Michael Gerndt, Anamika Chowdhury,
Madhura Kumaraswamy (TUM),
Per Gunnar Kjeldsberg, Mohammed Sourouri,
Nico Reissmann (NTNU)

2nd review

H2020-FETHPC-2014 2

Contents

3

READEX D4.2 Deliverable Report

1 Introduction

The READEX project aims at developing a tools-aided approach for analysing and tuning
HPC applications for energy efficiency on Exascale systems. To achieve this, the READEX
tool-suite architecture and workflow were presented in Deliverable D4.1 [?]. In M14, the
project delivered the pre-alpha prototype of the READEX tool-suite that demonstrated early
prototypes of all components to verify their design and interfaces. It was limited to tuning
significant regions for a single tuning parameter. In M18, the alpha prototype of the tool-
suite was delivered which significantly extends the pre-alpha version with support for runtime
situations (rts) and multiple tuning parameters. Optimized tuning configurations are deter-
mined for intra-phase dynamism. The extension for inter-phase dynamism is scheduled for
the beta prototype in M30.

The alpha prototype of the READEX tool-suite implements the following features:

1. Design-Time Analysis (DTA)

Here, the objective is to, first, analyse the tuning potential of a given HPC application.
If the application exhibits significant dynamism that is quantified by dynamism metrics
(execution time and compute intensity for the pre-alpha prototype), then it is considered
to have significant tuning potential. Following this, the runtime situations of significant
regions of an application with tuning potential are analysed for intra-phase dynamism
using multiple objectives. The results of the DTA are used to create a tuning model.

The tuning model encapsulates the results of the DTA in the form of scenarios, config-
urations, classifier and selector. While the classifier maps each instance of a significant
region during its execution onto a scenario, the selector provides the best configuration
determined for the tuning parameters during DTA for a given scenario.

In the alpha prototype, the tuning experiments during DTA are performed for three
tuning parameters, i.e., processor core frequency using DVFS (dynamic voltage and
frequency scaling), processor uncore frequency using UFS (uncore frequency scaling)
and number of OpenMP threads. The major extension for the DTA is to support
runtime situations of significant regions while the pre-alpha prototype worked on region
level only. It was agnostic for different instances of significant regions, e.g., reached via
different call paths.

The DTA is performed by the Periscope Tuning Framework (PTF) in conjunction with
Score-P that provides instrumentation and measurement infrastructure. To perform the
tuning actions when searching for the best configurations during experiments in DTA,
PTF uses some modules implemented in the READEX Runtime Library (RRL), which
is a new component created for Runtime Application Tuning (RAT) in READEX.

2. Runtime Application Tuning (RAT)

Following the completion of DTA and creation of a tuning model, the READEX tool-
suite can perform runtime tuning during the production run of the application. The
runtime tuning is performed by first classifying each instance of a significant region into

H2020-FETHPC-2014 4

READEX D4.2 Deliverable Report

a scenario as specified in the tuning model. In the alpha prototype, the scenario identi-
fication mechanism has been extended to use additional significant region identifiers in
the form of Score-P user parameters that are included in the tuning model. Following
this, the best configuration for the current scenario is selected and applied in a step
called switching.

In the alpha prototype, the switching is performed for the processor core frequency,
uncore frequency and number of OpenMP threads. The parameter control plugins that
have been implemented to support this also additionally support energy performance
bias (EPB) and number of MPI processes.

The RAT is performed by the RRL in conjunction with the Score-P tool.

The architecture of the READEX tool-suite is illustrated in Figure 1.

Periscope Tuning Framework

Analysis

Plugin Control

Performance
Database

Search
Algorithms Experiments

Engine

READEX
Tuning Plugin

DTA Management

DTA Process
Management

RTS
Management

R
TS

D
at

ab
as

e

Scenario
Identification

Application
Tuning Model

Score-P

Online
Access

Interface

Substrate
Plugin

Interface

Instrumen-
tation

Metric
Plugin

Interface

Energy
Measurements

(HDEEM)

READEX Runtime Library

Parameter
Controller

Selector

Calibration
RTS

Handler

Control
Center

Classifier

OA Event
Receiver

Parameter
Control Plugin

Figure 1: READEX tool-suite architecture

H2020-FETHPC-2014 5

READEX D4.2 Deliverable Report

2 Features of Alpha Prototype

DTA identifies the best configurations of tuning parameters for runtime situations (rts’s),
i.e., individual executions of program regions (see Deliverable D4.1 [?], page 10). These
best configurations are stored in a tuning model which is then passed to the RAT which
automatically switches to the identified configurations dynamically.

2.1 Features of Design-Time Analysis (DTA)

DTA forms the first stage in the READEX tool-suite. This section describes the new features
that were added to the DTA stage. In the alpha prototype the following goals were achieved:

• Easy configuration of all DTA components via a single configuration file.

• Extension for rts’s. The pre-alpha prototype did tuning only on regions and had no
support to determine system configurations for individual runtime situations.

• Extension for multiple tuning parameters. The pre-alpha prototype handled the opti-
misation of only the core frequency.

The internal components of Periscope and Score-P can be found in Figure 1. We now give a
short overview of the functionalities added for each of the DTA components.

2.1.1 Scorep-autofilter

Scorep-autofilter automatically generates a filter file for runtime filtering of application regions
to reduce measurement overhead. The work for scorep-autofilter focused on bug fixing.

