
GA no. 671657

D1.1

Hardware and System-Software Tuning
Plugins

Document type: Other

Dissemination level: Public
Work package: WP1
Editor: Andreas Gocht (TUD),

Zakaria Bendifallah (Intel),
Umbreen Sabir Mian (TUD),
Othman Bouizi (Intel)

Contributing partners: TUD, Intel
Reviewer: Michael Gerndt (TUM)

David Horak (IT4I)
Version: 1.0

READEX D1.1-Deliverable

Document history

Version Date Author/Editor Description

0.1 08/08/16
Andreas Gocht (TUD),
Zakaria Bendifallah (Intel),
Othman Bouizi (Intel)

First draft

0.2 22/08/16
Andreas Gocht (TUD),
Zakaria Bendifallah (Intel),
Othman Bouizi (Intel)

Second draft

1.0 30/08/16

Andreas Gocht (TUD),
Zakaria Bendifallah (Intel),
Umbreen Sabir Mian (TUD),
Othman Bouizi (Intel)

Final Version

H2020-FETHPC-2014 2

READEX D1.1-Deliverable

Executive Summary

The objective of Work package 1 (WP1) “Tuning parameters” is to determine parameters
that can be tuned as well as their integration into the READEX tool suite. We split the
tuning parameters in three different levels of the HPC stack: Hardware, Runtime System,
and Application. We evaluated the parameters proposed in Deliverable 4.1 and integrated
the most promising ones in the current READEX tool stack.

As the READEX tool suite supports only static tuning at the time this Deliverable is written,
testing the dynamic tuning potential of all parameters was not in scope of this deliverable.
However, there is still a certain amount of parameters which show their dynamic tuning
potential already during static tuning. Once the READEX tool suite is able to tune for
dynamic situations we will re-evaluate all plugins.

After a short introduction this Deliverable starts with an outline of the current READEX
tool suite. We describe in which places we have to hook in, to integrate the different tuning
parameters as well as the basic concepts of the READEX tool suite.

Furthermore, we describe in detail our initial assumptions as well as our concrete findings
about the hardware and runtime system parameters. Our results showed that the processor
core and uncore frequencies are the most promising hardware tuning parameters. Moreover
the amount of threads used for OpenMP computations as well as the scheduler policy and the
scheduler chunk size are promising parameters for runtime system parameters. The proposed
MPI parameters will need further investigation once we are able to evaluate the dynamic
tuning potential. We also give a small outline about the integration into the READEX tool
suite for these parameters.

Finally, we describe our concept for the application parameters. These parts are still under
development and result in a refinement during the next project months. However, we will
revisit the application parameters within Deliverable 1.2.

H2020-FETHPC-2014 3

Contents

1 Introduction 5

1.1 Experiment Platform . 5

2 Integration in the READEX Tool Suite 6

3 Hardware Parameters 8

3.1 Dynamic Voltage and Frequency Scaling and Uncore Frequency Scaling . . . 8

3.2 Dynamic Duty Cycle Modulation . 10

3.3 Energy Performance Bias . 11

3.4 Hardware Prefetcher . 12

4 System Software Parameters 15

4.1 MPI . 15

4.2 OpenMP . 17

5 Application Parameters 20

5.1 Application Level Tuning . 20

5.2 Parameter Exploitation Scenarios . 20

6 Summary 23

4

READEX D1.1-Deliverable

1 Introduction

The READEX project focuses on the dynamic tuning of applications in order to improve their
energy efficiency. Therefore, we need different parameters that have a noticeable impact on
the energy efficiency of programs. In this Deliverable we describe the parameters that we
investigated.

For energy efficiency tuning each parameter needs a corresponding parameter control plugin
which will allow an integration into the READEX tool suite. Therefore we will start in
Section 2 with a short description of the READEX tool suite. We will outline how these
plugins are controlled and where these plugins have to be integrated.

The following Sections 3 - 5 present hardware parameters, system software parameters, and
application-level parameters. Each section will outline our findings about the proposed tuning
parameters. For selected parameters we give a small overview about some parameter specific
implementation details.

Finally, we will summarize our findings and give an outlook about our future work.

1.1 Experiment Platform

All experiments for the tuning parameters are conducted on the Taurus system installed at
TU Dresden. This system is comprised of 1456 nodes each containing two 12-core Intel Xeon
CPUs E5-2680 v3 (Intel Haswell processor family) running with a default frequency of 2.50
GHz. The nodes contain between 64 and 256 GB of memory.

All nodes are equipped with the HDEEM energy measurement system [4]. This system
allowed us to do reasonably accurate measurements as the measurement error is 2% for
measurements of the whole node [3].

Additionally, 44 nodes are equipped with two Nvidia Tesla K20x GPUs and 64 nodes contain
four Nvidia Tesla K80 GPUs per node.

H2020-FETHPC-2014 5

READEX D1.1-Deliverable

2 Integration in the READEX Tool Suite

All tuning plugins and parameters that we describe in the following sections have to be
integrated in the READEX tool suite. Therefore, we start with a small overview about the
READEX tool suite stack.

Figure 1 outlines the interaction between the Periscope Tuning Framework (PTF), Score-P
and the READEX Runtime Library (RRL).

Periscope Tuning
Framework

READEX
Tuning Plugin

Application
Tuning Model

Score-P

READEX Runtime
LibraryOnline

Access
Interface

Substrate
Plugin

Interface

Parameter
Control Plugin

Energy
Measurements

(HDEEM)

Figure 1: Overview about the READEX tool suite. The graph shows the information flow
between all the tools we are going to use or to develop. The “Parameter Control Plugins”
are the plugins that will change the tuning parameters.

