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This paper describes the implementation, performance, and scalability of our communica- 

tion layer developed for Total FETI (TFETI) and Hybrid Total FETI (HTFETI) solvers. HTFETI 

is based on our variant of the Finite Element Tearing and Interconnecting (FETI) type do- 

main decomposition method. In this approach a small number of neighboring subdomains 

is aggregated into clusters, which results in a smaller coarse problem. To solve the origi- 

nal problem TFETI method is applied twice: to the clusters and then to the subdomains in 

each cluster. 

The current implementation of the solver is focused on the performance optimization of 

the main CG iteration loop, including: implementation of communication hiding and avoid- 

ing techniques for global communications; optimization of the nearest neighbor commu- 

nication - multiplication with a global gluing matrix; and optimization of the parallel CG 

algorithm to iterate over local Lagrange multipliers only. 

The performance is demonstrated on a linear elasticity 3D cube and real world bench- 

marks. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The goal of this paper is to describe parallelization and optimization techniques and algorithms required to implement

efficient communication layer for the Finite Element Tearing and Interconnecting (FETI) based parallel solvers. The efficient

communication layer is essential for good scalability in the cluster environment. It must be able to run on several thousands

of MPI processes and achieve minimal communication overhead. The method that is mainly used for performance evaluation

of the communication layer in this paper is the Total FETI with one subdomain per MPI process and one MPI process

per CPU core. This configuration uses high number of MPI ranks to solve a problem and therefore relies mainly on the

communication layer. This paper also introduces the Hybrid Total FETI (HTFETI) method, which can process several hundreds

of small subdomains per MPI process and efficiently run with only one MPI process per node. This means that if TFETI

method runs on 400 nodes with 20 MPI processes per node HTFETI will run on 8000 compute nodes. 

HTFETI method is based on our variant of the FETI type domain decomposition method called Total FETI (TFETI) [6] . The

original FETI method, also called the FETI-1 method, was originally introduced for the numerical solution of the large linear
∗ Corresponding author. 
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systems arising in linearized engineering problems by Farhat and Roux [2] . In the FETI methods a body is decomposed into

several non-overlapping subdomains and the continuity between the subdomains is enforced by Lagrange multipliers. Using

the theory of duality, a smaller and relatively well conditioned dual problem can be derived and efficiently solved by a

suitable variant of the conjugate gradient algorithm. 

The original FETI algorithm, where only the favorable distribution of the spectrum of the dual Schur complement matrix

[3] was considered, was efficient only for a small number of subdomains. So it was later extended by introducing a natural

coarse problem [4,5] , whose solution was implemented by auxiliary projectors so that the resulting algorithm became in a

sense optimal [4,5] . 

In the TFETI method [6] , also the Dirichlet boundary conditions are enforced by Lagrange multipliers. Hence all subdo-

main stiffness matrices are singular with a priori known kernels, which is a great advantage in the numerical solution. With

the known kernel basis we can regularize effectively the local stiffness matrix [10] and use any standard Cholesky type

decomposition method for nonsingular matrices. 

Even if there are several efficient coarse problem parallelization strategies [7] , there are still size limitations of the coarse

problem. So several hybrid (multilevel) methods were proposed [8,9] . The key idea is to aggregate small number of neigh-

boring subdomains into clusters, which naturally results in smaller coarse problem. In our HTFETI, the aggregation of sub-

domains into the clusters is enforced again by Lagrange multipliers. Thus the TFETI method is used on both the cluster and

subdomain levels. This approach allows parallelization of the original problem up to tens of thousands of cores, which is

not reachable with standard FETI methods (difficulties with the large coarse problem). However, convergence of the HTFETI

method is slower and therefore the number of iterations is higher when compared to the TFETI method. This means that for

smaller problems TFETI remains more efficient and recommended method. But our ultimate goal is to compute extremely

large problems decomposed into such a high number of subdomains which are not solvable by the standard FETI methods. 

2. Matrix formulation 

In this paper, we use the notation introduced in [1] . Let us consider a model problem from linear elasticity. The isotropic

elastic body occupies a domain � ⊂ R 

d , d = 2 , 3 , with sufficiently smooth boundary �. To apply the HTFETI approach to

solve such problem, we first of all tear the body from the part of the boundary with the Dirichlet boundary condition as in

the TFETI approach. Then we decompose the body into non-overlapping clusters and the clusters into non-overlapping sub-

domains. Finally, we introduce new gluing conditions on the subdomain interfaces to ensure the continuity of the solution

on the boundaries with imposed Dirichlet data. 

