Energy Efficiency Tuning: From Autotune to READEX

Michael Gerndt

Technische Universität München

• READEX

Runtime Exploitation of Application Dynamism for Energy-efficient eXascale Computing

- Starting date:
 - 1. September 2015
- Duration:

3 years

• Funding:

European Commission Horizon 2020 grant agreement 671657

Project partners

Commission

Motivation

Challenges				
 Energy consump Extreme scale Dynamism 	tion			
		Problems		
	• Aw • Ab	vareness oility		Colution
	• Effort	ort	- Dy • Dy • Au • De	vnamism Itomatic tuning esign-/Run-time

HPC

• Automatic Tuning

Embedded

• System Scenarios

Systems scenarios

System Scenario based Methodology

- Formalism for dynamic auto-tuning in the embedded systems world
- Detect and analyze dynamism in applications at design-time
- Switch parameters at run-time based on detected scenarios

6

Periscope Tuning Framework

- Automatic application analysis & tuning
 - Tune performance and energy (statically)
 - Plug-in-based architecture
 - Evaluate alternatives online
 - Scalable and distributed framework
- Support variety of parallel paradigms
 - MPI, OpenMP, OpenCL, Parallel pattern
- Developed in the Autotune EU-FP7 project

European

Commission

Score-P

• Scalable Performance Measurement Infrastructure for Parallel Codes

• Common instrumentation and measurement infrastructure

8

ENOPT library implemented by LRZ

Tuning Plugin Interface

• MPI parameters

- Eager Limit, Buffer space, collective algorithms
- Application restart or MPIT Tools Interface
- DVFS
 - Frequency tuning for energy delay product
 - Model-based prediction of frequency
 - Region level tuning
- Parallelism capping
 - Thread number tuning for energy delay product
 - Exhaustive and curve fitting based prediction

Tuning Plugins

Master/worker

- Partition factor and number of workers
- Prediction through performance model based on data measured in preanalysis
- Parallel Pattern
 - Tuning replication and buffers between pipeline stages
 - Based on component distribution via StarPU
- OpenCL tuning
 - Compiler flags for offline compilation
 - NDRange tuning

Tuning Plugins

- MPI IO
 - Tuning data sieving and number of aggregators
 - Exhaustive and model based
- Compiler Flag Selection
 - Automatic recompilation and execution
 - Selective recompiaition based on pre-analysis
 - Exhaustive and individual search
 - Scenario analysis for significant routines
 - Combination with Pathway

Plugin Evaluation Status

Application	CFS	DVFS	MPI	Patterns	Master
Name			Parameters		Worker
APEX-MAP	×	\checkmark	×	×	×
BLAST	×	×	×	×	\checkmark
Convolution	\checkmark	×	×	×	×
FaceDetect	×	×	×	\checkmark	×
FSSIM	\checkmark	\checkmark	\checkmark	×	×
HydroC	\checkmark	×	×	×	×
NPB	\checkmark	\checkmark	\checkmark	×	×
pmatmul	\checkmark	\checkmark	\checkmark	×	×
SeisSol	\checkmark	\checkmark	\checkmark	×	×
Sip	\checkmark	\checkmark	×	×	×
S2F2M	\checkmark	×	\checkmark	×	\checkmark
Model_primes	\checkmark	×	\checkmark	×	×
nw	×	×	×	\checkmark	×

Variation of Measurements

Energy consumption of the SeisSol application at different compute nodes.

Normalized energy consumption of the SeisSol application at different compute

15

Predicted vs Measured Time for Seissol

16

Tuning with Persicope Tuning Framework

17

Horizon 2020 European Union funding Commission for Research & Innovation

European

Dynamism

- Intra-phase
- Inter-phase

```
int main(void) {
  // Initialize application
  // Initialize experiment variables
  int num iterations = 2;
  for (int iter = 1; iter <= num_iterations; iter++) {</pre>
    // Start phase region
    // Read PhaseCharct
                                                           One iteration
    laplace3D(); // significant region
                                                             of the
    residue = reduction(); // insignificant region
                                                           progress loop
    fftw_execute(); // significant region
    // End phase region
  // Post-processing:
  // Write noise matrices to disk for visualization
  // Terminate application
  MPI Finalize();
  return 0;
}
```


PEPC Benchmark of the DEISA Benchmark Suite

All-to-all Performance 2048 phases

19

Inter-phase Dynamism

- Indeed application of GNS
- Identifiers for
 - adaptation strategy
 - Valleys vs hills

(a) Adaptation strategy 1

(b) Adaptation strategy 2

European

Commission

- Significant Regions: Coarse-granular code regions
- Runtime Situations: Instances of significant regions
- Identifiers: Distinguish rts's with different characteristics
 - Region ID, Call path, region parameters, phase identifiers, input identifiers
- Scenarios: rts's with same characteristics
- Tuning Model:
 - Set of scenarios
 - Classifier based on the identifiers
 - Selector for each scenario

Design Time Analysis with Periscope

23

Runtime Tuning with the READEX Runtime Library

Validation and project goals

Goal: Validate the effect of READEX using real-world applications

- Co-design process:
 - Hand-tune selected applications
 - Compare results with automatic static and dynamic tuning
- Energy measurements using HDEEM infrastructure

Conclusion

- Energy-efficiency at exascale
 - Application developers and users will have to care
- Lack of capabilities
 - Awareness
 - Expertise
 - Resources
- Proposed solution READEX:
 - Exploit dynamism
 - Detect at design-, exploit at run-time
 - Tools-aided auto-tuning methodology

Thank you! Questions?

27