The RRL controls the so called Parameter Control Plugins (PCPs). These plugins are respon-
sible for changing different hardware or software parameters. Each PCP provides a common
interface, which contains the name of a parameter and a set and an unset function.

During design time, the RRL receives its tuning commands through the Score-P online access
interface. The interface in turn is connected to PTF. A tuning command contains the name

H2020-FETHPC-2014 6

READEX D1.1-Deliverable

of the parameter to change, the parameter value and the program region where it shall be
applied. PTF obtains the information about the available parameters and the parameter
values from so called tuning plugins. Each tuning plugin can target different parameters at
once. Once PTF finds an optimal configuration, it saves this configuration in the so called
tuning model.

During runtime, the RRL requests the optimal configuration from the tuning model and
passes it to the PCPs. In a future version of the READEX tool suite we will implement
a calibration mechanism, which will be activated during runtime. If a scenario occurs that
has not been seen during design time, the calibration mechanism will search for an optimal
configuration of this scenario.

The different parts of the software are maintained in three different repositories. We use a
modified version of Score-P, which we will merge to the official Score-P once our changes are
final. Our Score-P version can be accessed about the non-public Score-P SVN project archive
hosted by TU Dresden. PTF together with the tuning plugins, the RRL and the PCPs are
located at a non-public Git project archive hosted by TU Munich. Access to these archives
are granted after requests to responsible project partners.

H2020-FETHPC-2014 7

READEX D1.1-Deliverable

3 Hardware Parameters

The most relevant hardware parameters that we consider are processor related parameters.
This is mainly due to the fact that the processor has the highest power dissipation in a
computer system. In the following sections, we will describe each of the hardware tuning
parameters and tuning aspects that we investigated as part of the READEX project.

3.1 Dynamic Voltage and Frequency Scaling and Uncore Frequency Scal-
ing

The method of Dynamic Voltage and Frequency Scaling (DVFS) has been investigated since
the 1990’s [13] as a means of reducing the energy consumption of computer systems. Reducing
the frequency of a CPU core through DVFS results in the reduction of the required power
draw of the platform, where energy savings of up to 32% have been reported [9]. DVFS can
be implemented through various means, e.g., by changing the governor. A governor describes
a pluggable infrastructure that commonly controls the CPU frequency settings in the Linux
operating system based on defined policies such as performance, powersave, or ondemand. For
full control over the frequency settings, the so-called userspace governor allows applications
to select the so-called P-state, which are essentially frequency steps of the processor.

One interesting point to emphasise is that the Intel Haswell processor family allows the
independent selection of P-states for individual cores as opposed to full sockets as seen in
previous processor lines. The Intel Haswell processor also introduces a switching window for
frequency changes. Each switching request can be given to the processor in a certain time
window. At the end of this window the frequency is changed. If the request occurs after a
time window is closed, the switching is executed after the next window is closed. This causes
a delay of up to 500µs before switching decisions become effective [5].

Moreover, there is the uncore, which controls for example the communication between pro-
cessor caches and the DRAM. Together with the Haswell processor generation Intel reintro-
duced an independent uncore frequency. This allows to do so called Uncore Frequnecy Scaling
(UFS). The Haswell processor usually sets the uncore frequency automatically. But it is also
possible to control the uncore frequency by setting machine specific registers (MSRs).

3.1.1 Research summary

In order to investigate the effect of UFS and DVFS we created a modified version of the well-
known STREAM benchmark [8, 7]. To allow energy measurements we change the stream
benchmark to support the HDEEM measurement environment [4]. We are measuring the
energy consumption for different combinations of core and uncore frequencies using two dif-
ferent data array sizes. In the first case, shown in Figure 2 the data array is significantly
larger than the L3 processor cache. In the second case, shown in Figure 3 the size of the
data array was chosen to fit into the L3 cache of the processor. Both cases have a different
amount of repetitions. The energy consumption is therefore not directly comparable between

H2020-FETHPC-2014 8

READEX D1.1-Deliverable

de
fa

ul
t

1.
2

GHz

1.
3

GHz

1.
4

GHz

1.
5

GHz

1.
6

GHz

1.
7

GHz

1.
8

GHz

1.
9

GHz

2
GHz

2.
1

GHz

2.
2

GHz

2.
3

GHz

2.
4

GHz

2.
5

GHz

2.
6

GHz

2.
7

GHz

2.
8

GHz

2.
9

GHz

3
GHz

uncore frequency

1.2 GHz
1.3 GHz
1.4 GHz
1.5 GHz
1.6 GHz
1.7 GHz
1.8 GHz
1.9 GHz
2.0 GHz
2.1 GHz
2.2 GHz
2.3 GHz
2.4 GHz
2.5 GHz

turbo

co
re

 f
re

q
u
e
n
cy

50
51
51
52
52
53
55
56
58
59
60
61
63
64
70

66
67
68
69
70
71
74
77
79
81
83
86
88
91

104

62
63
64
65
66
67
69
72
74
76
78
80
83
85
97

59
60
60
61
62
63
66
68
70
72
74
76
78
80
92

56
57
58
59
60
61
63
65
67
69
70
72
74
76
87

54
55
56
56
57
58
60
62
64
66
67
69
71
73
82

52
53
53
54
55
56
58
60
61
63
64
66
68
70
78

49
50
51
52
52
53
55
57
59
60
62
63
65
67
75

47
48
49
50
50
51
53
55
56
58
59
60
62
64
72

46
47
47
48
49
49
51
53
54
55
57
58
60
61
69

45
46
47
47
48
48
50
52
53
54
56
57
59
60
67

45
46
47
47
48
48
50
52
53
54
55
56
58
59
67

46
46
47
48
48
49
50
52
53
54
56
57
58
60
67

46
47
47
48
49
49
51
52
54
55
56
57
59
60
67

47
47
48
49
49
50
52
53
54
55
57
58
59
61
68

48
48
49
50
50
51
52
54
55
56
57
59
60
62
69

48
49
50
50
51
51
53
55
55
56
58
59
60
62
69

49
50
50
51
51
52
53
55
56
57
58
60
61
62
69

49
50
51
51
52
52
54
56
57
58
59
60
62
63
70

50
51
51
52
53
53
55
57
58
59
60
61
63
64
71

Energy consumption in kJ

48

56

64

72

80

88

96

E
n
e
rg

y
 c

o
n
su

m
p
ti

o
n
 i
n
 k

J

Figure 2: Heatmap of the energy consumption of a stream benchmark for different core and
uncore frequencies. The data array does not fit in the processor’s L3 processor cache

