
Software Controlled Clock Modulation for
Energy Efficiency Optimization on Intel Processors

Robert Schöne, Thomas Ilsche, Mario Bielert, Daniel Molka, and Daniel Hackenberg
Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden, 01062 Dresden, Germany,
Email:{robert.schoene, thomas.ilsche, mario.bielert, daniel.molka, daniel.hackenberg}@tu-dresden.de

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper has been published in the Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), 2016, DOI: 10.1109/E2SC.2016.015

Abstract—Current Intel processors implement a variety of
power saving features like frequency scaling and idle states.
These mechanisms limit the power draw and thereby decrease the
thermal dissipation of the processors. However, they also have an
impact on the achievable performance. The various mechanisms
significantly differ regarding the amount of power savings, the
latency of mode changes, and the associated overhead. In this
paper, we describe and closely examine the so-called software
controlled clock modulation mechanism for different processor
generations. We present results that imply that the available
documentation is not always correct and describe when this
feature can be used to improve energy efficiency. We additionally
compare it against the more popular feature of dynamic voltage
and frequency scaling and develop a model to decide which
feature should be used to optimize inter-process synchronizations
on Intel Haswell-EP processors.

Index Terms—Microprocessors, Performance analysis, Systems
modeling, Dynamic voltage scaling

I. INTRODUCTION

The limits of technology scaling due to the increasing
power density [1] have resulted in various power optimization
techniques that are now available in state-of-the-art processors.
The ACPI standard [2] defines four different power saving
states that are supported by current Intel processors: System
sleeping states (S-states), processor power states (C-states),
processor performance states (P-states), and throttling states
(T-states). These states are implemented by using one of the
following hardware power saving techniques: power gating (S-
and deep C-states), clock gating (shallow C-states), dynamic
voltage and frequency scaling (P-states, C1E-state), and clock
modulation (T-states). S- and C-states stop the processing of
instructions. They need an external signal, e.g., an interrupt,
to return to a working state. Furthermore, the processor state
has to be restored when resuming to normal operation, which
creates considerable overhead [3]. P- and T-states are not
subject of these restrictions. Thus, they can be used easily
for energy efficiency optimization. While dynamic voltage and
frequency scaling (DVFS) optimization is so common that it
is part of operating systems [4], optimization efforts that use
clock modulation are still rare. This paper describes details of
Intel’s clock modulation implementation for several processor
generations. This will help researchers to assess whether they
should use this feature for their optimization.

This paper is structured as follows: In Section II, we
describe Intels clock modulation feature and discuss its us-

age for energy efficiency optimization in High Performance
Computing (HPC). We define our measurement environment,
hardware, and software in Section III. In Section IV, we de-
scribe how throttling states in various Intel processors perform
in detail. The sustained behavior of power and performance
for Haswell-EP processors is presented in Section V. In
Section VI, we describe a model that determines whether
P- or T-states should be used and exemplarily apply it on
Intel Haswell-EP processors. We conclude this paper with a
summary and outlook in Section VII.

II. BACKGROUND AND RELATED WORK

Weste and Harris describe the processor power consumption
as follows [5, Section 5.1.3]:

Ptotal =

Pdynamic︷ ︸︸ ︷
αCV 2

DDf + ISCVDD +

Pstatic︷ ︸︸ ︷
(Ileak + Icont) · VDD (1)

The different power saving features target different parts of
Equation 1. In this paper, we focus on the effects of software
controlled clock modulation, which only influences the activity
factor α. Thus, it does not affect the static power consumption,
which is dominated by leakage power. In contrast, DVFS
reduces the frequency f as well as the supply voltage VDD,
which reduces both, static power and dynamic power.

Clock modulation is related to clock gating: In clock gating
(depicted in Figure 1), the clock is disabled whenever the
stop-clock signal is active. The applied clock signal is then
the result of the external clock signal AND the de-asserted
stop-clock. Thus, the dynamic power consumption can be
reduced significantly, as “short circuit current has become
almost negligible”[5, Section 5.2.5] in nanometer processes.

Clock modulation uses a comparable mechanism. When a
certain condition (clock modulation assertion) is set, the clock
is disabled whenever a clock modulation signal indicates it.