2.1.2 Readex-dyn-detect

Readex-dyn-detect analyses an application for its dynamism. It is based on Score-P’s tuple
format which provides statistical information for runtime measurements. The result of readex-
dyn-detect is a list of significant program regions with their available dynamism as well as a
quantification of the available inter-phase dynamism.

The tool was extended with support for a common configuration file. The thresholds applied
during the analysis are read from the READEX configuration file, and the significant regions
found and the dynamism detected are added to the configuration file. The configuration file
is then passed to DTA performed by PTF.

As part of the application work package, the RADAR report was developed to summarise
the dynamism that is detected and the manual tuning results for the applications. Readex-
dyn-detect was extended with the functionality to output the analysis results in LATEX for
their integration in the RADAR report.

H2020-FETHPC-2014 6

READEX D4.2 Deliverable Report

2.1.3 Periscope

• DTA Management

The DTA Management controls the overall execution of DTA. It receives rts’s from
Score-P via its online access Interface and propagates them to the RTS database. It
was significantly extended to support additional identifiers for rts’s. In the pre-alpha
prototype the only identifier of significant regions was the callpath. The new version
supports Score-P user parameters as additional identifiers. The application expert can
distinguish instances of significant regions by defining user parameters for the region and
assigning different values clustering different instances with similar runtime behavior.

The DTA Management also reads the objective functions to be used for tuning from
the READEX configuration file. The support for the following objective functions was
added to DTA Management: Energy, Time, Core Energy, Energy Delay Product and
Energy Delay Squared Product.

The alpha prototype version then triggers the new READEX tuning plugin described
below. When the intra-phase analysis is finished, the results are added to the RTS
Database which is then used as input to generate the tuning model.

• RTS Database

The RTS Database was modified to cover the extended rts’s with additional region
identifiers. It now stores in addition to the best system configurations also information
about the outcome for other tested system configurations to enable the tuning model
generation to take more informed decisions.

• Experiment Engine

It is responsible for carrying out the experiments to assess different system configura-
tions. As DTA was extended in the alpha prototype to support tuning of rts’s, the
experiment engine had to be extended as well for rts based system configurations. It
submits rts based tuning actions via Score-P’s online access interface to the RRL tun-
ing substrate. In addition, PTF’s analysis was extended for rts specific energy and
performance measurements. These are returned to the READEX tuning plugin as a
result of an experiment with a system configuration.

• Search Algorithms

The search algorithms provided in PTF were extended to generate rts specific system
configurations. The support was added to exhaustive, individual, random, and genetic
search.

• Performance Database

The Performance Database had to be extended for rts specific performance data. An ex-
periment returns energy and performance data for rts’s which are stored in the database
and used in the evaluation of the extended energy consumption property which is used
in the READEX tuning plugin to determine the value of the objective functions.

H2020-FETHPC-2014 7

READEX D4.2 Deliverable Report

PTF’s Performance Database now also supports generic energy counters for core and
node energy. This enables easier porting to other systems since the Taurus metric plugin
of Score-P will have to be replaced by other system specific metric plugins, e.g., based
on the RAPL counters. These plugins will support different metrics and an explicit
support in PTF for all those metrics is not very efficient.

• READEX tuning plugin

The alpha prototype comes with a new tuning plugin for READEX. It supports multiple
objective functions, multiple search algorithms, multiple tuning parameters, and rts’s.

The objective functions are forwarded by the DTA management to the tuning plugin.
The plugin then initializes the search algorithm selected in the READEX configuration
file and generates different rts based system configurations. These are forwarded to
the Experiment Engine and the measured performance and energy data are returned to
the plugin. The plugin finally computes the best configuration and adds all the results
for all configurations to the RTS Database. The plugin tunes for the first objective
function, but measures also the additional functions.

The READEX tuning plugin supports the following tuning parameters: core frequency,
uncore frequency, and OpenMP threads. The configuration of those tuning parameters
is given in the common READEX configuration file, e.g., the frequency range is specified
for the core and uncore frequency tuning parameters.

• Scenario Identification

As a final step of the DTA the tuning model is generated from the RTS Database. The
extensions in the alpha prototype are described in Section 2.2.

2.1.4 Score-P

The Online Access Interface was extended for rts specific tuning action requests based on a
new rts based generic event in Score-P that is used to communicate these tuning actions to
the RRL.

2.2 Features of the Tuning Model

The purpose of the tuning model is to connect DTA and RAT. In the pre-alpha prototype
this was achieved by developing two modules: scenario identification and tuning model.
The scenario identification module clustered rts’s with the same system configuration into
scenarios, and the tuning model was used to save the scenarios and system configurations to
disk as a file. In order to make the tuning model human-readable it is saved in the JSON data
format. Additionally, the Tuning Model Manager (TMM), which is part of the READEX
Runtime Library (RRL), was developed as part of the pre-alpha prototype. It deserialises
the tuning model during RAT as explained in [3].

In the pre-alpha prototype tuning model, rts’s were differentiated only by their region name. Comment[VK]: Ac-
cording to DTA Man-
agement in Section
2.1.3, identifier in pre-
alpha is callpath, while
in alpha it is extended
to include Score-P user
parameters. Please ver-
ify.

Comment[VK]: Ac-
cording to DTA Man-
agement in Section
2.1.3, identifier in pre-
alpha is callpath, while
in alpha it is extended
to include Score-P user
parameters. Please ver-
ify.

Comment[PGK]: An-
swer: In the pre-alpha
version PTF took call-
path into account. Be-
cause it was not used
in the RRL, it was not
included in the tuning
model. Hopefully the
current reformulation is
less confusing.