de
fa

ul
t

1.
2

GHz

1.
3

GHz

1.
4

GHz

1.
5

GHz

1.
6

GHz

1.
7

GHz

1.
8

GHz

1.
9

GHz

2
GHz

2.
1

GHz

2.
2

GHz

2.
3

GHz

2.
4

GHz

2.
5

GHz

2.
6

GHz

2.
7

GHz

2.
8

GHz

2.
9

GHz

3
GHz

uncore frequency

1.2 GHz
1.3 GHz
1.4 GHz
1.5 GHz
1.6 GHz
1.7 GHz
1.8 GHz
1.9 GHz
2.0 GHz
2.1 GHz
2.2 GHz
2.3 GHz
2.4 GHz
2.5 GHz

turbo

co
re

 f
re

q
u
e
n
cy

2.9
2.9
2.8
2.8
2.7
2.6
2.6
2.6
2.6
2.6
2.6
2.7
2.7
2.8
3.0

3.0
3.0
3.1
3.1
3.1
3.2
3.3
3.5
3.6
3.7
3.9
4.0
4.2
4.3
5.0

2.9
2.9
2.9
2.9
2.9
3.0
3.1
3.3
3.4
3.5
3.6
3.8
3.9
4.0
4.8

2.8
2.8
2.8
2.8
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.7
3.8
4.4

2.8
2.7
2.7
2.7
2.7
2.7
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
4.2

2.8
2.7
2.7
2.6
2.6
2.7
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.5
4.0

2.7
2.7
2.6
2.6
2.6
2.6
2.7
2.8
2.8
2.9
3.0
3.1
3.2
3.3
3.8

2.7
2.7
2.6
2.6
2.5
2.5
2.6
2.7
2.8
2.8
2.9
3.0
3.1
3.2
3.7

2.8
2.7
2.6
2.6
2.5
2.5
2.6
2.6
2.7
2.8
2.8
2.9
3.0
3.1
3.5

2.8
2.7
2.6
2.6
2.5
2.5
2.5
2.6
2.6
2.7
2.7
2.8
2.9
3.0
3.5

2.8
2.7
2.6
2.5
2.5
2.5
2.5
2.6
2.6
2.6
2.7
2.8
2.9
2.9
3.3

2.8
2.7
2.6
2.6
2.5
2.5
2.5
2.6
2.6
2.6
2.6
2.7
2.8
2.9
3.3

2.8
2.7
2.6
2.6
2.5
2.5
2.5
2.5
2.6
2.6
2.6
2.7
2.7
2.8
3.2

2.9
2.8
2.7
2.6
2.5
2.5
2.5
2.5
2.6
2.6
2.6
2.6
2.7
2.8
3.1

2.9
2.8
2.7
2.6
2.6
2.5
2.5
2.5
2.6
2.6
2.6
2.7
2.8
2.8
3.1

3.0
2.8
2.7
2.7
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.7
2.7
3.1

3.0
2.9
2.8
2.7
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.7
2.7
2.7
3.0

3.0
2.9
2.8
2.7
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.7
2.7
2.7
3.0

3.1
2.9
2.8
2.7
2.7
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.7
2.7
3.0

3.1
3.0
2.9
2.8
2.7
2.6
2.6
2.7
2.6
2.7
2.6
2.7
2.7
2.8
3.0

Energy consumption in kJ

48

56

64

72

80

88

96

E
n
e
rg

y
 c

o
n
su

m
p
ti

o
n
 i
n
 k

J

Figure 3: Heatmap of the energy consumption of a stream benchmark for different core and
uncore frequencies. The data array does fit in the processor’s L3 processor cache, which
results in a different characteristic than in Figure 2.

H2020-FETHPC-2014 9

READEX D1.1-Deliverable

these figures. However, while the first case has an optimal configuration at a core frequency
of 1.2 GHz and an uncore frequency of 2.1 GHz, the second case has its optimum between a
core frequency of 1.5 GHz and 1.9 GHz and an uncore frequency between 1.8 GHz and 2.5
GHz. We conclude that application regions working on data that fits into the L3 cache have
a different optimal configuration than regions that access a large amount of DRAM memory.

3.1.2 Implemetation of the tuning plugin

We implemented and tested a parameter control plugin and a tuning plugin for both, the
core and the uncore frequencies. The UFS plugin uses the x86 adapt library [11] to set the
relevant MSR of the processor. The information about the controlling MSR is non-public
and available to us under an NDA agreement with Intel.

Both plugins allow the user to specify a frequency range that should be searched as well as
the size of each step. At the moment it is up to the user to define the search space. This
might change in coming versions of the READEX tool suite.

