
PACO 2017 Extended Abstract

Domain Knowledge Specification for Energy Tuning

Anamika Chowdhury1

Madhura Kumaraswamy, Michael Gerndt2

Zakaria Bendifallah, Othman Bouizi3

Lubomı́r Ř́ıha, Ondřej Vysocký, Martin Beseda, Jan Zapletal4

The European Horizon 2020 project READEX is developing a tool suite
for dynamic energy tuning of HPC applications. While the tool suite
supports an automatic approach, domain knowledge can significantly
help in the analysis and the runtime tuning phase. This paper presents
the means available in READEX for the application expert to provide
his expert knowledge to the tool suite.

1 Introduction

Energy efficiency and consumption have become the most important and challenging
issues in current HPC systems and in designing future exascale computing systems. Ad-
vances in hardware technology, the operating and tuning HPC applications are required to
reduce the overall energy consumption. Aspects such as arithmetic intensity and resource
utilization can be exploited to benefit energy savings due to their ability to characterize
varying application behaviour. In previous works, the energy consumption was optimized
by using a model-based approach to predict and statically set the best frequency for
the entire application run. However, in READEX, we develop a tool suite that switches
tuning parameters dynamically during the application execution based on the dynamic
changes over runtime [3].

The READEX methodology is a two-stage approach and consists of Design Time Anal-
ysis (DTA) and Runtime Application Tuning (RAT). It uses the Periscope Tuning Frame-
work (PTF) [1] for DTA, and the READEX Runtime Library (RRL) for runtime tuning,
with Score-P [2] as the common instrumentation and measurement infrastructure. Pre-
analysis steps are performed prior to the DTA in which the application is instrumented
and analyzed for dynamism. Coarse granular program regions that constitute most of the
execution time are selected for dynamic tuning and are identified as significant regions [5].

A novel tuning plugin was developed for PTF to perform DTA and run experiments that
currently evaluate three tuning parameters: CPU frequency, uncore frequency and the
number of OpenMP threads within a single program run. The experiments are executions
of the so-called phase region, which is usually the body of the main progress loop and whose
individual time steps are called phases. The plugin then determines the best configuration
or settings of the tuning parameters for the runtime situations (rts’s) of significant regions,
i.e., its instances at runtime. Rts’s that have similar characteristics are grouped into

1Technical University of Munich, Faculty of Informatics, Germany,
chowdhua@in.tum.de

2Technical University of Munich, Faculty of Informatics, Germany, kumarasw@in.tum.de

3Intel ExaScale Labs, Paris, France, zakaria.bendifallah@intel.com

4IT4Innovations National Supercomputing Centre, VŠB-TUO, Ostrava, Czech Republic,
lubomir.riha@vsb.cz, ondrej.vysocky@vsb.cz, martin.beseda@vsb.cz, jan.zapletal@vsb.cz

1

mailto:chowdhua@in.tum.de
mailto:kumarasw@in.tum.de
mailto:zakaria.bendifallah@intel.com
mailto:lubomir.riha@vsb.cz, ondrej.vysocky@vsb.cz, martin.beseda@vsb.cz, jan.zapletal@vsb.cz


PACO 2017 Extended Abstract

scenarios, and best configurations for those scenarios are set. The knowledge obtained
during DTA, such as the best-found system configurations for individual scenarios is
encapsulated in a tuning model. For production runs, this tuning model is forwarded to
the READEX Runtime Library (RRL), which performs runtime tuning by dynamically
switching to the best configurations for upcoming rts’s.

READEX uses the so-called identifiers to predict at runtime the characteristics of an
upcoming rts by letting the developer specify domain knowledge. Currently, READEX
supports region identifiers to distinguish rts’s, phase identifiers to distinguish phase char-
acteristics and input identifiers to distinguish executions with different application inputs.
Without these identifiers, rts’s of a significant region may be merged into the same sce-
nario even if they have different behaviour. Hence, these identifiers will improve the tuning
model by distinguishing rts’s and assigning them to different scenarios to potentially se-
lect a better configuration. The domain knowledge also includes Application-level Tuning
Parameters (ATP) that switch the application control flow and expose tuning potential
in the target application.