Comment[PGK]: An-
swer: In the pre-alpha
version PTF took call-
path into account. Be-
cause it was not used
in the RRL, it was not
included in the tuning
model. Hopefully the
current reformulation is
less confusing.

H2020-FETHPC-2014 8

READEX D4.2 Deliverable Report

RTS1 RTS2 RTS3 RTS4

System
Configuration1

System
Configuration2

System
Configuration3

System
Configuration4

System Configuration1 == System Configuration2
System Configuration3 == System Configuration4

Equality	based	clustering
f(x)

Figure 2: A high-level overview of the scenario identifcation process where rts’s and system
configurations are created.

In the alpha version this is extended to also include the callpath to the region and Score-P
user parameters. We describe the current version of the scenario identification and the tuning
model in Sections 2.2.1 and 2.2.2, respectively.

2.2.1 Scenario Identification

The RTS Database generated by PTF contains all rts’s and their best found configurations
(cfg). Each cfg holds information about the processor core frequency, uncore frequency
and number of OpenMP threads. To reduce the size of the generated tuning model file, we
cluster identical cfg ’s. In both the pre-alpha and alpha prototypes this is done by checking for
equality. For the beta prototype at M30, clustering based on similarity will also be included.

Now that the redundant configurations are evicted, we are ready to create scenarios for the
different configurations.

Comment[KD]: In
Figure 2, what is the
meaning of the two
green arrows, and why
are they placed in this
particular way?

Comment[KD]: In
Figure 2, what is the
meaning of the two
green arrows, and why
are they placed in this
particular way?

Comment[PGK]: An-
swer: Confusing arrows
are now removed.

Comment[PGK]: An-
swer: Confusing arrows
are now removed.

H2020-FETHPC-2014 9

READEX D4.2 Deliverable Report

Scenario1
(System	Configuration1)

Scenario2
(System	Configuration3)

RTS1 RTS2

Tuning	Model

RTS3 RTS4

Figure 3: A top-down visual representation of a tuning model.

Figure 2 presents a high-level example where PTF has identified four rts’s (rts1 to rts4).
Each rts has a best-found system configuration (cfg). In this case it is found that cfg1 and
cfg2 are identical, and that cfg3 and cfg4 are identical. They are hence clustered, and we are
ready to create scenarios for the different configurations.

2.2.2 Generation of the Tuning Model

¡¡¡¡¡¡¡ .mine Figure 3 provides a top-down view of a serialised tuning model generated during
DTA. In the tuning model, like rts’s and configurations, a scenario is also implemented as a
map data structure where the keys point to an rts, while the values are used to lookup a cfg
from the map of configurations. In the pre-alpha prototype, the region name was the sole
key, while the alpha prototype supports the set of identifiers described above. Both in the Comment[ZB]: better

to be precise
Comment[ZB]: better
to be precise

pre-alpha and alpha prototype, the selector which maps a cfg onto a scenario is implicitly
given from this mapping. ======= Figure 3 provides a top-down view of a serialised
tuning model generated during DTA. In the tuning model, like rts’s and configurations, a
scenario is implemented as a map data structure where the keys point to an rts, while the
values are used to lookup a cfg from the map of configurations. In the pre-alpha prototype,
the region name was the sole key, while the alpha prototype supports region name, call path,
and Score-P user parameters. Both in the pre-alpha and alpha prototype, the selector, which
maps a cfg onto a scenario, is implicitly given from this mapping. ¿¿¿¿¿¿¿ .theirs

As previously mentioned, our motivation for saving the tuning model as a JSON file is mainly
for its human-readability properties. In spite of this, tuning model files for large applications
that contain many significant regions/system configurations may impede tasks like debugging.
Hence, Tmviewer, a tool for visualising the content of a tuning model, has been created. The Comment[KD]:

should we include an
example of the use of
Tmviewer?

Comment[KD]:
should we include an
example of the use of
Tmviewer?

Comment[PGK]: An-
swer:This is the best
we can manage for
now.

Comment[PGK]: An-
swer:This is the best
we can manage for
now.

output of the tool is in content similar to what is shown in Figure 3. Although not a part of
the alpha prototype, we have found it to be a great aid in visualising the mapping between
scenarios and system configurations.

H2020-FETHPC-2014 10

READEX D4.2 Deliverable Report

2.3 Features of Runtime Application Tuning (RAT)

The READEX Runtime Library (RRL) implements the second stage of READEX tool-suite;
namely RAT. This stage performs application tuning at runtime. The RRL receives the tuning
model generated during the DTA phase. During the production run of the application, it
automatically switches to the best configurations identified in the tuning model. Moreover,
some parts of the RRL are also used during the DTA as mentioned in Section 2.1.

The alpha prototype extends the pre-alpha version. Therefore, we extended the modules
already present in the pre-alpha version. Figure 4 shows the current design of the RRL.
Modules that have undergone major changes are marked green. Red marks the modules that
are developed as part of the READEX tool suite.

Periscope
Tuning

Framework

Application
Tuning Model

Score-P

Online
Access

Interface

Substrate
Plugin

Interface

Instrumen-
tation

Metric
Plugin

Interface

Energy
Measurements

(HDEEM)

READEX Runtime Library

Parameter
Controller

Selector

Calibration
RTS

Handler

Control
Center

Classifier

OA Event
Receiver

Parameter
Control Plugin

Figure 4: Current architecture of the READEX Runtime Library (RRL). Red: Implementa-
tion is part of the extensions made for the READEX tool suite. Green: Implementation has
changed since the pre-alpha prototype

H2020-FETHPC-2014 11

READEX D4.2 Deliverable Report

The following sections list these changes and give some detailed insight into the changes
made. Details about the unchanged modules can be read in the report about the Pre-Alpha
Prototype [3].