3.2 Dynamic Duty Cycle Modulation

Another parameter we wanted to investigate is a feature known as Dynamic Duty Cycle
Modulation (DDCM). This technique involves so-called T-states which instruct the processor
to statistically skip a user-defined number of clock cycles, i.e., between 12.5 % and 87.5 % of
the overall clock cycles for a given time period. We assumed that this could be beneficial in
program regions where not all cycles could be used effectively, e.g., memory- or I/O-bound
regions or MPI wait-states. Furthermore, we expected DDCM to suffer less from the switching
window introduced with the Haswell processor generation as described in Section 3.1

3.2.1 Research summary

Our experiments confirmed that DDCM can reduce the energy consumption. But on the
Haswell processor DVFS is more effective to achieve energy savings than DDCM. This is
mainly due to the per core P-States that where introduced together with the Haswell processor
generation. As DVFS does not only reduce the core frequency but also the core voltage it
is able to save more energy. For example skipping 87.5 % of the overall clock cycles has a
similar effect than reducing the processor frequency by 50 % using DVFS. Consequently, the
performance loss by using DDCM is much higher when we try to achieve the same power
savings. Also, a significant region in the READEX context is around 100 ms long. Therefore,
the switching window doesn’t have a significant impact on our tuning approach.

That’s why DDCM will no longer be considered in READEX.

H2020-FETHPC-2014 10

READEX D1.1-Deliverable

3.3 Energy Performance Bias

The Energy Performance Bias (EPB) is a setting that influences different energy efficiency
related features on the processor, e.g., the uncore frequency and the energy-efficient turbo [5].
The EPB can be changed using a MSR register, which offers 16 different settings. However,
accorind to Hackenberg et.al. [5], only three different settings are defined on the Haswell
processor, which can be represented by 0, 6 and 15. These settings map to the policies
performance, energy saving, and balanced. The remaining settings are mapped to these three
policies.

3.3.1 Research summary

1.
2

GHz

1.
3

GHz

1.
4

GHz

1.
5

GHz

1.
6

GHz

1.
7

GHz

1.
8

GHz

1.
9

GHz

2
GHz

2.
1

GHz

2.
2

GHz

2.
3

GHz

2.
4

GHz

2.
5

GHz

tu
rb

o

Core frequency

0

6

15

E
n
e
rg

y
 P

e
rf

o
rm

a
n
ce

 B
ia

s
(E

P
B

)

50.7

50.7

50.7

51.3

51.2

51.1

51.8

51.8

51.8

52.4

52.4

52.5

52.8

53.0

53.0

53.5

53.5

53.5

55.0

55.1

55.0

56.7

56.8

56.9

57.7

57.8

57.9

59.0

58.9

59.0

60.1

60.3

60.3

61.6

61.4

61.6

62.9

62.8

62.8

64.5

64.2

64.3

71.3

71.2

70.5

Energy consumption in kJ

52.5
55.0
57.5
60.0
62.5
65.0
67.5
70.0

Figure 4: Energy consumption of the STREAM benchmark for different core frequencies and
EPB settings.

We expected that changing the EPB can change parameters on the CPU that are not acces-
sible through software. Unfortunately, we realised that the savings that can be achieved by
changing the EPB are not as high as expected in our test cases. For example the STREAM
benchmark profits only a little from varying the policies as shown in Figure 4. As the memory
requirements of the benchmark can’t be fulfilled by the memory bandwidth, the processor
has a lot of stalls, which leads to a non optimal setting of the uncore frequency [5]. The core
frequency is set using the userspace governor. The most noticeable effect can be shown at
turbo frequency where the energy saving setting leads to a reduction of the turbo frequency,
which in turn leads to small energy savings.

3.3.2 Implementation of the tuning plugin

We assume, that in certain scenarios the EPB might still be able to achieve significant energy
reductions, e.g. if UFS is not available for the user. We therefore implemented a control and
a tuning plugin for the EPB. Both plugins are similar to the UFS plugin. It uses as well
the x86 adapt library [11] in order to set the related MSR from the userspace. As we want

H2020-FETHPC-2014 11

READEX D1.1-Deliverable

to be able to achieve most energy savings even on future processor, we decided to make all
16 settings for the EPB accessible to the user. Therefore, to use the plugin the user has to
specify a EPB range that should be searched as well as the size of each step.

3.4 Hardware Prefetcher

Hardware prefetching has proven to be efficient in many cases to hide the latency of moving
data to higher cache levels. However, in some cases it does not lead to any better performance,
mainly because the placement of data in caches is hardware defined, it may even induce lower
performance in some rare cases. These characteristics and the possibility to turn hardware
prefetching on and off makes it a candidate for energy saving in READEX.

Intel processors from Nehalem to Broadwell provide four types of hardware prefetchers. Two
of them are associated with the L1 data cache known as DCU. The other two prefetchers are
associated with the L2 cache. These are listed in Table 1. The counters can be turned on
and off through MSR registers. We use the X86 adapt library to do so.

Prefetcher Name Description

L2 hardware prefetcher Fetches additional lines of code or data into
the L2 cache

L2 adjacent cache line prefetcher Fetches the cache line that comprises a cache
line pair (128 bytes)

DCU prefetcher Fetches the next cache line into L1-D cache

DCU IP prefetcher Uses sequential load history (based on Instruc-
tion Pointer of previous loads) to determine
whether to prefetch

Table 1: Types of hardware prefetchers on Intel processors.

3.4.1 Research summary

In order to assess the impact of hardware prefetchers on energy consumption, we used a suite
of 27 diverse compute kernels written in Fortran and extracted from Numerical Recipes [10].
The kernels can be classified into six categories following their access patterns:

• 1D loop with stride one access (1D loop stride 1),

• 1D loop with diagonal access (1D loop stride CLDA),

• 1D loop with line wise access (1D loop stride LDA),

• 2D loop with stride one access (2D loop stride 1),

• 2D loop with diagonal access (2D loop stride LDA),

H2020-FETHPC-2014 12

READEX D1.1-Deliverable

Figure 5: Average increase in power consumption following the achieved speedup for different
data access patterns. The number of points collected for each case is noted on top of the
corresponding histogram

• 2D loop with triangular access (2DT loop stride 1).

