
lo2s – Multi-Core System and Application
Performance Analysis for Linux

Thomas Ilsche, Robert Schöne, Mario Bielert, Andreas Gocht, Daniel Hackenberg
Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden, 01062 Dresden, Germany

{firstname.lastname}@tu-dresden.de

Abstract—In this paper we present lo2s – a lightweight
performance monitoring tool to sample applications as well as the
executing system. It enables the user to analyze the performance
of a parallel application without requiring the time-consuming
and error-prone process of application instrumentation. The
collected performance data is complemented with various metric
data, i.e., perf counters, kernel tracepoints, model specific regis-
ters, and custom metric data provided by plugins. Comprehensive
visualization is enabled by compatibility with established tools.

I. INTRODUCTION

Performance analysis is the foundation for any optimization

of a sufficiently complex code. Since performance depends on

both the application and the executing system, a performance

analysis tool should ideally cover both aspects. Further, the

usability of a performance analysis tool depends heavily on

the effort required to apply it to an application. lo2s uses a

nonintrusive monitoring approach – there is no need to modify

or recompile the user application. The monitored application is

simply executed with a prefix-command. lo2s is independent

of the application’s parallel paradigm or programming language.

Furthermore, lo2s allows users to analyze performance

anomalies in relation to the hardware or operating system.

Traces are stored in the Open Trace Format 2 (OTF2) that

can be used in an offline analysis by existing performance

analysis tools. In particular, we use the established scalable

trace visualizer Vampir [8] in conjunction with lo2s.
In Section II, we give a overview of how lo2s fits the

landscape of performance monitoring tools. The current imple-

mentation state regarding the process and system monitoring

features of lo2s is described in Section III and Section IV

respectively. Section V gives an overview about additional

metrics that can be included in the analysis. Section VI

describes the capabilities of the tool on the basis of two use

cases. We conclude with a summary and description of future

developments in Section VII.

II. RELATED WORK

Performance monitoring tools can be classified based on

how they implement the three stages of performance analysis:

data acquisition, data recording, and data presentation [6].

HPCToolkit [4] is a performance analysis tool suite that

focuses on sampling of parallel applications, supporting MPI

and OpenMP. It uses summarization to provide performance

profiles. Moreover, a timeline view based on logging is

available. HPCToolkit includes information from call stack

samples which are processed in userspace with sophisticated

unwinding techniques and PAPI performance counters.

Linux itself includes perf [3] – a set of tools that utilize

the perf_event_open [1] infrastructure. These powerful

tools cover a wide range of performance related information

that is available to the operating system. Available features

include performance counter based sampling, certain instru-

mentation points, logging to record the collected information,

and visualization as textual profiles. However, perf uses a

monolithic file-format and lacks a scalable and user-friendly

way to analyze and visualize the resulting timelines. Previously,

we have used perf for performance monitoring and converted

the resulting trace into a different file format that allowed the

usage of timeline visualization tools [11]. OProfile [2] is a non-

intrusive statistical profiler built on the perf_event_open
infrastructure. It supports low-overhead system-wide and single

process monitoring, but is limited to aggregated profiles only.

With lo2s, we use the underlying perf_event_open
infrastructure and write traces directly as OTF2. This avoids the

additional conversion step and allows us to leverage additional

information sources that are not accessible to the perf tools.

While perf record uses one monitoring thread and writes

a monolithic trace, lo2s uses separate monitoring threads for

each application thread or logical CPU that is being observed.

OTF2 being a parallel trace format consists of separate files

that are written independently by each monitoring thread

without any synchronization. Therefore our approach is scalable

within one node, as no additional synchronization overhead is

introduced.

