

Abstract

- Tune HPC applications dynamically for improved energy-efficiency and performance.
- Switching between configurations by exploiting dynamic characteristics of HPC applications.
- Develop tool aided auto-tuning methodology.
 - Design-time analysis
 - Runtime Application Tuning
- Detect during design-time, exploit during runtime.

THE READEX Tool-Suite

Design-Time Analysis

- Detect program regions having variations in characteristics.
- Determine different Runtime Situations (RTS) of the detected regions.
- Determine best configurations for RTSs.
- Classify RTS's based on similar configurations into scenarios.
- Encapsulate the scenario information into a tuning model.

Runtime Application Tuning

- Propagate the generated tuning model for the production run.
- Performed by the READEX Runtime Library
 - Lightweight.
 - Switch to the best configuration for a detected RTS retrieved from the tuning model.
- Calibration mechanism
 - Calibrates regions which were not seen during design-time.

Contact Information

Robert Schoene Technische Universitaet Dresden (TUD) Email: <u>Robert.schoene@tu-dresden.de</u> Phone: <u>+49 (351) 463-42483</u>

Design-Time Analysis to improve Energy-efficiency of HPC Applications

Anamika Chowdhury; Madhura Kumaraswamy; Michael Gerndt Technical University of Munich (TUM)

Initial DTA Results

Significant regions	Energy for worst configuration (1, 1.6)	Energy for best configuration (4, 1.6)	The READEX Energy	# of thread	Core frequency (GHz)
exch_qbc	3245	6649	2760	1	2.4
x_solve	74219	41341	39962	4	2.0
y_solve	73536	39497	39497	4	1.6
z_solve	76393	40699	40386	4	2.0
SUM	227393	128186	122605		
Energy for phase	376722	284223			

Dynamism Detection:

z_solve.

- 16 experiments

frequency

Plugin

- performed by **readex-dyn-detect**.

exch_qbc, x_solve, y_solve, and

Performed by the READEX Tuning

- The exhaustive search strategy

- Returns best configurations for

IT4Innovations national01\$#80 supercomputing

center

the no. of threads and core

- detected significant regions:

Decign_Time Analy	vcic	
Design-Time Anal	y 313 (

• Performed by the **Periscope Tuning Framework** (PTF)

- Tunes performance and energy.
- Evaluates alternatives online.
- Supports different tuning strategies.

The READEX Tuning Plugin

- Multiple objectives.
- Configurable search space via READEX configuration file.
- Multiple search strategies for searching.
- Tuning Parameters: core frequency, uncore frequency, # of threads
- Experiments for selected configurations
- Energy and time measured for all RTS's.
- Identification of static best for phase and specific best configurations for RTS's.

Table 1. Results of DTA for the BT-MZ benchmark using the READEX Tuning Plugin

- Horizon 2020
- Grant agreement no. 671657

Discussion

- The static configuration is applied for the entire phase.
- The worst configuration
 - worst energy consumption for the entire phase.
- The best configuration
 - best energy consumption for the entire phase.
- The best setting for the phase
- not necessarily for all the significant regions.
- Static energy savings w. r. t. worst energy consumption
- 43.60% for all the significant regions.
- 24.60% for the phase
- Dynamic energy saving due to switching
- configuration dynamically w.r.t. best energy consumption.
- 4.40% for all the significant regions.

Conclusions

- Presents the Design-Time Analysis step of the READEX methodology for tuning to improve energy efficiency.
- READEX focuses on runtime tuning guided by a tuning model pre-computed during designtime.

Future Goals

- Inter-phase dynamism.
- Handling multiple input files.
- Domain knowledge specification.
- Allows the user to provide domain
- knowledge as *identifiers*.
- Application Tuning Parameters.
- Input identifiers.

Acknowledgements

• Funded by the European Union's

More Info

- <u>www.readex.eu</u>
- www.researchgate.net/project/READEX