In order to have reliable energy measurements using the HDEEM measurement environ-
ment [4], we inject a repetition loop around the main loop of each kernel to create an exe-
cution window sufficiently big for HDEEM to return stable and reliable energy consumption
measurements. Furthermore, for each kernel we run the experiments on several problem sizes
that cover the entire cache hierarchy. However, the fact that prefetchers are active does not
necessarily mean they are working. The hardware can still decide to shut them down. In
order to track the cases where the prefetchers are actually active and working, we detect the
cases where speedups have been achieved due to hardware prefetching.

Performance experiments revealed that for the entire suite, the only prefetcher that was not
neutral in terms of performance change is the L2 hardware prefetcher. The other prefetchers
did not induce any changes neither in performance nor in energy consumption. Therefore,
we only show results for this prefetcher.

Figure 5 illustrates for each of the six access pattern categories the average increase in power
consumption following the performance speedup achieved. From figure 5 we can make the
following observations: 1) The power increase is proportional to execution time speedup,
which means that either active prefetchers consume more power or lead to better use of
the core resources which induces more power consumption too. A mix between the two is
also possible. 2) Besides the stride one access pattern categories, the other categories are
composed mostly of small numbers of instable points. Therefore, we could not take them as

H2020-FETHPC-2014 13

READEX D1.1-Deliverable

0

5

10

15

20

25

30

35

40

 "OFF"

P
o

w
e

r
(J

/s
e

c)

hardware prefetchers state

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

5

10

15

20

25

30

35

40

 "OFF" "ON"

En
er

gy
 (

J)

P
o

w
er

 (
W

)

L2 hardware prefetcher state

Power Energy

Figure 6: Comparison between the total energy consumed to finish kernel execution and the
power consumption for the Elmhes 10 kernel when data are in RAM

reliable results, we may also conclude from this that it is likely that prefetchers are set to
target stride one accesses.

However, in all our experiments we observed that the decrease in execution time reduces the
overall energy consumption of the kernels. Figure 6 is an example of such case, where it
illustrates a comparison between power and energy in the case where a speedup is achieved.
From the figure, we can see an average increase of 9% in power consumption for the Elmhes 10
kernel when the prefetchers are active, but a reduction of execution time which led to 64%
of decrease in total energy consumption.

Consequently, we concluded that there is no need for us to control hardware prefetchers as
we noticed that they can be either neutral both for performance and energy or beneficial for
the two of them.

H2020-FETHPC-2014 14

READEX D1.1-Deliverable

4 System Software Parameters

The majority of scalable HPC applications employ the Message Passing Interface (MPI) for
distributed memory parallelism. Many HPC applications now are also employing OpenMP
to target thread-level parallelism as part of a so-called hybrid model. Due to their widespread
adoption within the HPC community, both of these programming models are investigated in
the READEX project.

4.1 MPI

Tuning of MPI implementations for different HPC environments is a well-known topic. Most
HPC centres have a unique combination of computing hardware and network hardware.
Therefore, the used MPI implementation needs to be tuned to reach the best possible band-
width. But the MPI environment cannot just be optimised to a certain hardware configuration
but to different programs as well. A. Sikora et. al. [12] showed that it is possible to improve
performance of a program using an automatic static tuning approach.

The MPI 3.0 standard has introduced the so-called MPI-T interface that allows MPI im-
plementations to offer a set of parameters that can be read and written by the user during
runtime. These are so called CVars. They are allowing us to do dynamic tuning as well. We
initially focus our investigation on the latest version of the well-known open source MPICH
implementation [1] of MPI, which offers the largest and most relevant set of parameters for
runtime tuning. For example, MPICH exposes the definition of short and long messages for
many MPI commands as well as parameters influencing shared memory operations.

4.1.1 Research summary

As outlined in Deliverable 4.1, we investigated parameters for the MPI commands MPI_Reduce
and MPI_Alltoall. The commands represent so-called collective communication operations.
Relative to direct point-to-point communication between two MPI processes, collective oper-
ations are more expensive, as more processes are involved. For example, MPI_Reduce collects
results from different given processes and can carry out different calculations, e.g. it is pos-
sible to determine the minimum of a value from all processes. However, the parameters we
investigated can be found in Table 2.

During our experiments we realised that some parameters just have an effect, if other param-
eters are set or unset. For example, changing MPIR_CVAR_REDUCE_SHORT_MSG_SIZE has only
an effect if ENABLE_SMP_REDUCE is set to 0, which means it is disabled. The results are shown
in Figure 7. We used two nodes with 24 MPI processes each. It can be seen that there is an
effect if we modify MPIR_CVAR_REDUCE_SHORT_MSG_SIZE. In detail the parameter influences
the decision about the used reduction algorithm. While large messages do not profit from
tuning, the results for small messages are not unambiguous.

H2020-FETHPC-2014 15

READEX D1.1-Deliverable

Table 2: MPI tuning parameters to be further investigated.