III. PROCESS MONITORING

Usually, lo2s monitors a specific process group. It can

either start a specific program acting as a prefix-command,

or attach to an already running process. All forked processes

or child threads inherit the monitoring, which is achieved by

using ptrace on all monitored tasks. This allows lo2s to

be independent of the specific parallelization paradigm and

runtime. As soon as a new thread (tracee) is forked, lo2s

registers a monitoring thread (tracer) that collects metrics and

call stack samples for the tracee.

lo2s supports instruction based sampling via the Linux

perf_event_open interface [1]. The sampling is triggered

via a configurable per-thread instruction counter overflow. The

2017 IEEE International Conference on Cluster Computing

2168-9253/17 $31.00 © 2017 IEEE

DOI 10.1109/CLUSTER.2017.116

801

default interval of 11010113 instructions is chosen as a trade-off
between overhead and granularity. We chose a prime number

to avoid aliasing effects on repetitive instruction execution in

tight loops. Each sample includes the current instruction pointer

and optionally a call stack. The call stack is only available if

frame pointers are not omitted. The sampling itself is setup

independently for each tracee with individual memory buffers.

By collecting the call stack samples in the kernel, a context

switch into userspace monitoring code is avoided. This leads to

a reduced per-sample overhead, a distinct advantage of using

the perf_event_open infrastructure.

In regular intervals, the buffer used by the kernel is

converted to OTF2 events. Additionally, lo2s records per-

thread metrics during the buffer flushes. By default it collects

a number of metrics reflecting the activity on different levels

in the cache/memory hierarchy. During monitoring, there is

no explicit synchronization among the monitoring threads,

but the call-stack processing is synchronized using a timer.

The simultaneous perturbation of the tracee threads reduces

the impact of measurement noise on tightly coupled parallel

applications.

During the execution, only the current instruction or call

stack is recorded as a OTF2 CallingContextSample.
Resolving the identifier of this CallingContextSample
based on the call stack of instruction pointers is done by

traversing a local tree of instruction pointers. At the end

of the instrumented run, the local trees are merged and the

local identifiers are mapped to global ids. Further, for each

instruction pointer, the corresponding symbol is resolved and

the corresponding instruction is disassembled. To do so, the

corresponding binary file and offset from each instruction

pointer needs to be determined. This is done by recording

mmap events with perf_event_open and combining that

information with /proc/$pid/maps. Unfortunately, either
one alone is not sufficient. Within each binary object file,

lo2s uses libbfd to resolve the symbols and libradare
to disassemble instructions.

Generally lo2s is agnostic to the programming language.

However, for applications that run within a virtual machine like

Python or Java, the mapping of instructions to symbols will

be made to the virtual machine rather than the user program.

Process monitoring can be used without special permis-

sions. In order to have kernel sampling events in the trace,

perf_event_paranoid should be at most 11. To attach

to a running process, ptrace_scope should be disabled2.

IV. SYSTEM MONITORING

The second mode of operation of lo2s is a node-level

system monitoring. Using this mode, lo2s records when which

task was scheduled on a per-core basis. This information is

retrieved from the sched/sched_switch tracepoint event.

This event reveals whenever the kernel scheduler switches

between two tasks, from idle or to idle. Similarly to the process

1sudo sysctl kernel.perf_event_paranoid=1
2sudo sysctl kernel.yama.ptrace_scope=0

monitoring, each event is written into a buffer. There is a

dedicated thread for each logical CPU, which is also pinned

to this CPU.

The event buffer is only read and converted to OTF2, when

its occupation reaches 80% or the monitoring is completed.

Otherwise each CPU monitoring thread idles indefinitely within

a call to poll, allowing an unperturbed measurement. An

additional tracepoint, sched/sched_process_exit, is
used to assign a command string to each process id3.

System monitoring with lo2s requires administrative per-

missions or a perf_event_paranoid of −1 as well as

user read access to /sys/kernel/debug/tracing/.

V. ADDITIONAL METRICS

In both monitoring modes, lo2s can enhance the trace with

additional metrics, i.e. tracepoint events, x86_adapt knobs,

and Score-P plugin metrics. The process monitoring mode

further supports per-thread perf metrics (cf. Section III).

a) Tracepoints: Besides the tracepoints used to gather

task scheduling information, lo2s can take advantage of the

large amount of other tracepoints that are already instrumented

in the Linux kernel. For any given tracepoint event, lo2s will

record all fields with a numerical value as a metric in the trace.