2.3.1 OA Event Receiver

The OA event receiver provides the interface between the PTF and the RRL and is used
during the DTA phase of the READEX tool suite. PTF generates tuning requests which
are propagated to Score-P through the so-called online access interface (OA). When a tuning
request is received, the OA interface generates an event and passes the tuning request as a
JSON formatted string to Score-P. Once the RRL receives the OA event including the JSON
string from Score-P, it passes the JSON string (tuning request) to the OA event receiver. In
a next step, the OA receiver parses and propagates this information to the Tuning Model
Manager described in Section 2.2.

In order to support tuning of different RTSs in one phase, the tuning request parser has been
extended. Listing 1 shows the old version of the tuning request and Listing 2 presents the
new format.

The new format has a property called “RegionCallpath”. It is used to specify the region
where a certain configuration shall be applied. Besides the Region ID, which specifies a
certain function, the new tuning request is now also able to take into account additional
identifiers. It can be seen that the new format is much more fine grained and allows a more
precise setting of tuning parameters for regions.

Listing 1: Format of the OA tuning request V0.1

1 {
2 ”genericEventType”:”tuningRequest”,
3 ”genericEventTypeVersion”:0.1,
4 ”data”:
5 {
6 ”RegionName”:<Region name>,
7 ”RegionID”:<Region id>,
8 ”TuningParameters”:
9 {

10 ”coreFrequency”:<Frequency setting>
11 }
12 }
13 }

H2020-FETHPC-2014 12

READEX D4.2 Deliverable Report

Listing 2: Format of the OA tuning request V0.2

1 {
2 ”genericEventType”:”tuningRequest”,
3 ”genericEventTypeVersion”:0.2,
4 ”data”:
5 {
6 ”RegionCallpath”:
7 [
8 {
9 ”RegionID”:<Region Id>,

10 ” AdditionalIdentifiersInt ”:
11 {
12 <Name1>:<Value1>, [...]
13 },
14 ”AdditionalIdentifiersUInt”:
15 {
16 <Name1>:<Value1>, [...]
17 },
18 ” AdditionalIdentifiersString ”:
19 {
20 <Name1>:<Value1>, [...]
21 }
22 },
23 [...]
24],
25 ”TuningParameters”:
26 {
27 ”coreFrequency”:<Frequency setting>, [...]
28 }
29 }
30 }

2.3.2 Tuning Model Manager

The Tuning Model Manager (TMM) holds the Tuning Model, which holds the configuration
for a certain region, and was developed as two modules. One TMM is used during DTA,
while the other one is used during the RAT. This allows for a more flexible development. We
were able adjust the RAT TMM to support RTS specific tuning, while the DTA TMM was
still used during DTA. Once the new OA interface was implemented we were able to switch
to the RTS specific tuning for DTA as well. Therefore, we were able to guarantee a working
RRL during the development, which allows us to detect errors in an early development stage.
This ensured a high code quality.

H2020-FETHPC-2014 13

READEX D4.2 Deliverable Report

2.3.3 Parameter Control Plugins

The Parameter Control Plugins (PCP’s) perform the configuration of different hardware
resources. While the Dynamic Voltage and Frequency Scaling (DVFS) plugin was already
available for the pre-alpha prototype, additional PCP’s are now supported. The following
plugins are now available:

• Dynamic Voltage and Frequency Scaling (DVFS)

• Uncore Frequency Scaling (UFS)

• Energy Performance Bias (EPB)

• MPI

• OpenMP

A detailed description of the different Tuning Plugins can be found in Deliverable 1.1 [2].

2.3.4 Calibration

The goal of the calibration is to handle unseen runtime situations (RTS) during the production
run of a HPC application. These unseen RTS may consists of already known regions, which
have some unknown parameters. Alternatively, these RTS may consist of completely new
regions which have totally unknown characteristics. Therefore, the calibration module will
use different Machine Learning techniques in order to predict the optimal configuration for an
unseen RTS. We outlined an internal concept of the calibration, which will be implemented
in the following weeks. The calibration module and the related mechanisms will be part of
Deliverable 3.2.

H2020-FETHPC-2014 14

READEX D4.2 Deliverable Report

3 Using Alpha Prototype

The complete tool suite built with gcc/5.3.0 and bullxmpi/1.2.8.4 (or intel/2016.2.181
and intelmpi/5.1.3.181) can be loaded as follows:

module use /projects/p_readex/modules

module load readex/ci_readex_bullxmpi1.2.8.4_gcc5.3.0

or

module use /projects/p_readex/modules

module load readex/ci_readex_intelmpi5.1.3.181_intel2016.2.181

The individual tools built with gcc/5.3.0 and bullxmpi/1.2.8.4 (or intel/2016.2.181

and intelmpi/5.1.3.181) can be loaded as follows:

module use /projects/p_readex/modules

module load scorep/ci_TRY_READEX_online_access_call_tree_extensions_bullxmpi1.2.8.4_gcc5.3.0

module load ptf/ci_readex_bullxmpi1.2.8.4_gcc5.3.0_slurm_starter_with_scorep

module load readex-rrl/ci_readex_bullxmpi1.2.8.4_gcc5.3.0

module load pcp/ci_pcp_bullxmpi1.2.8.4_gcc5.3.0

or

module use /projects/p_readex/modules

module load scorep/ci_TRY_READEX_online_access_call_tree_extensions_intelmpi5.1.3.181_intel2016.2.181

module load ptf/ci_readex_intelmpi5.1.3.181_intel2016.2.181_slurm_starter_with_scorep

module load readex-rrl/ci_rrl_intelmpi5.1.3.181_intel2016.2.181

module load pcp/ci_pcp_intelmpi5.1.3.181_intel2016.2.181

3.1 Design-Time Analysis

This section describes the Score-P annotation of an application, its dynamism analysis using
readex-dyn-detect (with the aid of scorep-autofilter) and its design-time analysis using PTF.
The steps are illustrated using the miniMD application as an example.