Tuning Aspect Tuning Parameter
(MPIR_CVAR_*)

Description

MPI Reduce

REDUCE_SHORT_MSG_SIZE The short message algorithm will be used if
the send buffer size is ≤ this value (in bytes)

ENABLE_SMP_REDUCE Enable SMP aware reduce

MAX_SMP_REDUCE_MSG_SIZE Maximum message size for which SMP-
aware reduce is used. A value of ’0’ uses
SMP-aware reduce for all message sizes

MPI Alltoall

ALLTOALL_SHORT_MSG_SIZE The short message algorithm will be
used if the per-destination message size
(sendcount*size(sendtype)) is ≤ this
value

ALLTOALL_MEDIUM_MSG_SIZE The medium message algorithm will be used
if the per-destination message size (send-
count*size(sendtype)) is ≤ this value and
larger than the short message size

Messages with sizes of about 64 Byte show an optimal configuration of 0 or 4 for
MPIR_CVAR_REDUCE_SHORT_MSG_SIZE. A closer look shows that there are huge variations over
the 20 taken measurements, which can be seen in Figure 8. Each measurement consists of
16384 MPI_REDUCE operations for messages with the length of 64 Bytes. As the results are as
unstable and don’t have any additional value, we decided to not present energy measurements
or further MPI parameter results in this Deliverable.

Although our measurements don’t look as promising as we had hoped, we will do further
investigations for these MPI parameters. We are expecting real world applications to behave
different as our benchmark is hardly able to cover real world effects like latency. To do so we
need a prototype of the READEX tool suite, which allows us dynamic tuning. Unfortunately,
this prototype is not available at the time this Deliverable is written, as the alpha is scheduled
at the end of Project Month 18.

4.1.2 Implemetation of the tuning plugin

We implemented a control plugin and a tuning plugin for the MPIT CVars. The tuning
plugin allows to specify the CVar that the user likes to change as well as the value to set.
Unfortunately, the set of available CVar parameters can vary between different MPI imple-
mentations or even versions of these implementation. Moreover, the current static PTF API
does not allow flexible choosing of tuning parameters. Therefore, we decided to design a user

H2020-FETHPC-2014 16

READEX D1.1-Deliverable

0 8 16

32

64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

Values for MPIR_CVAR_REDUCE_SHORT_MSG_SIZE

8

16

32

64

128

256

512

1024

2048

4096

8192

M
e
ss

a
g
e
 s

iz
e
 i
n
 B

y
te

19k

739k

2M

12M

42M

15M

146M

486M

572M

517M

397M

16k

483k

743k

4M

40M

15M

158M

664M

675M

653M

477M

32k

310k

583k

11M

21M

16M

164M

644M

664M

633M

474M

15k

189k

812k

8M

42M

16M

161M

649M

674M

648M

476M

10k

417k

247k

12M

41M

15M

160M

662M

672M

634M

470M

20k

184k

332k

14M

48M

15M

160M

665M

663M

632M

473M

19k

376k

1M

9M

45M

16M

160M

667M

672M

627M

472M

25k

200k

781k

10M

47M

15M

145M

667M

666M

628M

470M

22k

262k

2M

13M

38M

15M

146M

484M

665M

649M

476M

27k

494k

77k

14M

47M

15M

145M

481M

564M

651M

477M

14k

527k

1M

13M

49M

15M

146M

478M

564M

517M

473M

12k

490k

639k

15M

49M

16M

147M

470M

562M

516M

391M

Bandwidht of MPI_Reduce in bytes per second
MPIR_CVAR_ENABLE_SMP_REDUCE = 0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

1e8

Figure 7: MPI Reduce bandwidth for different settings of
MPIR CVAR REDUCE SHORT MSG SIZE, the SMP-awareness is disabled.

interface that is as flexible as possible. In the current implementations of the plugin, the
user has to specify each parameter he would like to tune and to implement these CVar in the
parameter control plugin. To make this as easy as possible to do, we built a C++ abstraction
around the MPIT CVar interface.

4.2 OpenMP

The OpenMP standard offers users a way to implement thread-parallelism through directives,
which are translated by the compiler into thread-parallel code. For example, one of the most
commonly used OpenMP parallelisation technique is offered by the OpenMP parallel-for

directive. The directive allows the distribution of all iterations of a loop among a defined
number of threads. At the same time, the OpenMP standard provides an API to control the
behaviour of the OpenMP runtime library like the number of threads or the scheduler policy.

Setting the number of threads to a number lower than the amount of processor cores in a
system allows unused processor cores to reduce their C-state. In detail, the core changes from
the active C0 state into any of the power-saving states C1–C6, in which no computation can

H2020-FETHPC-2014 17

READEX D1.1-Deliverable

0 5 10 15 20

Iteration

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

B
a
n
d
w

d
id

th
 i
n
 B

y
t/

s

MPIR_CVAR_REDUCE_SHORT_MSG_SIZE = 8

0 5 10 15 20

Iteration

MPIR_CVAR_REDUCE_SHORT_MSG_SIZE = 512

MPI_Reduce bandwidth for different settings of MPIR_CVAR_REDUCE_SHORT_MSG_SIZE
 message size is 64 Bytes

Figure 8: MPI Reduce bandwidth for a message size of 64 Byte.
MPIR CVAR REDUCE SHORT MSG SIZE is set to 8 (left) or 512 (right). We can
see that there is a huge variation of the bandwidth over the 20 measurements. Therefore,
the results are not reliable.

be performed [6, 11]. The C-States differ from each other in how fast they can be woken up,
and how much power can be saved by using them. Thus, reducing the number of threads
and letting a subset of the available cores go into a sleep-state can improve energy efficiency.
Changing the workload scheduler policy can also be used to optimize the energy efficiency
by controlling the distribution of work among the threads. This can have a positive impact
if not all loop iterations require the same amount of computational work.

4.2.1 Research summary

Besides the number of threads, we changed the scheduler policy as well as the chunk size.
We executed a few experiments for the NPB BT-MZ benchmark which showed that there is
some effect on the energy consumption depending on the number of threads.