The resulting quadratic programming (QP) problem after the finite element discretization reads 

min 

u 

1 

2 

u 

� Ku − f � u subject to Bu = c , (1)

where K is a block diagonal symmetric positive semidefinite stiffness matrix of size n × n , f ∈ R 

n is a load vector,

B = 

[
B 

� 
g , B 

� 
D 

]
denotes an m × n full-rank equality constraint matrix, and c = 

[
o 

� , c � D 

]� ∈ R 

m is an equality constraint vec-

tor. The matrix B g is called a jump operator or a gluing matrix. It is a signed Boolean matrix constructed in such a way that

the equality constraint B g u = o enforces continuity at the subdomain interface degrees of freedom. Satisfaction of this con-

straint implies that the entries of the solution vector u are equal if the corresponding interface nodes coincide. The equality

constraint B D u = c D enforces the Dirichlet boundary conditions. Typically the number of Lagrange multipliers (dual dimen-

sion) m is much smaller than n , the number of degrees of freedom (primal dimension). Let us note that B can be directly

assembled to have orthonormal rows only by special treatment of the rows of B g corresponding to the nodes shared by

more than two subdomains. 

The problem (1) has the same structure as in the standard TFETI method and could be solved by this approach. However,

to describe the HTFETI method, we will consider the problem (1) in the form 

min 

1 

2 

u 

� Ku − u 

� f subject to 

{
B 0 u = c 0 

B 1 u = c 1 
, (2)

where the equality constraints are split into two parts. The first part B 0 u = c 0 = o consists of m 0 equalities enforcing the

continuity in the subdomain corner nodes of each cluster, while B 1 u = c 1 consists of m 1 equalities enforcing the continuity

across the rest of the subdomain interfaces and the Dirichlet conditions, and m 0 + m 1 = m . 

The optimality conditions for the problem (2) lead to the saddle point problem ⎡ 

⎢ ⎣ 

K B 

� 
0 B 

� 
1 

B 0 O O 

B 1 O O 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

u 

λ0 

λ1 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

f 

c 0 

c 1 

⎤ 

⎥ ⎦ 

(3)
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or ⎡ 

⎢ ⎣ 

˜ K 

˜ B 

� 

[ −11 pt] ̃  B O 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

˜ u 

[ −11 pt] ̃  λ

⎤ 

⎥ ⎦ 

= 

[ 

˜ f 

˜ c 

] 

, (4) 

where ˜ K , ̃  B , ̃  u , ̃  λ, ̃  f , ˜ c respect the block structure indicated in (3) , ˜ λ = λ1 , and 

˜ c = c 1 . The algebraical procedure to solve the

system (4) is the same as in the original TFETI scheme (see e.g. [6] ), but with different inner structure of the objects, which

is emphasized with the tilde. The first equation of the system (4) has a solution if 

˜ f − ˜ B 

� ˜ λ ∈ Im ̃

 K , (5) 

which can be expressed more conveniently by means of the kernel ˜ R of the matrix ˜ K as 

˜ R 

� ( ̃ f − ˜ B 

� ˜ λ) = o . (6) 

Note we equate here and further on a kernel R of an arbitrary matrix A , and the matrix R whose columns span the space

R , i.e. 

R ≡ R ⇐⇒ R = Im R = Ker A . 

The matrix ˜ R has the following block structure 

˜ R = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

R 

1 
c 

. . . 

R 

N c 
c 

O O O 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (7) 

where R 

i 
c ( i = 1 , . . . , N c ) denotes the kernel of the i th cluster, and N c is the total number of clusters. Furthermore, each

cluster kernel consists of subdomain kernels, 

R 

i 
c = 

⎡ 

⎢ ⎢ ⎣ 

R 

i, 1 
s 

. . . 

R 

i,N i s 
s 

⎤ 

⎥ ⎥ ⎦ 

, (8) 

with R 

i, j 
s ( j = 1 , . . . , N 

i 
s ) meaning the kernel of the j th subdomain of the i th cluster, and N 

i 
s standing for the number of

subdomains of the i th cluster. Thanks to the TFETI approach, the blocks R 

i, j 
s may be assembled directly from the rigid body

modes of each mesh node. This means each subdomain kernel R 

i, j 
s consists of segments R 

i, j,k 
p , 

R 

i, j 
s = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

R 

i, j, 1 
p 

. . . 