3.1.1 Annotate phase region

Manually annotate the phase region of the application as shown below:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

// loop starts

SCOREP_USER_OA_PHASE_BEGIN(REGION_HANDLE, "PHASE_REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)

// loop body (phase region)

SCOREP_USER_OA_PHASE_END(REGION_HANDLE)

// loop ends

H2020-FETHPC-2014 15

READEX D4.2 Deliverable Report

Example The for-loop body in Integrate::run() is annotated as a phase region as
shown in Appendix A and is available on Taurus in

/projects/p_readex/ichec/test_apps/miniMD_readex_toolsuite/phase_region_integrate.cpp

3.1.2 Apply Score-P Auto-filter

1. Build the application with scorep without options for manual annotations. Note that
Score-P and the application are to be built with the same compiler.

2. Run the application. This will create a profile.cubex file in the scorep-<xyz> directory
at the execution location.

3. Apply the scorep-autofilter tool on the profile.cubex file as follows:

scorep-autofilter -t <region_granularity_threshold_in_ms>

-f <filter_file_name_without_extension>

<path_to_cubex_file>/profile.cubex

This will create a filter file with .filt extension.

Repeat steps 2 and 3 to add regions of fine granularity to the filter file, until no more new
regions can be added to the filter file. This is necessary to reduce instrumentation overhead,
and requires that the environment variable SCOREP FILTERING FILE be set to the filter file
name (including the .filt extension) before repeating steps 2 and 3.

Example

1. The miniMD application is built as follows:

make openmpi PREP="scorep"

2. A script to repeat step 2 (run application) and step 3 (apply scorep-autofilter) for the
miniMD application is available in

/projects/p_readex/ichec/test_apps/miniMD_readex_toolsuite/do_scorep_autofilter_loop.sh

and is presented in Appendix B. The three arguments to this script are: (1) the value for
-t input to scorep-autofilter, (2) the input file name to miniMD, and (3) the number
of MPI processes to create for the application.

For different applications, do scorep autofilter loop.sh can be reused by updating the
line to execute the application. This script requires do scorep autofilter single.sh that
is present in the same directory. They are to be run from the location with the application’s
executable and name the filter files as scorep.filt.

H2020-FETHPC-2014 16

READEX D4.2 Deliverable Report

3.1.3 Apply READEX Dyn-detect

1. Build the application with scorep --online-access --user --thread=none for the
manually annotated phase region.

2. Run the application with the following environment variables set:

export SCOREP_PROFILING_FORMAT=cube_tuple

export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_L3_TCM

export SCOREP_FILTERING_FILE=<filter_file_name_with_extension>

This will create a tupled profile.cubex file in the scorep-<xyz> directory at the execu-
tion location.

3. Apply the readex-dyn-detect tool on the profile.cubex file as follows:

readex-dyn-detect -t <region_granularity_threshold_in_ms>

-p <phase_region_name >

-c <compute_intensity_variation_threshold_in_percent>

-v <execution_time_variation_threshold_in_percent>

-w <region_execution_time_weight_wrt_phase_execution_time_in_percent>

-f <RADAR_report_file_name>

<path_to_cubex_file>/profile.cubex

4. The results of readex-dyn-detect are summarised in readex config.xml in the execu-
tion directory, which is used as an input to PTF. An example of readex config.xml is
available in <PTF installation path>/templates/readex config.xml.default.

The readex config.xml file may be manually created from this template and used as
input for PTF without applying the Score-P autofilter and READEX Dyn-detect tools.

Example

1. The miniMD application with manually annotated phase region is built for
readex-dyn-detect as follows:

make openmpi PREP="scorep --online-access --user --thread=none"

2. When miniMD is run with in2.data as its input file and readex-dyn-detect is
applied on the resulting tupled profile.cubex as follows, the function ForceLJ::

compute halfneigh() is identified as the significant region.

readex-dyn-detect -t 0.001 -p INTEGRATE_RUN_LOOP -c 20 -v 0.01 -w 0.1 scorep-<xyz>/profile.cubex

A script to perform steps 2 and 3 for the miniMD application is available in

/projects/p_readex/ichec/test_apps/miniMD_readex_toolsuite/do_readex_dyn_detect.sh

H2020-FETHPC-2014 17

READEX D4.2 Deliverable Report

For different applications, do readex dyn detect.sh can be reused by updating the line to
execute the application. This is to be run from the location with the application’s executable
and the filter file name considered to be scorep.filt.