As an example, power/cpu_idle will include information

about the selected idle state by the Linux idle governor.

Tracepoints provide valuable insight into the interactions

between applications and the operating system.

b) x86_adapt: Generic hardware specific information

can be integrated through x86_adapt [10]. The x86_adapt

library and kernel module provides access to model specific

registers (MSRs) that give in-depth insight into hardware

specific performance information. This is particularly useful

for new systems that run kernel versions that do not (yet)

implement a specific interface to newly introduced hardware

performance information.

c) Plugins: Finally, lo2s provides a plugin interface

that is compatible with metric plugins [12] written for the

Score-P [9] measurement infrastructure. This leverages a pool

of existing plugins such as asynchronous PAPI recording or

CPU energy counters4. Currently, the support is limited to

plugins, which can be asynchronously recorded per host.

VI. USE CASES

In this section, we describe typical use cases for lo2s on

a dual socket Intel Xeon E5-2690 v3 system running Ubuntu

16.04 Server.

A. Instruction based energy modeling

Initially, lo2s had been designed to support instruction

based energy models. This is done by providing perf counters

for accesses to the different memory levels, statistics about

processor usage, and the assembly of the executed instruction at

each sample. The energy model assigns costs to each memory

3The command string associated with a process can change over time
through calls to exec. The last one upon exit is usually the most meaningful.

4https://github.com/score-p

802

(a) 270 ms window (approx. one main loop iteration) of the OpenMP parallel version

(b) 160 ms window (approx. one main loop iteration) of the MPI parallel version

Figure 1: Vampir performance analysis of a BT benchmark on a dual-socket Intel Xeon E5-2690 v3 system.

access and instruction type as well as keeping the processor

active. Based on the recorded trace, the model can estimate

the energy cost for phases of application execution.

B. Application performance analysis
As a traditional HPC use-case we monitor the NAS parallel

benchmark BT, parallelized with OpenMP [5]. Figure 1a shows

a Vampir visualization of the resulting trace. The upper left

represents the stack of the main thread over the time of one

iteration, which consists of five parallel regions. The three

solve functions exhibit a higher IPC rate, which leads to

more frequent samples, as shown by the ticks on the top of

the stack view. Supportive functions with a short runtime are

colored gray. Under the stack, we show a time-series profile,

which visualizes the estimated runtime share of each function

for all threads based on the sampling hits. At the bottom left,

we show the power consumption of the two sockets, which is

included through a metric plugin. The increasing runtime share

of the OpenMP library at the end of each phase, indicates an

workload imbalance among the threads. This imbalance leads

to a reduced power consumption whenever the threads wait

for synchronization. The bottom-right chart show an exclusive

function profile for the displayed time span.
Figure 1b shows the same application using MPI paralleliza-

tion. The top timeline is colored by the sampled function

for each of the 16 processes above the time-series profile of

one iteration. The structure of the iteration is similar to the

OpenMP version. However, the communication is explicit using

OpenMPI function that are colored red. The timeline reveals

three MPI synchronization phases within each of the solve
functions and another MPI synchronization after each of these

phases.

C. Combined system and process monitoring

Figure 2 shows the parallel build process of a C++ applica-

tion as observed with both lo2s operation modes. The system

monitoring is used to track the scheduling of processes on the

CPUs of the machine. This includes the processes spawned by

make, e.g., cc1plus, ar, and ld, but also lo2s itself. The

process monitoring traces make and its child processes, which

provides information about the lifetime of tasks involved in

the build process. In the first ten seconds, the timeline shows

a good saturation of processing resources with compilation

tasks. After that the occupation of the CPUs goes down, as

the dependencies between compilation units prevent a further

parallel build.

D. Idle sleep state optimization

In [7], we describe a weakness in the Linux kernel idle

governor, which leads to an insufficient use of idle sleep states

and thus increased power consumption, so called Powernight-
mares. For the analysis of this effect, we used the system

monitoring of lo2s with different kernel tracepoints, some of

which we have added to the used build of the Linux kernel.