R 

i, j,N i, j 
p 

p 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (9) 

where R 

i, j,k 
p is defined for each mesh node with an index k = 1 , . . . , N 

i, j 
p and spatial coordinates [ x k , y k , z k ], belonging to the

j th subdomain of the i th cluster, as follows 

R 

i, j,k 
p = 

[
1 0 −y k 

0 1 x k 

]
in 2D , 

R 

i, j,k 
p = 

⎡ 

⎢ ⎣ 

1 0 0 0 −z k y k 

0 1 0 z k 0 −x k 

0 0 1 −y k x k 0 

⎤ 

⎥ ⎦ 

in 3D . (10) 

In order to eliminate the primal variables ˜ u from the singular system given by the first equation in (4) we use a gener-

alized inverse ˜ K 

+ of the matrix ˜ K , satisfying ˜ K ̃

 K 

+ ˜ K = 

˜ K . It may be easily verified that if ˜ u is a solution of the first equation

of (4) , then there exists a vector ˜ α such that 

˜ u = 

˜ K 

+ ( ̃ f − ˜ B 

� ˜ λ) + 

˜ R ̃

 α. (11) 
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Substituting (11) into the second equation of (4) , and using (6) , we get the dual formulation [ 

˜ F ˜ G 

� 

˜ G O 

] [ 

˜ λ

˜ α

] 

= 

[ 

˜ d 

˜ e 

] 

, (12)

where 

˜ F = 

˜ B ̃

 K 

+ ˜ B 

� , ˜ d = 

˜ B ̃

 K 

+ ˜ f − ˜ c , 

˜ G = −˜ R 

� ˜ B 

� , ˜ e = −˜ R 

� ˜ f . 

As in standard TFETI we introduce the orthogonal projector 

˜ P = I − ˜ G 

� ( ̃  G ̃

 G 

� ) −1 ˜ G (13)

onto the kernel of ˜ G . By premultiplying (12) with 

˜ P we get 

˜ P ̃

 F ̃  λ = 

˜ P ̃

 d subject to 

˜ G ̃

 λ = ˜ e (14)

and after homogenization of the constraints we get 

˜ P ̃

 F ̃  λKer = 

˜ P ( ̃  d − ˜ F ̃  λIm 

) , (15)

where ˜ λKer ∈ Ker ̃  G , ˜ λIm 

= 

˜ G 

� ( ̃  G ̃

 G 

� ) −1 ˜ e , and 

˜ λ = 

˜ λKer + 

˜ λIm 

. 

Lemma 1. The matrix ˜ P ̃

 F is symmetric positive definite on Ker ̃  G . 

Reader can find the proof of Lemma 1 in ( [4] ) Thanks to the Lemma 1 the problem (15) may be solved efficiently by the

PCG (Preconditioned Conjugate Gradients) algorithm. In each PCG iteration we need to compute an action of the operator
˜ P ̃

 F which incorporates an action of ˜ K 

+ , as follows from the first equation of (12) . This means solving a singular system 

˜ K ̃ v = ˜ g ⇐⇒ 

[
K B 

� 
0 

B 0 O 

][
v 0 

μ0 

]
= 

[
g 0 

h 0 

]
(16)

which can be carried out using TFETI approach again. For the solution of (16) , conditions analogous to (11) and (6) , respec-

tively, can be formulated as 

∃ β0 : v 0 = K 

+ (g 0 − B 

� 
0 μ0 ) + R 0 β0 , (17)

R 

� 
0 (g 0 − B 

� 
0 μ0 ) = o , (18)

where R 0 is the kernel of K , structured as 

R 0 = 

⎡ 

⎢ ⎢ ⎣ 

R 

1 
c0 

. . . 

R 

N c 
c0 

⎤ 

⎥ ⎥ ⎦ 

, R 

i 
c0 = 

⎡ 

⎢ ⎢ ⎣ 

R 

i, 1 
s 

. . . 

R 

i,N i s 
s 

⎤ 

⎥ ⎥ ⎦ 

, i = 1 , . . . , N c . (19)

Substituting (17) into the second equation in (16) , and using (18) as the new second equation, we get [
F 0 G 

� 
0 

G 0 O 

]
︸ ︷︷ ︸ 

A 0 

[
μ0 

β0 

]
= 

[
d 0 

e 0 

]
, (20)

where 

F 0 = B 0 K 

+ B 

� 
0 , d 0 = B 0 K 

+ g 0 − h 0 , 

G 0 = −R 

� 
0 B 

� 
0 , e 0 = −R 

� 
0 g 0 , 

Lemma 2. Let K 

+ be the generalized inverse obtained as the inverse of the regularization K ρ of the matrix K , K 

+ = K 

−1 
ρ (intro-

duced in [13] ). Then the matrix K 

+ is symmetric positive definite, and so is the matrix F 0 . 