3.1.4 Annotate significant regions

Manually annotate the significant regions that are identified by readex-dyn-detect (and all
their parents in the hierarchy) in the application as shown below:

SCOREP_USER_REGION_DEFINE(REGION_HANDLE)

SCOREP_USER_REGION_BEGIN(REGION_HANDLE, "SIG_REGION_NAME", SCOREP_USER_REGION_TYPE_COMMON)

// significant region

SCOREP_USER_REGION_END(REGION_HANDLE)

This is an optional step to allow the user to reduce measurement overhead further. With
manual instrumentation it can be limited to exactly those significant regions.

Example Manually annotate ForceLJ::compute halfneigh() and its parents
Integrate::run() and main() as significant regions as shown in the following files
respectively:

/projects/p_readex/ichec/test_apps/miniMD_readex_toolsuite/sig_region_force_lj.cpp

/projects/p_readex/ichec/test_apps/miniMD_readex_toolsuite/sig_region_integrate.cpp

/projects/p_readex/ichec/test_apps/miniMD_readex_toolsuite/sig_region_ljs.cpp

3.1.5 Apply PTF

1. Build the application with scorep --online-access --user --thread=none.

Alternatively, build the application with scorep --online-access --user

--thread=none --nocompiler if the significant regions were manually instrumented to
avoid additional measurement overhead from automatic compiler instrumentation.

2. Load the plugin(s) required for energy measurement that are compatible with the Score-P
version built for the READEX tools suite.

For instance, on the Taurus system at TU Dresden, load the scorep-hdeem sync plugin
for energy measurements and set the following environment variables:

export SCOREP_METRIC_PLUGINS=hdeem_sync_plugin

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_CONNECTION="INBAND"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_VERBOSE="WARN"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

3. Use the parameter control plugins compatible with the RRL tuning substrate, and set the
following environment variables:

H2020-FETHPC-2014 18

READEX D4.2 Deliverable Report

export SCOREP_SUBSTRATE_PLUGINS=’rrl’

export SCOREP_RRL_PLUGINS=<list_of_parameter_control_plugins_names, eg. cpu_freq_plugin>

4. Use and apply the PTF tool on the application as follows:

psc_frontend --apprun="<application_run_command>"

--mpinumprocs=<num_of_mpi_procs>

--ompnumthreads=<num_of_omp_threads>

--phase=<phase_region_name>

--tune=readex_tuning

--config-file=<readex_config.xml file>

--info=<max_info_level, eg. 2 to 6>

--selective-info=<comma_separated_list_of_information_levels, eg. AgentApplComm>

This will produce a tuning model in the execution directory under the name
tuning model.json.

Example

1. The miniMD application with manually annotated phase region is built for PTF as follows:

make openmpi PREP="scorep --online-access --user"

2. The scorep-hdeem sync for energy measurements for READEX can be loaded and rele-
vant environment variables set as follows:

module load scorep-hdeem/sync-2016-07-14-hdeem2.2.2-xmpi-gcc5.3

export SCOREP_METRIC_PLUGINS=hdeem_sync_plugin

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_CONNECTION="INBAND"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_VERBOSE="WARN"

export SCOREP_METRIC_HDEEM_SYNC_PLUGIN_STATS_TIMEOUT_MS=1000

3. The relevant environment variables set for tuning the CPU frequency as follows:

export SCOREP_SUBSTRATE_PLUGINS=’rrl’

module load pcp/ci_pcp_bullxmpi1.2.8.4_gcc5.3.0

export SCOREP_TUNING_PLUGINS=OpenMPTP,cpu_freq_plugin,uncore_freq_plugin;

export SCOREP_RRL_VERBOSE="WARN"

4. PTF can be applied on the miniMD application as follows:

psc_frontend --apprun="miniMD_openmpi -i in2.data"

--mpinumprocs=8

--ompnumthreads=1

--phase=INTEGRATE_RUN_LOOP

--tune=readex_tuning

--config-file=readex_config.xml

--info=2

--selective-info=AutotuneAll,AutotunePlugins

H2020-FETHPC-2014 19

READEX D4.2 Deliverable Report

A script to perform steps 2–5 for the miniMD application is available in

/projects/p_readex/ichec/test_apps/miniMD_readex_toolsuite/do_psc_frontend.sh

For different applications, do psc frontend.sh can be reused by updating the command
to run the application in --apprun. This script is to be run from the location with the
application’s executable.

3.2 Runtime Application Tuning

This section describes the runtime tuning of an application using the READEX Runtime
Library (RRL) using the tuning model generated during the design-time analysis phase,
using miniMD as an example.

3.2.1 Tune with RRL

1. Use the RRL and the parameter control plugins built for the READEX toolsuite.

2. Set the environment variables to specify the Score-P substrate plugin as RRL and the
parameter control plugins to be used as follows:

export SCOREP_SUBSTRATE_PLUGINS=’rrl’

export SCOREP_RRL_VERBOSE="WARN"

export SCOREP_RRL_PLUGINS=<list_of_parameter_control_plugins_names, eg. cpu_freq_plugin>

3. Set the environment variable to specify the tuning model to be used by the RRL and its
location as follows:

export SCOREP_RRL_TMM_PATH="<path_to_tuning_model_file>/tuning_model.json"

4. Run the application with the tuning module JSON file produced by PTF in the specified
location.

Example

1. The environment variables to specify the RRL as the substrate plugin and tune the appli-
cation can be set as follows:

export SCOREP_SUBSTRATE_PLUGINS=’rrl’

module load pcp/ci_pcp_bullxmpi1.2.8.4_gcc5.3.0

export SCOREP_TUNING_PLUGINS=OpenMPTP,cpu_freq_plugin,uncore_freq_plugin;

export SCOREP_RRL_VERBOSE="WARN"

2. The environment variable to specify the tuning model to be used by the RRL is set as
follows:

H2020-FETHPC-2014 20

READEX D4.2 Deliverable Report

export SCOREP_RRL_TMM_PATH="tuning_model.json"

3. The miniMD application can be run with input file in2.data as follows:

mpirun -np 8 ./miniMD_openmpi -i in2.data

A script to perform these steps for the miniMD application is available in

/projects/p_readex/ichec/test_apps/miniMD_readex_toolsuite/do_rrl.sh

For different applications, do rrl.sh can be reused by updating the line to run the applica-
tion. This script is to be run from the location with the application’s executable.

