
Energy Efficiency Tuning:
From Autotune to READEX

Michael Gerndt

Technische Universität München

Project overview

• READEX
Runtime Exploitation of Application Dynamism for

Energy-efficient eXascale Computing

• Starting date:
1. September 2015

• Duration:
3 years

• Funding:
European Commission Horizon 2020 grant agreement 671657

2

Project partners

3

Motivation

Challenges

• Energy consumption
• Extreme scale
• Dynamism Problems

• Awareness
• Ability
• Effort Solution

• Dynamism
• Automatic tuning
• Design-/Run-time

4

General idea

HPC

• Automatic Tuning

Embedded

• System Scenarios

Systems scenarios

• System Scenario based Methodology
• Formalism for dynamic auto-tuning in the embedded systems world

• Detect and analyze dynamism in applications at design-time

• Switch parameters at run-time based on detected scenarios

6

Periscope Tuning Framework

• Automatic application analysis & tuning
• Tune performance and energy (statically)

• Plug-in-based architecture

• Evaluate alternatives online

• Scalable and distributed framework

• Support variety of parallel paradigms
• MPI, OpenMP, OpenCL, Parallel pattern

• Developed in the Autotune EU-FP7 project

7

Score-P

• Scalable Performance Measurement Infrastructure for Parallel Codes
• Common instrumentation and measurement infrastructure

8

ENOPT library implemented by LRZ

Tuning Plugin Interface

Plugin
Periscope
Frontend

Application
with

Monitor

Scenario
execution

Tuning
actions

Analysis
strategies

Se
ar

ch
 S

p
ac

e
Ex

p
lo

ra
ti

o
n

Tu
n

in
g

St
ep

Tuning Plugins

• MPI parameters
• Eager Limit, Buffer space, collective algorithms

• Application restart or MPIT Tools Interface

• DVFS
• Frequency tuning for energy delay product

• Model-based prediction of frequency

• Region level tuning

• Parallelism capping
• Thread number tuning for energy delay product

• Exhaustive and curve fitting based prediction

Tuning Plugins

• Master/worker
• Partition factor and number of workers

• Prediction through performance model based on data measured in pre-
analysis

• Parallel Pattern
• Tuning replication and buffers between pipeline stages

• Based on component distribution via StarPU

• OpenCL tuning
• Compiler flags for offline compilation

• NDRange tuning

Tuning Plugins

• MPI IO
• Tuning data sieving and number of aggregators

• Exhaustive and model based

• Compiler Flag Selection
• Automatic recompilation and execution

• Selective recompialtion based on pre-analysis

• Exhaustive and individual search

• Scenario analysis for significant routines

• Combination with Pathway

Plugin Evaluation Status

Variation of Measurements

15

Predicted vs Measured Time for Seissol

16

Tuning with Persicope Tuning Framework

17

Dynamism

• Intra-phase

• Inter-phase

18

PEPC Benchmark of the DEISA Benchmark Suite

19

All-to-all
Performance
2048 phases

Inter-phase Dynamism

• Indeed application of GNS

• Identifiers for
• adaptation strategy

• Valleys vs hills

20

Scenario-Based Tuning

21

Design Time Analysis

Runtime Scenarios

with

Tuning Model

RunTime Tuning

Periscope Tuning Framework (PTF)

READEX Runtime Library (RRL)

Terminology

• Significant Regions: Coarse-granular code regions

• Runtime Situations: Instances of significant regions

• Identifiers: Distinguish rts's with different characteristics
• Region ID, Call path, region parameters, phase identifiers, input identifiers

• Scenarios: rts's with same characteristics

• Tuning Model:
• Set of scenarios

• Classifier based on the identifiers

• Selector for each scenario

Yury Oleynik | oleynik@in.tum.de 22

Design Time Analysis with Periscope

23

Runtime Tuning with the READEX Runtime Library

Validation and project goals

• Goal: Validate the effect of READEX using real-world applications
• Co-design process:

• Hand-tune selected applications

• Compare results with automatic static and dynamic tuning

• Energy measurements using HDEEM infrastructure

25

Conclusion

• Energy-efficiency at exascale
• Application developers and users will have to care

• Lack of capabilities
• Awareness

• Expertise

• Resources

• Proposed solution – READEX:
• Exploit dynamism

• Detect at design-, exploit at run-time

• Tools-aided auto-tuning methodology

Yury Oleynik | oleynik@in.tum.de 26

Thank you! Questions?

Yury Oleynik | oleynik@in.tum.de 27