The system (20) can be solved in several ways. Because of its small size, it can be explicitly assembled and solved by a

direct solver. However, we have to deal with the fact that the matrix A 0 is singular as G 0 is rank-deficient. 

One of the possibilities is to introduce a matrix R̄ 0 , obtained from R 0 by the following procedure: returning to the

notation of (19) , for each cluster i select its arbitrary subdomain j , and remove from R 0 all columns containing columns of

R 

i, j 
s . We introduce objects 

Ḡ 0 = −R̄ 

� 
0 B 

� 
0 , ē 0 = −R̄ 

� 
0 g 0 , 

where Ḡ 0 is a full-rank matrix. Using Lemma 2 and replacing G 0 and e 0 by G 0 and e 0 in (20) , we get an SPD system which

is then solved instead of (20) . 
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3. Total FETI and hybrid total FETI solver 

Our TFETI and HTFETI solver is implemented in pure C++. Significant part of the development effort was devoted to

writing a C++ wrapper for (1), the selected sparse and dense BLAS routines, and (2) the sparse direct solvers (MKL version

of PARDISO [12] sparse direct solver) of the Intel MKL library [11] . 

Since the solver development is mainly focused on the current and future multi and many core architectures, in particular

the Intel MIC architecture, the Intel MKL library is the only external tool that our solver uses. In addition, to be able to port

the solver to Intel MIC (in both native or offload mode), the Intel compiler is used for compilation and Intel MPI is used as

a message passing library. 

The HTFETI method uses a two level decomposition: the problem is decomposed into clusters (the first level), then

the clusters are decomposed into subdomains (the second level). In our implementation this decomposition is mapped

to a parallel hardware in a following way. The clusters are mapped to compute the nodes of a supercomputer therefore a

parallelization model for distributed memory is used - in our case we use the message passing model (MPI). The subdomains

inside a cluster are mapped to CPU cores of the particular compute node therefore the shared memory model is used for

the second level. Our implementation allows to have multiple clusters associated with a single compute node, but a single

cluster cannot be processed on more than one node, as this is a limitation of shared memory parallelization. 

There are two major parts of the solver that affect its parallel performance and scalability: (1) a communication layer

(described in Section 3.1 ) and (2) the inter-cluster processing routines (described in Section 3.2 ). The first part deals with

optimization of the TFETI algorithm to minimize its communication overhead caused mainly by gluing matrix ( B ) multi-

plication and application of the projector P (includes multiplication with matrix G and a coarse problem solution). Having

fully optimized communication layer is essential for both the TFETI and HTFETI methods. The second part is a set of specific

routines developed for the HTFETI method, which are focused on the efficient parallel processing of multiple subdomains

per cluster. 

From the implementation point of view the TFETI method can be seen as having a single domain per cluster and using

different gluing matrix and different function for application of K 

+ . The rest of the algorithm remains unchanged. 

3.1. Communication layer optimization 

The solver uses hybrid parallelization, well suited for multi-socket and multi-core compute nodes, as this is the hardware

architecture of most today’s supercomputers. 

The first level of parallelization is designed for parallel processing of the clusters of subdomains. Each cluster must be

assigned to a single node, but if necessary, multiple clusters can be processed per one node. Our implementation does not

allow multiple nodes to work on a single cluster. This distributed memory parallelization is done using MPI. In particular,

we are using MPI standard 3.0 (implemented in the Intel MPI 5.0 Beta) because the communication hiding techniques

implemented in our FETI communication layer require the non-blocking collective operations. In the future we would like

to improve the communication layer to use GASPI PGAS communication model. 

The essential part of this parallelization is the communication layer. This layer is identical whether the solver runs in

the TFETI or HTFETI mode and uses novel communication avoiding and hiding techniques for the main iterative solver.

In particular, we have implemented: (1) the Pipelined Conjugate Gradient (PipeCG) iterative solver - hides communication

cost of the global dot products in CG behind the local matrix vector multiplications; (2) the coarse problem solver using

a distributed inverse matrix - merges two global communication operations (Gather and Scatter) into one (AllGather) and

parallelizes the coarse problem processing; and (3) the optimized version of the global equality constraint matrix action

(matrix B for TFETI and B 1 for HTFETI) – written to employ stencil communication which is fully scalable. 