This paper describes how the domain knowledge is used by the READEX tuning plugin
during DTA and in brief, the RAT.

Listing 1: Phase specification

1 #include "SCOREP_User.inc"

2

3 SCOREP_USER_REGION_DEFINE(R1)

4

5

6 do it=1,max_iter

7 ! phase region begins

8 SCOREP_OA_PHASE_BEGIN(R1,...)

9 ...

10 call VCycle(...)

11 ...

12 SCOREP_OA_PHASE_END(R1)

13 ! phase region ends

14 enddo

Listing 2: Region identifiers

1 !--- VCycle ---!

2 ...

3 !--- level k-1 to level k ---!

4 do k = min_level+1,max_level

5 call interpolate(...,k)

6 call resid(...)

7 call psinv(...)

8 enddo

9

10 !Interpolate to level k region

11 subroutine interpolate(...,k)

12 SCOREP_USER_PARAMETER("level",k)

13 ...

14 end subroutine

2 Domain Knowledge Specification

This section describes how the user can define the Score-P Online Access Phase, provide
additional identifiers, and specify application-level tuning parameters. Listings 1 and 2
show a high-level view of the domain knowledge specification for the MG (MultiGrid)
benchmark of the NAS parallel benchmark suite. MG uses a V-cycle to solve a discrete
Poisson equation on a 3D grid. It is based on a hierarchy of grid levels, where the
maximum level is the finest grid with the highest resolution.

During each iteration, an entire V-cycle is executed starting from the highest grid level.
The residual on the current grid level k is projected to the next coarser grid level k-1.
When the coarsest grid is reached, an approximate solution is computed. The result is
then interpolated from the coarser to the finer grid, where the residual is calculated and a
smoother is applied to correct the result. The result is then propagated further upwards.

2



PACO 2017 Extended Abstract

2.1 Phase Specification

Before starting DTA, the user must annotate the phase region with Score-P macros. It
must first be declared, as shown in line 3 in Listing 1, and then surrounded by begin and
end marcros as shown in lines 8 and 12 respectively in Listing 1. The Score-P user manual
provides more information on the parameters of the macros.

2.2 Identifier Specification

The READEX tool suite provides support for different types of identifiers for runtime
situations.

Region identifiers: The user can specify region identifiers via Score-P user parameters
to distinguish rts’s of that region if the region has different characteristics in the
runtime situations. For example, since the size of the grid processed in interpo-
late(...,k) gets larger when going from the minimum grid level to the maximum, at
a certain grid level the computation switches from being compute bound to memory
bound. To enable DTA to determine special system configurations for compute and
memory bound rts’s, a region identifier for the grid level is added to the code (Line
12 of Listing 2). The region name, the call path, and the region identifier are now
used as identifiers of the different rts’s.

Phase identifiers: DTA also exploits dynamicity in the characteristics of the applica-
tion across phases. To do so, the application expert can provide phase identifiers
as domain knowledge at the start of the phase via region identifiers for the phase
region.

Input identifiers: READEX also improves the tuning model by identifying special
system configurations for different inputs characteristics. For example, in the multi-
grid application, the grid level where the computation switches from compute to
memory bound depends on the resolution of the finest grid and the number of MPI
processes. The finer the grid, the more levels are memory bound. The more pro-
cesses are used, the fewer levels are memory bound due to an increased amount of
cache. Application specific input identifiers are specified in an accompanying input
specification file in the form of key-value pairs. These specification files will be used
by both PTF and RRL. The number of MPI processes and OMP threads will be
known implicitly.

2.3 Application Tuning Parameters

In order to leverage application dynamism, READEX enables to exploit the dynamism
available through the use of different code paths such as the use of different preconditioners
in the ESPRESO FEM library or different blocking factors in stencil codes.

Part of the READEX tool-suite, the ATP library provides an API to annotate the
source code in order to identify the control variables responsible for control flow switch-
ing. During the first phase of the application execution in DTA, variable types, value
ranges and addresses are discovered and agglomerated into an ATP description file. The
subsequent phases of the application execution are reserved for best configuration dis-
covery. Parameter information collected in the ATP description file is exploited to test
different parameter values.