The recorded tracepoints provided information about the idle

governor, in particular about the internal state, intermediate

heuristical decisions, and the chosen C-State. We traced the

system during idle and with a synthetic workload, which

803

reproducibly trigger Powernightmares. With this setup, we

were able to find the cause of the problem, propose a solution,

and demonstrate its effectiveness.

VII. CONCLUSION AND FUTURE WORK

We presented a novel lightweight performance analysis

tool that gives detailed insight into both application and

system performance. We demonstrated the different features

with a traditional HPC benchmark and a parallel compi-

lation workflow. The monitoring tool is available as open

source and we encourage comments and contributions at

https://github.com/tud-zih-energy/lo2s.
The versatility of Linux monitoring presents many opportu-

nities for enhancements. As a next step, we will leverage the

full range of available perf metrics as configurable alternative

to the current predefined set of counters. Further, we want to

improve the possibilities of simultaneously collecting system

and process monitoring information. Performing sampling on

CPUs rather than threads would also improve the system

monitoring, but contradicting information from instruction

sampling and scheduling events due to race conditions and

timer inaccuracies have to be handled gracefully. We hope to

establish lo2s as a useful tool for comprehensive node-level

performance analysis and with the future possibility of merging

traces from multiple nodes even beyond that.

ACKNOWLEDGMENTS

This work is supported in part by the German Research

Foundation (DFG) within the CRC 912 - HAEC and by the

European Union’s Horizon 2020 program in the READEX

project (grant agreement number 671657).

REFERENCES

[1] Linux Programmer’s Manual, 2016 (accessed July 7, 2017). http://man7.
org/linux/man-pages/man2/perf_event_open.2.html.

[2] OProfile, (accessed August 2, 2017). http://oprofile.sourceforge.net/
about/.

[3] perf: Linux profiling with performance counters, (accessed July 7, 2017).
https://perf.wiki.kernel.org/.

[4] Adhianto, L., et al. HPCTOOLKIT: tools for performance analysis of
optimized parallel programs. Concurrency and Computation: Practice
and Experience, 22(6):685–701, 2010. DOI: 10.1002/cpe.1553.

[5] Bailey, D. H., et al. The NAS parallel benchmarks. Technical report,
RNR, 1994.

[6] Ilsche, T., et al. Combining instrumentation and sampling for trace-
based application performance analysis. In Tools for High Performance
Computing 2014. 2015. DOI: 10.1007/978-3-319-16012-2_6.

[7] Ilsche, T., et al. Powernightmares: The challenge of efficiently using
sleep states on multi-core systems. In 5th Workshop on Runtime and
Operating Systems for the Many-core Era. 2017, accepted for publication.

[8] Knüpfer, A., et al. The Vampir performance analysis tool-set. Tools for
High Performance Computing, pages 139–155, 2008.

[9] Knüpfer, A., et al. Score-p: A joint performance measurement run-time
infrastructure for Periscope, Scalasca, TAU, and Vampir. In Tools for High
Performance Computing. 2012. DOI: 10.1007/978-3-642-31476-6_7.

[10] Schöne, R. et al. Integrating performance analysis and energy efficiency
optimizations in a unified environment. Computer Science - Research and
Development, pages 1–9, 2013. ISSN 1865-2034. DOI: 10.1007/s00450-
013-0243-7.

[11] Schöne, R., et al. Scalable tools for non-intrusive performance debugging
of parallel linux workloads. In Proceedings of the Ottawa Linux
Symposium. 2014.

[12] Schöne, R., et al. Extending the functionality of score-p through plugins:
Interfaces and use cases. In Tools for High Performance Computing 201.
2017. DOI: 10.1007/978-3-319-56702-0_4.

Figure 2: Combined process and system monitoring of a parallel

build using make -j. The top section shows the scheduled

processes. The lifetime of processes and threads is shown in

the second part. The bottom part denotes the cpu time of the

involved processes.

804