The stencil communication for simple decomposition into four subdomains is shown in Fig. 1 where the Lagrange mul-

tipliers (LMs) that connect different neighboring subdomains are depicted in different colors. In each iteration, whenever

the LMs are updated, an exchange is performed between the neighboring subdomains to finish the update. This affinity also

controls the distribution of the data for the main distributed iterative solver, which iterates over the local LMs only. 

In our implementation, each MPI process modifies only elements of the vectors used by the CG solver that match the

LMs associated with the particular domain in case of TFETI, or the set of domains in a cluster in case of HTFETI. We call this

operation the vector compression. In the preprocessing stage the local part of the gluing matrix is also compressed using

the same approach (in this case it means that the empty rows are removed from the matrix) so that we can directly use

sparse matrix vector multiplication on the compressed vectors. 

ESPRESO library calculates the explicit inverse ( GG 

T ) −1 in order to reduce the amount of global communication. The

inverse matrix is calculated in a distribute fashion to reduce the processing time. The process is as follows. Once the GG 

T is

assembled on the master rank it is broadcasted to all the remaining ranks. Each rank then performs the Cholesky decom-

position of the GG 

T and calculates only one small part of the ( GG 

T ) −1 that is locally required by the projector P . 

This approach efficiently parallelizes the most critical part of the calculation of the inverse matrix: the forward and

backward substitution for every column of the identity matrix I which dimension is equal to dimension of GG 

T . The minor

penalty of this method is that all ranks have to perform the Cholesky decomposition. However, this operation is significantly

less expensive than several thousand executions of the forward and backward substitution. 
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Fig. 1. Stencil communication in TFETI during each action of the gluing matrix B g . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Inter-cluster processing 

The second level of parallelization is designed for parallel processing of subdomains in a cluster. Our implementation

enables over-subscription of CPU cores, therefore each core can process multiple subdomains and the size of the cluster is

not limited by the hardware configuration of the compute nodes. If the solver runs in the TFETI mode, this parallelization

level is disabled, and to utilize all the CPU cores, multiple MPI processes per node must be executed. 

This shared memory parallelization is implemented using Intel Cilk Plus. We have chosen the Cilk Plus due to its ad-

vanced support for C++ language. In particular, we are taking advantage of the functionality that allows us to create custom

parallel reduction operations on top of the C++ objects which in our case are sparse matrices. We are planning the conver-

sion of the code to OpenMP when standard 4.0 implementation will be released. 

The inter-cluster processing can have a large preprocessing time. The most significant part of preprocessing time is the

calculation of the matrix F 0 that involves calling the solve routine of the sparse direct solver with many right hand sides

for all subdomains in the cluster. Here the right hand side is the matrix B 0 and its size is given by the number of corners.

In addition, the performance of the entire routine is affected by the number of domains per cluster and the number of

CPU cores per node. For an optimal load-balancing it is necessary that the number of subdomains inside the cluster is in

multiples of CPU cores per node. 

To explain how necessary the optimal cluster configuration is, we have decomposed two problems of given sizes (in this

case 120 0 0 0 and 330 0 0 0 DOFs) into single cluster and different number of subdomains. The tests were executed on

Anselm supercomputer with each node consisting of two 8-core processors. The results are shown in Fig. 2 . The highlighted

lines (using green color) show the optimal configuration, here the decomposition into 64 subdomains, in terms of short-

est iteration time. This decomposition matches perfectly the hardware configuration because each core processes exactly 4

subdomains. In case the preprocessing time needs to be minimized, it is optimal to decompose the problem into 27 sub-

domains instead of 64. If espreso runs on different cluster with different size of problem, user must searching this optimal

decomposition first. We would like to implement routines which do optimal decomposition automatically. 

4. Numerical experiments 

The described algorithms were implemented in our new library, developed in C++ environment and tested on the solution

of 2D and 3D linear elasticity problems. We varied the decomposition and discretization parameters in order to demonstrate

the scalability of our method. 