3



PACO 2017 Extended Abstract

PhaseRegion

mg3P

rprj3 psinvinterp

Figure 1: CCT of MG without user
parameters

PhaseRegion

mg3P

rprj3 psinvinterp

level=2 level=8

Figure 2: CCT of MG with user
parameters

Furthermore, one critical complexity that the exploitation of ATPs exhibits is the pres-
ence of dependences between variables, where the values for one variable depend on the
values of prior variable(s). In this case, not all value combinations are possible and forcing
the values on the program may break its semantics. READEX, through the ATP library,
provides the means to handle this by allowing the declaration of parameter dependences
in the form of logical constraints. It also relies on a constraints solver called the omega
library5 to resolve the dependences. The solver handles affine function based constraints
and provides valid combinations of parameter values for use in the DTA phase.

3 Implementation

DTA is carried out by PTF, a distributed framework consisting of a frontend and a
hierarchy of analysis agents [1]. First, one phase of the application is executed in which
the application regions are gathered and returned to the PTF analysis agents from Score-P
via the Online-Access Interface and to generate the ATP specification file. Partial Calling
Context Trees (CCT) 6 are generated at every analysis agent for those MPI processes
controlled by the agent, and are gathered to create the complete tree in the frontend.

Figure 1 presents the CCT of MG if no region identifier is given. Separate nodes are
created for the call sites of the projection, interpolation, and the smoother. All runtime
situations, i.e. invocations, are represented by one node with its call path. Figure 2
illustrates the situation with the region identifier in the interpolation. For each grid level,
a separate node is created and the runtime situations can be distinguished in PTF. Each
rts is identified by its region name, the call path, which includes the region identifiers
(represented as parameter name=value), and the phase and input identifiers. With the
region identifier, a valid rts of the region interp is /PhaseRegion/mg3P/interp/level=8,
as shown in Figure 2.

The PTF frontend executes the READEX tuning plugin, which reads from the READEX
configuration file the objective(s) (Energy, CPU Energy, Execution Time, Energy Delay
Product or Energy Delay Product Squared), the tuning parameters (core frequency, un-
core frequency and the number of OpenMP threads), the search strategy (exhaustive,
random, individual or genetic) and the significant regions. It also reads the input identi-
fiers from the input specification file and the ATPs from the generated ATP specification
file.

5http://www.cs.umd.edu/projects/omega/

6A context sensitive version of a call graph.

4



PACO 2017 Extended Abstract

It then assesses selected system configurations from the search space of the tuning
parameters and the ATPs generated by the search algorithm. For each configuration, it
executes an experiment and measures the objective value for all the rts’s of the significant
regions. The plugin outputs the best configuration for both the phase and the rts’s.

Finally, a tuning model is generated from this knowledge. The tuning model genera-
tion clusters the rts’s into scenarios based on their best configuration. It determines a
classifier that maps each valid rts onto a unique scenario based on the identifiers given at
runtime. For each scenario, a selector is generated that returns a single or a set of good
configurations for that scenario with respect to the chosen objective. The tuning model
encapsulates this knowledge, and is stored as a JSON file, which is then read by the RRL
to perform dynamic switching at runtime.

4 Example

The ESPRESO [4] library is a combination of Finite Element (FEM) tools and a domain
decomposition based Finite Element Tearing and Interconnect (FETI) solvers. The FETI
solver contains a projected conjugate gradient (PCG) solver and therefore, its convergence
can be improved by several preconditioners. The computational complexity of different
preconditioners vary from basic vector scaling (weight function), to sparse-matrix vec-
tor multiplication with different number of non-zeros (lumped, light-dirichlet) to dense
matrix-vector multiplication (dirichlet). Using a simplified approximation, we can state
that from the preconditioners listed above, the more computationally demanding the pre-
conditioner is, the more numerically efficient it is, i.e. the more it reduces the number
of iterations to solve the problem. In ESPRESO, we can dynamically switch between any
of these during the runtime. If a preconditioner is not used, one iteration contains an
action of a FETI operator (cost is 30.9 J and 0.12 s) and an application of a projector
(cost is 0.7 J and 0.005 s). If a preconditioner is used, each iteration contains one more
projector application in addition to the preconditioner action.