External
Clock Signal

Stop-Clock
Assertion

......

time

Applied
Clock Signal ...

Fig. 1: Influence of clock gating on a processor clock signal

http://dx.doi.org/10.1109/E2SC.2016.015

External
Clock Signal

Clock Modulation
Assertion

Applied
Clock Signal ...

......

Clock Modulation
Signal

...

...

...

......

time

Fig. 2: Influence of clock modulation on a processor clock
signal

The resulting signal that is applied to the processor is thus the
result of ANDing the external clock signal, and the NEGated
result of ANDing the condition, and the clock modulation
signal. This is depicted in Figure 2.

The initial intent of support for clock modulation in Intel
processors is to prevent them from overheating [6, Chapter
14.7.2]. The first implementation, which is called Thermal
Monitor 1 (TM1), has been introduced with Intel Pentium
4 processors. Another feature that enforces a low processor
temperature is called Thermal Monitor 2 (TM2), which uses
DVFS to achieve a lower power dissipation. In [7], Rotem et
al. describe how this technique is more effective than its clock
modulation counterpart. Starting with Intel Core 2 processors,
Intel introduced Adaptive Thermal Monitor where different
transition targets can be used under overheating conditions.
Processor manuals [6] describe this mechanism to dynami-
cally select between TM2 and TM1. According to technical
documents for desktop processors [8], [9], this mechanism
applies DVFS when the target temperature is exceeded and
clock modulation in addition, if the thermal effect of DVFS
is not sufficient. Clock modulation can also be triggered by
software via the MSR register IA32_CLOCK_MODULATION.
This interface can be used to modify the percentage of skipped
cycles in steps of 6.25 % (12.5 % for older architectures).

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper has been published in the Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), 2016, DOI: 10.1109/E2SC.2016.015

Clock modulation does not need any support by voltage
regulators and can therefore be implemented with a reasonable
amount of extra hardware. Thus, current Intel processors
implement it per processor core in contrast to DVFS which
typically has a coarser granularity.

Bhalachandra et al. use clock modulation to optimize the
energy efficiency of imbalanced MPI programs [10]. They
implement a model that changes the clock modulation setting
at every collective MPI routine according to the time spent in
communication phases. Cicotti et al. present the EfficientSpeed
library [11]. This library determines the best DVFS/clock
modulation setting for instrumented regions to optimize energy
efficiency. Finally, Wang et al. also apply clock modulation to
Sandy Bridge processors for energy efficiency purposes [12].
In this paper, we describe a peculiarity of Sandy Bridge and
Ivy Bridge processors that indicates that the results in [10],
[11], [12] will be significantly different on other architectures.

III. EXPERIMENTAL METHODOLOGY

We investigate the short term effects of clock modulation as
well as the behavior over longer time periods. In this Section,
we describe the used workflows and the set of processors that
we investigated.

A. Analysis of short time scale effects

To determine how clock modulation is implemented by
the processor, we use a measurement routine that is similar
to the one used by Mazouz et al. for measuring P-state
latencies [13]. Our implementation is shown in Listing 1. We
run 220 iterations of this measurement loop and record the
respective run times in memory. In order to represent software
that is already established in the operating system contexts, we
skip the first 75 % of the results in the analysis, as they exhibit
more noise than the latter 25 %. This results in a total number
of 218 samples. To control the clock modulation setting, we
use the x86 adapt1 library and kernel module [3].

The entire benchmark is repeated with all combinations of
available frequencies and clock modulation settings. Addition-
ally, the clock modulation is set either on one or on all cores
of a system to check whether the implementation treats this
differently. The gathered execution times are analyzed in a
post-mortem step to answer the following questions:

• How long is the cycle of the clock modulation signal?
• How long is the assertion phase of the clock modulation

signal depending on the clock modulation value?
• Is this mechanism influenced by the frequency of the

processor?
• Does it depend on the number of cores using it?
• Is the signal synchronous on all cores of a processor?