H2020-FETHPC-2014 21

READEX D4.2 Deliverable Report

4 Summary

The features of the alpha prototype of the READEX tool-suite summarised in this report
cover the features that were targeted by M18 as outlined in the deliverable D4.1 [?]. This
prototype has been evaluated internally using a few benchmark applications (including total
FETI solvers such as ESPRESO and PERMON, and a few from the CORAL and Mantevo
benchmark suites).

Based on this alpha prototype, a pre-beta version of the READEX tool-suite will be developed
by M24 with the following feature updates as described in D4.1 [?]:

• Design-Time Analysis (DTA)

– Inter-phase dynamism analysis using phase identifiers, in addition to previously
supported intra-phase dynamism analysis using region identifiers.

– A final set of READEX tuning plugins to support tuning for multiple aspects.

– A preliminary version of the domain knowledge specification to leverage user do-
main knowledge.

– A phase-aware tuning model incorporating phase identifiers for scenario identifi-
cation and more complex selectors.

• Runtime Application Tuning (RAT) Comment[ZB]: May
be another interest-
ing feature that can be
added easily if not al-
ready available is mea-
suring the energy con-
sumption of the entire
application and output
it in a file or on stan-
dard output. It’ll en-
able quick comparison
of several READEX
results.

Comment[ZB]: May
be another interest-
ing feature that can be
added easily if not al-
ready available is mea-
suring the energy con-
sumption of the entire
application and output
it in a file or on stan-
dard output. It’ll en-
able quick comparison
of several READEX
results.

– A final set of READEX tuning plugins to execute tuning for multiple aspects.

– Scenario detection to handle phase scenarios, identified within the phase-aware
tuning model.

– For scenario switching, a global decision making mechanism will be implemented
to support more complex selectors and global synchronisation for tuning actions.

References

[1] Openmp application program interface. http://www.openmp.org/mp-documents/

OpenMP4.0.0.pdf.

[2] Andreas Gocht, Zakaria Bendifallah, Umbreen Sabir Mian, and Othman Bouizi. D1.1:
Hardware and system-software tuning plugins. READEX WP1 Report, 2016.

[3] Andreas Gocht, Umbreen Sabir Mian, Michael Lysaght, Venkatesh Kannan, Michael
Gerndt, Anamika Chowdhury, Madhura Kumaraswamy, Per Gunnar Kjeldsberg, and Nico
Reissmann. Pre-alpha prototype report. READEX Pre-Alpha Report, 2016.

[4] Robert Schöne and Daniel Molka. Integrating performance analysis and energy efficiency
optimizations in a unified environment. Computer Science - Research and Development,
29(3-4), 2014. DOI: 10.1007/s00450-013-0243-7.

H2020-FETHPC-2014 22

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

READEX D4.2 Deliverable Report

A MiniMD Phase Region Annotation

Listing 3: MiniMD phase region annotation in lines 14, 17 and 113.

1 void Integrate :: run(Atom &atom, Force∗ force, Neighbor &neighbor,
2 Comm &comm, Thermo &thermo, Timer &timer)
3 {
4 int i , n;
5 comm.timer = &timer;
6 timer.array[TIME TEST] = 0.0;
7 int check safeexchange = comm.check safeexchange;
8

9 mass = atom.mass;
10 dtforce = dtforce / mass;
11 #pragma omp parallel private(i,n)
12 {
13

14 SCOREP USER REGION DEFINE(R1)
15 for(n = 0; n < ntimes; n++)
16 {
17 SCOREP USER OA PHASE BEGIN(R1, ”INTEGRATE RUN LOOP”, 2)
18

19 #pragma omp barrier
20 x = &atom.x[0][0];
21 v = &atom.v[0][0];
22 f = &atom.f[0][0];
23 xold = &atom.xold[0][0];
24 nlocal = atom.nlocal;
25

26 initialIntegrate () ;
27

28 #pragma omp barrier
29 #pragma omp master
30 timer.stamp();
31

32 if ((n + 1) % neighbor.every)
33 {
34 #pragma omp barrier
35 comm.communicate(atom);
36 #pragma omp master
37 timer.stamp(TIME COMM);
38 #pragma omp barrier
39 }
40 else
41 {
42 {
43 if (check safeexchange)
44 {
45 #pragma omp master

