

Domain Knowledge Specification for Energy Tuning

Anamika Chowdhury, Madhura Kumaraswamy, Michael Gerndt Technical University of Munich (TUM)

OVERVIEW	 Switching between configurations by exploiting dynamic characteristics dynamically for improved energy efficiency and performance. Develop tool aided auto-tuning methodology. Compute better configuration by specifying domain knowledge (DKS). 	DKS	Region Specification Dynamism Detection Identifier Specification ATP Specification
THE READEX TOOL-SUITE	 Design-Time Analysis Detect program regions having variations in characteristics. Determine best configurations for different runtime situations (RTS's) of the detected regions . Classify RTS's based on similar configurations into scenarios. Encapsulate the scenario information into a tuning model. Runtime Application Tuning Propagate the generated tuning model for the production run. Switched between optimized configurations during production runs. The READEX Runtime Library reads and applies the tuning model. 	DKS WORKFLOW DESIG	Select input Design-time Analysis no More input? yes Application Tuning model • Performed by the Periscope Tuning Framework (PTF) • Tunes performance and energy. • Evaluates alternatives online.
DKS OVERVIEW	 Improve tuning model Distinguish more RTS's based on identifiers region identifiers, phase identifiers input identifiers Identifying RTS's , phases and inputs with different characteristics Application Tuning Parameter Application specific tuning knobs 	DESIGN-TIME ANALYSIS	 Supports different tuning strategies. The READEX Tuning Plugin Multiple objectives. Configurable search space via READEX configuration file. Tuning Parameters: core freq, uncore freq, no. of threads Experiments for selected configurations Energy and time measured for all RTS's. Identification of static best for phase and specific best configurations for RTS's

MOTIVATI EXAMPLE	Preconditioner	# of iterations	1 ite (Time	ration Energy)	Sc (Time	olution Energy)
ATV A	None	172	125 ms	31.6 J	21.36 s	5 501.31 J
/ATI PLE	Weight function	100	130+2 ms	32.3+0.53 J	12.89 s	3 284.07 J
ONAL (ATP)	Lumped	45	130+10 ms	32.3+3.86 J	6.32 s	1 636.11 J
IAL FP)	Light dirichlet	39	130+10 ms	32.3+3.74 J	5.46 s	1 409.82 J
	Dirichlet	30	130+80 ms	32.3+20.62 J	6.34 s	1 594.50 J

MORE

 Funded by the European Union's Horizon 2020

Grant agreement no. 671657

- <u>www.readex.eu</u>
- www.researchgate.net/project/READEX
- Contact: <u>Robert.schoene@tu-dresden.de</u>