Figure 9 shows that there is an energy optimum for the auto scheduler at around 10 threads.
This saves up to 35% against the case that uses the maximal number of cores using the
same scheduler. However, as the READEX prototype is not available at the time when this
Deliverable is written, we are not able to evaluate the dynamic saving potential.

4.2.2 Implemetation of the tuning plugin

We implemented a parameter control plugin and a tuning plugin. The tuning plugin allows
the user to specify the number of threads, which he likes to search. Moreover, the plugin
itself changes the scheduler policy according to the available policies specified in the OpenMP
specification [2]. Finally, the tuning plugin is able to change the chunk size, which is associated
to the scheduler.

H2020-FETHPC-2014 18

READEX D1.1-Deliverable

2 4 6 8 10 12 14 16 18 20 22 24

Threads

static

dynamic

guided

auto

S
h
e
d
u
le

rs

0.36

0.34

0.34

0.33

0.26

0.22

0.22

0.21

0.23

0.19

0.19

0.17

0.22

0.18

0.18

0.15

0.21

0.16

0.16

0.14

0.22

0.17

0.18

0.14

0.23

0.19

0.19

0.14

0.25

0.20

0.20

0.16

0.26

0.21

0.21

0.16

0.28

0.23

0.23

0.18

0.29

0.24

0.24

0.19

0.31

0.26

0.26

0.20

Energy consumption in kJ

0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

Figure 9: Different OpenMP scheduler policies for a different number of threads. The chunk
size is set to 256.

H2020-FETHPC-2014 19

READEX D1.1-Deliverable

5 Application Parameters

The idea behind READEX is to exploit the dynamicity available inside the application and
use it to reduce its energy consumption. The approach to exploit this dynamicity can be
subdivided into two main categories:

1. code-agnostic approach, which includes hardware and system level parameters discussed
in Sections 3 and 4 and

2. code-aware approach, which is discussed in the current section.

In the first category, no advanced knowledge on the application code itself, what it does or
what algorithms are used, is necessary. Profiling techniques on the application are sufficient
to detect and define the hints to exploit dynamicity. On the other hand, code-aware approach
involves both automatic exploration and the knowledge of the application developer. In this
case, the developer himself can give the tool hints, to find spots where dynamicity can be
exploited.

5.1 Application Level Tuning

A few examples of the spots that can be exploited for tuning are the possibilities:

• to choose different code paths (types of iterative and direct solvers, preprocessing of
stiffness and coarse problem (CP) matrices) correspond to cases where the developer
identifies more than one way to solve his problem. This results in different pieces of
code to choose from. What he does not know is what their characteristics are and how
they can be exploited for energy tuning.

• to control problem decomposition (number of subdomains, cache blocking, . . .).

• to give hints on data structures (array length, access strides, indirections, . . .).

5.2 Parameter Exploitation Scenarios

Our enumeration of possible types of application parameters and early experiments allowed
us to think so far of two approaches for the exploitation of application parameters offline and
online which we describe below.

5.2.1 Offline Approach

In the offline approach, the different alternatives are known before the execution of the
application. The selection between these alternatives can be static (before execution) or
dynamic (during execution), each of these two approaches has advantages and drawbacks:

H2020-FETHPC-2014 20

READEX D1.1-Deliverable

Figure 10: Example of possible space of values for a parameter P and the subdomains in
which the code paths C{1, 2, 3, 4, 5} apply.

• Static: the chosen code paths are set before the application is compiled. This can be
done through pragmas which will be inserted in the source code. The approach has the
advantage of letting the compiler optimize the code more efficiently. Although, in this
approach a default path must be defined in order to allow the code to compile without
any knowledge of the alternate code paths.

• Dynamic: the selection of a code path is done dynamically during code execution. The
READEX tools suite must instruct the code where to branch, and communicate with
the application. Compared to the static method, no recompilation of the application is
needed, which can in some heavy applications save time.

As the names already imply only the second approach would fit into the READEX method-
ology. It would allow to choose the most energy efficient code path during runtime.

A benefit of the offline approach is that the different possible code paths are already known
during the Design Time. Therefore it would not lead to any unforeseen situations at runtime.

5.2.2 Online Approach

In the online approach, the search space of the parameters is not known before the execution
of the application but discovered or calculated at runtime, therefore the selection is done at
runtime too.

We can imagine the case of a region of the code which has access to different call paths that
return the same result at the application level. The developer of the application can define a
parameter P whose value will drive the choice of the code path Ci. The parameter P belongs
to a space of values, e.g. Figure 10.

That space can be divided into regions, which contains a finite number of call paths. This
imposes a certain degree of flexibility on the parameter passing mechanism. The separation

H2020-FETHPC-2014 21

READEX D1.1-Deliverable

Figure 11: Possible parameter communication scenarios between the application and the
READEX tool suite

between what the user should supply and what the toolset can do is important. We therefore
identify two notable scenarios for interactions between the application and the READEX tool
suite in order to handle application level parameters illustrated in Figure 11.

Scenario 1 could lead to unforeseen situations during runtime when the parameter P takes
values during run time which haven’t been seen at design time. Scenario 2 would avoid this
and offload the responsibility to compute the possible range for P to the user. However, both
methods are valid for READEX.

5.2.3 Summary and Outlook

The implementation of the Application Parameters switching mechanism is still in the design
phase. In the previous section, we outlined a few possibilities with different benefits and
drawbacks. The goal for the READEX Tool Suite is to find an implementation which is easy
to use and offers the user the flexibility he needs at the same time. We therefore decided
to spend more time on designing the switching mechanism. Deliverable 1.2 at the end of
Project Month 24 will present a tuning mechanism, which will allow the developer to tune
his application according to his needs. Moreover, it will show different results for energy
savings we achieved using this mechanism from our partner programs.