H2020-FETHPC-2014 23

READEX D4.2 Deliverable Report

46 {
47 double d max = 0;
48 for(i = 0; i < atom.nlocal; i++)
49 {
50 double dx = (x[3 ∗ i + 0] − xold[3 ∗ i + 0]);
51 if (dx > atom.box.xprd) dx −= atom.box.xprd;
52 if (dx < −atom.box.xprd) dx += atom.box.xprd;
53 double dy = (x[3 ∗ i + 1] − xold[3 ∗ i + 1]);
54 if (dy > atom.box.yprd) dy −= atom.box.yprd;
55 if (dy < −atom.box.yprd) dy += atom.box.yprd;
56 double dz = (x[3 ∗ i + 2] − xold[3 ∗ i + 2]);
57 if (dz > atom.box.zprd) dz −= atom.box.zprd;
58 if (dz < −atom.box.zprd) dz += atom.box.zprd;
59 double d = dx ∗ dx + dy ∗ dy + dz ∗ dz;
60 if (d > d max) d max = d;
61 }
62 d max = sqrt(d max);
63 if ((d max > atom.box.xhi − atom.box.xlo) || (d max > atom.box.yhi −

atom.box.ylo) || (d max > atom.box.zhi − atom.box.zlo))
64 printf (”Warning: Atoms move further than your subdomain size, which will

eventually cause lost atoms.\n”
65 ”Increase reneighboring frequency or choose a different processor grid\n”
66 ”Maximum move distance: %lf; Subdomain dimensions: %lf %lf %lf\n”,
67 d max, atom.box.xhi − atom.box.xlo, atom.box.yhi − atom.box.ylo,

atom.box.zhi − atom.box.zlo);
68 }
69 }
70

71 #pragma omp master
72 timer.stamp extra start() ;
73 comm.exchange(atom);
74 comm.borders(atom);
75 #pragma omp master
76 {
77 timer.stamp extra stop(TIME TEST);
78 timer.stamp(TIME COMM);
79 }
80 if (check safeexchange)
81 for(int i = 0; i < 3 ∗ atom.nlocal; i++) atom.xold[i] = atom.x[i];
82 }
83 #pragma omp barrier
84 neighbor.build(atom);
85

86 #pragma omp barrier
87 #pragma omp master
88 timer.stamp(TIME NEIGH);
89 }
90 force−>evflag = (n + 1) % thermo.nstat == 0;
91 force−>compute(atom, neighbor, comm, comm.me);

H2020-FETHPC-2014 24

READEX D4.2 Deliverable Report

92

93 #pragma omp master
94 timer.stamp(TIME FORCE);
95

96 if (neighbor.halfneigh && neighbor.ghost newton)
97 {
98 comm.reverse communicate(atom);
99

100 #pragma omp master
101 timer.stamp(TIME COMM);
102 }
103 v = &atom.v[0][0];
104 f = &atom.f[0][0];
105 nlocal = atom.nlocal;
106

107 #pragma omp barrier
108 finalIntegrate () ;
109

110 #pragma omp barrier
111 if (thermo.nstat) thermo.compute(n + 1, atom, neighbor, force, timer, comm);
112

113 SCOREP USER OA PHASE END(R1)
114 }
115 } //end OpenMP parallel
116 }

B Scripts to Apply Scorep-Autofilter

Listing 4: do scorep autofilter loop.sh

1 #!/bin/sh
2

3 export SCOREP FILTERING FILE=scorep.filt
4 rm −rf scorep−∗
5 rm −f old scorep.filt
6 echo ”” > scorep.filt
7 result=1
8 while [$result != 0]; do
9 # run the application.. update this for different applications

10 mpirun −np $3 ./miniMD openmpi −i $2 1>/dev/null
11 echo ”run miniMD done.”
12 sh −l do scorep autofilter single.sh $1
13 result=$?
14 echo ”scorep autofilter singe done ($result).”
15 done
16 echo ”scorep autofilter loop done.”

H2020-FETHPC-2014 25

READEX D4.2 Deliverable Report

Listing 5: do scorep autofilter single.sh

1 #!/bin/sh
2

3 cp scorep.filt old scorep.filt
4

5 scorep−autofilter −t $1 −f scorep scorep−∗/profile.cubex 1>/dev/null
6 echo ”#############”
7 cat scorep.filt
8 echo ”#############”
9

10 rm −rf scorep−∗
11 commString=$(comm −1 −2 scorep.filt old scorep.filt)
12 if [”$commString” == ””]; then
13 cp scorep.filt old scorep.filt
14 exit 1
15 else
16 filtFileBeginString=”SCOREP REGION NAMES BEGIN”
17 filtFileEndString=”SCOREP REGION NAMES END”
18 filtFileExcludeString=”EXCLUDE”
19 sort scorep.filt > sorted scorep.filt
20 sort old scorep.filt > sorted old scorep.filt
21 commString=$(comm −2 −3 sorted scorep.filt sorted old scorep.filt)
22 if [”$commString” != ””]; then
23 echo $filtFileBeginString > new scorep.filt
24 echo $filtFileExcludeString >> new scorep.filt
25 comm −2 −3 sorted scorep.filt sorted old scorep.filt > comm1.txt
26 exec < ”old scorep.filt”
27 while read line; do
28 if [”$line” != ”$filtFileEndString”] && [”$line” != ”$filtFileBeginString”] && [”$line”

!= ”$filtFileExcludeString”]; then
29 echo $line >> new scorep.filt
30 fi
31 done
32 cat comm1.txt >> new scorep.filt
33 echo $filtFileEndString >> new scorep.filt
34 mv new scorep.filt scorep.filt
35 rm −f sorted scorep.filt sorted old scorep.filt comm1.txt
36 exit 1 # new entries added to filter file
37 else
38 mv old scorep.filt scorep.filt
39 rm −f sorted scorep.filt sorted old scorep.filt comm1.txt
40 exit 0 # no new entries added to filter file
41 fi
42 fi

H2020-FETHPC-2014 26