The benchmarks were executed on two European supercomputers: (1) Anselm located at IT4Innovations in the Czech

Republic and (2) Cartesius located at SurfSara in the Netherlands. The machines have following parameters 

• IT4Innovation’s Anselm - https://docs.it4i.cz/anselm- cluster- documentation 

– up to 3300 cores 

– non-blocking cluster of 209 nodes each with: 

∗ 2x 8-core Intel Sandy Bridge E5-2665 (Sandy Bridge), 2.4 GHz and 64 GB of RAM 

∗ InfiniBand QDR network - 40 Gbit/s inter-node bandwidth 

https://docs.it4i.cz/anselm-cluster-documentation
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Fig. 2. Performance of inter-cluster processing for different numbers and sizes of subdomains (Note: domain size N is the number of elements per edge of 

the cube - real size is equal to 3 × (N + 1) 3 ; avg – average iteration time [s]; sum – total time of all iterations = solution time; prec – cluster preprocessing 

time; iter – number of iterations). (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

Fig. 3. HTFETI - CUBE benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

• SurfSara’s Cartesius - https://surfsara.nl/nl/systems/cartesius 

– up to 8600 cores 

– non-blocking island of 360 nodes each with: 

∗ 2 12-core Intel Xeon E5-2695 v2 (Ivy Bridge), 2.4 GHz and 64 GB RAM 

∗ InfiniBand FDR network - 56 Gbit/s inter-node bandwidth 

4.1. 3D cube benchmark 

Our first benchmark is a linear elasticity problem in a three-dimensional domain. The domain depicted in Fig. 3 has the

shape of a cube with the length of the edge 1m. We considered a fixed steel box deformed only by its own weight. We

prescribe Dirichlet boundary condition u x = u y = u z = 0 on the left wall. All other walls are free. The material constants are

defined by the Young modulus E1 = 2 . 1 e 5 [MPa], the Poisson ratio ν = 0 . 3 . 

The performance of the solver has been measured in both HTFETI and TFETI to evaluate the scalability of both meth-

ods. The focus of this test is to evaluate the time per iteration. Fig. 4 shows the weak scalability of the solver on a 3D cube

benchmark where the subdomain size of 3 · (5 + 1) 3 = 648 DOFs remains fixed. The small size of the subdomains was inten-

tionally chosen to better observe the behavior of the FETI bottlenecks and the effect of the following optimization methods:

(1) Pipelined CG algorithm (in the graph identified as a “CG with 1 reduction”), (2) use of the distributed explicit inverse

matrix of the coarse problem GG 

� (GGTINV), and (3) use of the HTFETI method. The performance is compared to regular

implementation of CG algorithm with two global reductions where the coarse problem is solved on a single master node

using parallel sparse MKL PARDISO sparse direct solver (CG with two reductions). 

The following observations can be made from the charts: (1) Pipelined CG helps both TFETI and HTFETI method; (2) using

GGTINV helps even more for both methods, but we expect that its real potential for the HTFETI method will be seen for

https://surfsara.nl/nl/systems/cartesius
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Fig. 4. Comparison of the single iteration time of HTFETI (cluster size 16) and TFETI. 
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Fig. 5. Weak scalability of large scale benchmarks for up to 80 0 0 subdomains/MPI processes and 4 different subdomain sizes (164,616; 177,957; 192,0 0 0; 

206,763 DOFs). The figure compares scalability of the coarse problem preprocessing and solution time. The problem size scales up to 1.54 billion DOFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

large number of clusters; (3) the HTFETI iteration is faster than the TFETI iteration for more than 512 subdomains without

GGTINV and for more than 10 0 0 subdomains with GGTINV. 

4.2. Large scale benchmark 

The main focus of this set of benchmarks is to evaluate the solver behavior for large problems decomposed into a high

number of sizeable subdomains, up to 80 0 0, to fully utilize the entire memory resources of a supercomputer. The benchmark

is again using the 3D elasticity cube as described in the previous section. 

The main focus of the paper is to show the efficient implementation of the communication layer. This layer serves both

TFETI and HTFETI method in our solver. However, the TFETI puts significantly higher pressure on this layer, so we used TFETI

to show its efficiency. If TFETI scales to 80 0 0 subdomains/MPI processes/343 compute nodes (as presented in this paper),

the HTFETI will scale to 80 0 0 clusters, i.e. 80 0 0 compute nodes. 

The TFETI solver is used for this testing in order to show the inferior scalability of the coarse problem assembly process

which includes these steps: (1) collect the local G matrix from all MPI processes to the master process, (2) combine these

matrices into one global G matrix, (3) transpose this matrix to create G 

� , (4) calculate the matrix product of G and G 

� to

create the coarse problem matrix GG 

� , and (5) broadcast the GG 

� matrix to all processes. Each process then calculates its

part of the distributed inverse matrix GGTINV, which is a fully parallel task without any communication. 