H2020-FETHPC-2014 22

READEX D1.1-Deliverable

6 Summary

In this Deliverable we give an overview about the implementation of the READEX tool
suite from the parameter perspective. We described the integration of the parameter control
plugins inside the READEX tool suite and give an impression of the interaction between the
different components.

Thereafter, we outlined our expectations and the findings about the different parameters.
We started with the hardware parameters and outlined why it is worth to further investigate
parameters like Dynamic Voltage and Frequency Scaling, Uncore Frequency Scaling or the
Energy Performance Bias. Moreover, we showed why we put certain features like dynamic
duty cycle modulation or hardware prefetcher aside for the moment.

The system software parameter section described our findings about MPI and OpenMP.
Again a short outline of the implementation of tuning plugins and parameter control plugins
is given.

Finally, we showed how we would like to provide the user an interface, which allows tuning
decisions even in the application space.

The major work on the hardware and system software parameters is done. But as the
project is still in an early stage we expect further findings and changes to both of these
topics. We have to re-evaluate some hardware and system software parameters once the first
prototype of the dynamic READEX tool suite is available. Additionally, it might happen
that some of the tuning plugins will be rewritten, according to changing requirements. Also,
the application parameters have to be implemented, which might involve huge changes in
tools like PTF or Score-P. The final implementation of the application parameters will be
outlined in Deliverable 1.2.

H2020-FETHPC-2014 23

READEX D1.1-Deliverable

References

[1] MPICH. https://www.mpich.org/. Last accessed February 10, 2016.

[2] Openmp application program interface. http://www.openmp.org/mp-documents/

OpenMP4.0.0.pdf.

[3] Documentation about energy measurement infrastructure at Taurus phase 2. https:

//doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/EnergyMeasurement,
Last accessed July 13, 2016.

[4] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W.E. Nagel, M. Simon, and Y. Geor-
giou. HDEEM: High Definition Energy Efficiency Monitoring. In Energy Efficient Su-
percomputing Workshop (E2SC), Nov 2014. DOI: 10.1109/E2SC.2014.13.

[5] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer. An energy
efficiency feature survey of the Intel Haswell processor. In Parallel and Distributed
Processing Symposium Workshop (IPDPSW), 2015 IEEE International, May 2015. DOI:
10.1109/E2SC.2014.13.

[6] N. Kurd, M. Chowdhury, E. Burton, T P Thomas, C. Mozak, B. Boswell, P. Mosalikanti,
M. Neidengard, A. Deval, A. Khanna, et al. Haswell: A family of IA 22 nm processors.
Solid-State Circuits, IEEE Journal of, 50(1), 2015. DOI 10.1109/JSSC.2014.2368126.

[7] John D. McCalpin. Stream: Sustainable memory bandwidth in high performance com-
puters. Technical report, University of Virginia, Charlottesville, Virginia, 1991-2007. A
continually updated technical report. http://www.cs.virginia.edu/stream/.

[8] John D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, December 1995. http://tab.computer.org/tcca/NEWS/DEC95/

dec95_mccalpin.ps.

[9] Joshua Peraza, Ananta Tiwari, Michael Laurenzano, Laura Carrington, and Allan
Snavely. PMaC’s green queue: a framework for selecting energy optimal DVFS con-
figurations in large scale MPI applications. Concurrency and Computation: Practice
and Experience, 2013. DOI: 10.1002/cpe.3184.

[10] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes in FORTRAN; The Art of Scientific Computing. Cambridge University
Press, New York, NY, USA, 2nd edition, 1993.

[11] Robert Schöne and Daniel Molka. Integrating performance analysis and energy efficiency
optimizations in a unified environment. Computer Science - Research and Development,
29(3-4), 2014. DOI: 10.1007/s00450-013-0243-7.

H2020-FETHPC-2014 24

https://www.mpich.org/
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/EnergyMeasurement
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/EnergyMeasurement
http://dx.doi.org/10.1109/E2SC.2014.13
http://dx.doi.org/10.1109/E2SC.2014.13
http://dx.doi.org/10.1109/E2SC.2014.13
http://dx.doi.org/10.1109/JSSC.2014.2368126
http://www.cs.virginia.edu/stream/
http://tab.computer.org/tcca/NEWS/DEC95/dec95_mccalpin.ps
http://tab.computer.org/tcca/NEWS/DEC95/dec95_mccalpin.ps
http://dx.doi.org/10.1002/cpe.3184
http://dx.doi.org/10.1007/s00450-013-0243-7

READEX D1.1-Deliverable

[12] Anna Sikora, Eduardo César, Isáıas Comprés, and Michael Gerndt. Autotuning
of mpi applications using ptf. In Proceedings of the ACM Workshop on Software
Engineering Methods for Parallel and High Performance Applications, 2016. DOI:
10.1145/2916026.2916028.

[13] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced
CPU energy. In Tomasz Imielinski and Henry F. Korth, editors, Mobile Computing,
volume 353 of The Kluwer International Series in Engineering and Computer Science.
Springer US, 1996. DOI: 10.1007/978-0-585-29603-6 17.

H2020-FETHPC-2014 25

http://dx.doi.org/10.1145/2916026.2916028
http://dx.doi.org/10.1145/2916026.2916028
http://dx.doi.org/10.1007/978-0-585-29603-6_17

	Introduction
	Experiment Platform

	Integration in the READEX Tool Suite
	Hardware Parameters
	Dynamic Voltage and Frequency Scaling and Uncore Frequency Scaling
	Dynamic Duty Cycle Modulation
	Energy Performance Bias
	Hardware Prefetcher

	System Software Parameters
	MPI
	OpenMP

	Application Parameters
	Application Level Tuning
	Parameter Exploitation Scenarios

	Summary