We evaluated the preconditioners on a structural mechanics (linear elasticity) problem
with 2.3 million unknowns on a single compute node using 24 MPI processes. The results,
see Table 1, show that the solution can be reached in 5.46 s when using Light Dirichlet
preconditioner, despite the fact that it needs more iterations than the Dirichlet precon-
ditioner. The Light Dirichlet preconditioner saved 15.9 s and 4 091.5 J in comparison to
solving the problem without any preconditioner.

Preconditioner # iterations 1 iteration Solution
none 172 125 ms 31.6 J 21.36 s 5 501.31 J

Weight function 100 130+2 ms 32.3+0.53 J 12.89 s 3 284.07 J
Lumped 45 130+10 ms 32.3+3.86 J 6.32 s 1 636.11 J

Light dirichlet 39 130+10 ms 32.3+3.74 J 5.46 s 1 409.82 J
Dirichlet 30 130+80 ms 32.3+20.62 J 6.34 s 1 594.50 J

Table 1: ESPRESO preconditioners comparison for runtime and energy consumption.
The table contains (i) single iteration evaluation including baseline (FETI oper-
ator and 2x projector) + resources spent by the preconditioner (ii) overall FETI
solver evaluation considering the different number of solver iterations.

5



PACO 2017 Extended Abstract

5 Conclusion

This paper gave a short overview of the READEX project, which is aiming at improving
the energy efficiency of HPC applications by a dynamic tuning approach. At design time, a
tuning model that guides the dynamic switching of tuning parameters is determined. The
quality of that tuning model can be enhanced by domain knowledge that is provided by the
application owner. Part of the domain knowledge are application-level tuning parameters
that significantly increase the tuning potential. The tuning potential is demonstrated in
an example, where ATPs are used to select different preconditioners for the ESPRESO
library.

References

[1] M. Gerndt, E. César, and S. Benkner, eds., Automatic Tuning of HPC Appli-
cations - The Periscope Tuning Framework, Shaker Verlag, Aachen, 2015.

[2] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. D. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf, Score-p: A joint perfor-
mance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vam-
pir, in Tools for High Performance Computing 2011, H. Brunst, M. Müller, W. E.
Nagel, and M. M. Resch, eds., Springer, Berlin, 2012, pp. 79–91.

[3] Y. Oleynik, M. Gerndt, J. Schuchart, P. G. Kjeldsberg, and W. E.
Nagel, Run-time exploitation of application dynamism for energy-efficient exascale
computing (READEX), in Computational Science and Engineering (CSE), 2015 IEEE
18th International Conference on, C. Plessl, D. El Baz, G. Cong, J. M. P. Cardoso,
L. Veiga, and T. Rauber, eds., Piscataway, Oct 2015, IEEE, pp. 347–350.

[4] L. Riha, T. Brzobohaty, A. Markopoulos, O. Meca, and T. Kozubek,
Massively Parallel Hybrid Total FETI (HTFETI) Solver, in Proceedings of the Plat-
form for Advanced Scientific Computing Conference, PASC ’16, New York, NY, USA,
2016, ACM.

[5] J. Schuchart, M. Gerndt, P. G. Kjeldsberg, M. Lysaght, D. Horák,
L. Ř́ıha, A. Gocht, M. Sourouri, M. Kumaraswamy, A. Chowdhury,
M. Jahre, K. Diethelm, O. Bouizi, U. S. Mian, J. Kruž́ık, R. Sojka,
M. Beseda, V. Kannan, Z. Bendifallah, D. Hackenberg, and W. E. Nagel,
The READEX formalism for automatic tuning for energy efficiency, Computing,
(2017), pp. 1–9. DOI: 10.1007/s00607-016-0532-7.

Acknowledgements

The research leading to these results has received funding from the European Union’s
Horizon 2020 Programme under grant agreement number 671657.

6

http://dx.doi.org/10.1007/s00607-016-0532-7

	Introduction
	Domain Knowledge Specification
	Phase Specification
	Identifier Specification
	Application Tuning Parameters

	Implementation
	Example
	Conclusion