The subdomain sizes are intentionally large to utilize all available memory of every compute node. Four subdomain

sizes have been selected for the testing: 3 · (37 + 1) 3 = 164616 , 3 · (38 + 1) 3 = 177957 , 3 · (39 + 1) 3 = 1920 0 0 and 3 · (40 +
1) 3 = 206763 . Based on the subdomain size, the number of MPI processes per node is 22, 22, 21 and 20, respectively. All

measurements shown in Fig. 5 were performed on Cartesius supercomputer. 
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problem decomposed into up 80 0 0 subdomains with size of 192,0 0 0 DOFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subdomains of selected sizes produce large stiffness matrices therefore their factorization time represents a significant

part of the total processing time. As there is no communication involved in this operation, it does not introduce any parallel

overhead. The only parameter that affects the factorization time is the number of MPI processes running per node due to

different utilization of each node’s memory subsystem. 

The next significant part of the total processing time is the solution time. Its scalability is improved using (1) CG al-

gorithm with a single reduction, and (2) distributed inverse matrix of the coarse problem (GGTINV). It can be seen that

its scalability is satisfactory and the growth of the solution time is mainly caused by an increasing number of iterations.

Please note that for selected subdomain sizes almost 98% of solution time is spent in the solve routine of the sparse direct

solver. This means that the application of the coarse problem (GGTINV) and gluing matrix ( B 1 ) in each iteration is almost

negligible. 

As expected, the coarse problem preprocessing has the worst scalability. It can be seen in Fig. 6 that for a small num-

ber of subdomains its execution time is minimal, but for 80 0 0 subdomains the solvers spend more than 57% of the total

execution time in this routine. 

The largest problems that could be solved with our current version of the TFETI solver using 400 nodes (24 cores and

64 GB RAM per node) of the Cartesius supercomputer were executed in the following configuration: 20 MPI processes per

node; 97% of RAM used; subdomain size 206,763 DOFs. In this configuration the solver was able to solve a problem of the

size of 1,541,767,203 DOFs (1,654,104,0 0 0 DOFs after decomposition) decomposed into 80 0 0 subdomains running on 40 0

nodes. The processing time of this configuration together with two smaller problem sizes decomposed into 5832 and 6859

subdomains, using 292 and 343 nodes respectively, are shown in Fig. 7 . The results show that the solution time is almost

identical for two smaller problem sizes (48.7 s and 48.96 s for 50 iterations), and grows for the largest one (50.55s) mainly

due to one additional iteration (51). Please note that CG algorithm without preconditioner was used. 

4.3. Real world benchmark 

The second benchmark is a 2.5 million DOF model of a car engine depicted in Fig. 8 . Using this benchmark, we have

evaluated the behavior of the communication layer during a strong scaling test. We have run the benchmark decomposed

into 32, 64, 128, the, 512, and 1024 subdomains in the TFETI mode only on the Anselm supercomputer. 

Our first test evaluates various number of MPI processes running per node. Since each Anselm’s compute node contains

16 cores, we have run the benchmarks for 8, 15, and 16 MPI processes/subdomains per node. The motivation for this test is

as follows. The first case, 8 processes per node, was chosen to observe how doubling the memory bandwidth per core by

leaving half of the core unused affects the performance and scalability. The second case, 15 processes per node, leaves one

core per node to handle communication routines of the MPI library. In the third case, 16 processes per node, all the CPU

cores are used for processing and node is fully utilize by the solver leaving little resources for the system tasks including

communication. 

The results of this test are shown in Fig. 9 . It is important to realize that by running only 8 MPI processes per node we

are doubling resources used by the solver when compared to running 16 MPI processes per node. But it can be seen from

the results that by using twice as compute nodes the processing time is cut 2.46 times from 0.00476 s to 0.00196 s. We can

also see that by leaving one core free for the system tasks the processing time is also reduced, but not as significantly as
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Fig. 8. The car engine benchmark. 

Fig. 9. Numerical scalability evaluation of the real problem “Engine 2.5 Million DOFs” benchmark for the TFETI method. Figure shows the effect of node 

utilization by running different number of MPI processes per node. 
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Fig. 10. Strong scaling evaluation of the real problem “Engine 2.5 Million DOFs” benchmark for the TFETI method. Single iteration time for pipelined CG 

(PIPECG) and regular CG (REGCG) with and without the lumped preconditioner (LUMPED and NOPREC) and distributed inverse matrix of coarse problem 

(GGTINV and NOGGTINV). 

Fig. 11. Strong scaling evaluation of the real problem “Engine 2.5 Million DOFs” benchmark for the TFETI method. Number of iterations for different number 

of subdomains with and without the lumped preconditioner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in previous case. Therefore, we are using 8 MPI processes per node configuration for the remaining tests. The TFETI solver

works with sparse matrices. As such, it is a memory bounded application. The reason why we used only 8 cores per node

out of 16 is to put lower pressure on the memory subsystem. The paper shows that using double the resources (i.e., only half

of the resources of a node) the solver runs more than two times faster. The free CPU cores also provide enough resources for

the MPI runtime so that the requests by the solver can be server without additional delays. This makes the communication

layer more efficient. 

Fig. 10 shows how the two optimization techniques implemented in the communication layer and the application of the

simple lumped preconditioner help the scalability and solver performance in terms of the single iteration time. Note that all

these tests ran with 8 MPI processes per node. As we do not have a preconditioned pipelined CG algorithm implemented yet,

we have evaluated two most efficient combinations: (1) regular CG with the lumped preconditioner and (2) pipelined CG

without preconditioner, and the effect of using distributed inverse matrix of the coarse problem. As expected, preconditioned

regular CG has slower iterations starting from 32 subdomains up to 1024 subdomains. This effect becomes dominant for

decomposition into 512 subdomains and essential for the case with 1024 subdomains as the preconditioned regular CG with

GGTINV is faster than the pipelined CG without preconditioning. Please note that in both cases using GGTINV keeps the

scaling superlinear up to 1024 subdomains. The superlinear effect for strong scaling evaluation is achieved by the reduction

of the subdomain sizes and therefore the sizes of their stiffness matrix. This is behavior of the forward and backward

substitution operation in the sparse direct solver. Using smaller domains means having higher number of them and therefore

it puts higher pressure on the communication layer. If the communication layer is scalable, it can take the superlinear effect

of the sparse direct solver and translates it to the superlinear scalability of the entire TFETI solver. 

The advantage of using the lumped preconditioner is shown in Fig. 11 where the number of iterations is reduced by

60%–70% on average. When these numbers are combined with the per iteration time we get the entire solution time, shown

in Fig. 12 . In this figure the significant iteration reduction achieved using the lumped preconditioner is seen from very

beginning but gets eliminated by the iteration time for decompositions into 512 and 1024 subdomains where using GGT-

INV becomes the most significant aspect of the entire solution time. Again the most important information is that we are

able to achieve the superlinear scaling for the entire solution up to 1024 subdomain problem decomposition using simple

preconditioner. 
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Fig. 12. Strong scaling evaluation of the real problem “Engine 2.5 Million DOF” benchmark for the TFETI method. Entire solution time in seconds for 

different number of subdomains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

The current implementation of the solver is primarily focused on the performance optimization of the main CG solver

iteration loop, including: implementation of communication hiding and avoiding techniques for global communications; op-

timization of the nearest neighbor communication - multiplication with a global gluing matrix; optimization of the parallel

CG algorithm to iterate only over local Lagrange multipliers. In other words, we focused on the development of the highly

scalable FETI solver. This goal has been successfully achieved as it is shown in Figs. 10 and 12 . It can be seen that not only

the iteration time but also the solution time scales superlinearly up to 1024 subdomains on a real life benchmark with

hundreds of iterations. 

We have also proven that our implementation of the TFETI solver can be used to solve large problems of sizes up to

1.6 billion DOF using 400 compute nodes (64 GB of RAM per node) and approximately 25 TB of memory. The memory

consumption is mainly caused by large local stiffness matrices and objects generated during their factorizations. These tests

show that the main bottleneck for solving large scale problems is the coarse problem preprocessing that cannot be efficiently

distributed and it is processed on a single node. Please note that the solver itself scales very well. Its scalability can be

shown using an example where problem of various sizes are decomposed into 192,0 0 0 DOF subdomains. The iteration time

for the problem of the size of 22,588,608 DOF (125 subdomains) is 0.841 s, while for the problem of size 1,429,138,623

(80 0 0 subdomains) it is 0.911 s. This means that for 63 times larger problem the iteration time has been increased only by

8.3%. 

We have also implemented the parallel routines for inter cluster processing used by the HTFETI method. The cluster

processing is distributed among the CPU cores (shared memory model) only and exploits two levels of parallelism: the data

parallelism delivered by the MKL library and the task parallelism achieved using Intel Cilk Plus over multiple subdomains in

a cluster. Our evaluation shows the optimal configuration of the clusters in terms of the number of subdomains per cluster

and its size to achieve optimal preprocessing and/or iteration time. We have shown that to achieve optimal iteration time

the number of subdomains per cluster has to match or be in multiples of the number of CPU cores per node. 
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