To gather the initialization delay, we get the expected runtime
of the measurement loop, activate clock modulation, and
execute the loop until its runtime is significantly higher.
Afterwards we ensure that the extended runtime is within
the expected range. To measure the delay after deactivating
clock modulation, we wait a random time after the last clock
modulation cycle, deactivate clock modulation, and wait for
60 µs for an extended runtime. We register the random wait-
time, the extended runtime and the time between deactivating
clock modulation and the start time of the interrupted loop.

unsigned hi , l o ; unsigned long long c o u n t ;
f o r (c o u n t = 0 ; c o u n t < STORE SIZE ; c o u n t ++) {

asm v o l a t i l e (/ / 150 adds
” a d d l $1,%%eax ; ” / / . . . r e p e a t more adds
: : : ”%eax ”) ;

/ / g e t t i m e i n r e f e r e n c e c y c l e s
asm v o l a t i l e (” mfence ; r d t s c ” : ”=a ” (l o) , ”=d ” (h i)) ;
/ / s t o r e r e s u l t s
r e s u l t s [c o u n t] = ((unsigned long long) l o) |

(((unsigned long long) h i) << 3 2) ;
}

Listing 1: measurement loop for short timescale analysis

1https://github.com/tud-zih-energy/x86 adapt

http://dx.doi.org/10.1109/E2SC.2016.015
https://github.com/tud-zih-energy/x86_adapt

B. Influence on Performance and Power Consumption

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper has been published in the Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), 2016, DOI: 10.1109/E2SC.2016.015

We use a second benchmark code to measure the influence
of clock modulation on application performance and system
power consumption. The benchmark consists of multiple ker-
nels that exhibit diverse characteristics in terms of resource
usage (e.g. memory bound vs. compute intense). Each mea-
surement kernel is repeated for approximately 60 seconds,
the number of repetitions is reported as utility. This metric
represents an abstract way to compare the performance at
different settings. The kernels are executed at varying clock
modulation and frequency settings. In Section V, we present
the results with one thread per core unless stated otherwise.

The execution is correlated with an external power mea-
surement. Average power consumption is computed from the
inner 60 % percentile to avoid influence of timer accuracy and
synchronization issues. We pin the single threads of the mea-
surement loop to processor cores via the environment variable
GOMP_CPU_AFFINITY. We also disable all C-States, but C0
and C1 via writing to the corresponding pseudo-files in the
/sys directory. C-State auto-demotion is also disabled.

C. Test Systems and Setup

We perform our experiments on a selection of Intel desktop
and server processors, listed in Table I. With this assortment
of processors, we can illustrate the development of the clock
modulation mechanism over multiple processor generations
and describe how the implementations differ from one another.
All systems use Ubuntu 16.04 with the Linux kernel in version
4.4.0-21.

TABLE I: Tested Processors

Architecture Processor Model Frequency Range [GHz]

D
es

kt
op

Sandy Bridge i7-2600 1.6-3.4
Ivy Bridge i5-3470 1.6-3.2

Haswell i7-4770 0.8-3.4
Skylake i7-6700K 0.5-4.0

Se
rv

er Sandy Bridge 2x E5-2670 1.2-2.6
Haswell 2x E5-2690 v3 1.2-2.6

IV. CLOCK MODULATION AT SHORT TIME SCALE

In this Section, we describe low-level details of how dif-
ferent processors implement clock modulation. The findings
enable us to understand the implemented mechanisms and to
interpret results over longer time periods.

A. Clock Modulation Parameters

Based on the measurements described in Section III-A,
we determine the following parameters: f defines the fre-
quency that is applied to the processor core, m defines the
applied clock modulation setting. tstd(f,m) represents the
time spent for executing one benchmark loop. tthr(f,m)
represents the execution time when the loop is interrupted
by a throttling event. ∆tthr(f,m) describes the difference
between tthr(f,m) and tstd(f) and represents the length
of the assertion of the clock modulation signal. Tthr(f,m)

 t (f,m) thr n*t (f) std

T (f,m) thr T (f,m) thr

Outlier, e.g.,
interrupt

t

Normal execution Stop
Clock Normal ex. Stop

Clock

Fig. 3: Clock modulation, measured parameters.

represents the time between two throttling events and the
length of a clock modulation cycle. Two throttling cycles
and the parameters and the measured times are depicted in
Figure 3.

From the captured runtimes ti(f,m), we first determine
tstd(f,m). To do so, we sort the runtimes in ascending
order and create a cluster, starting with the minimum runtime
t0(f,m). We add the next runtime ti+1(f,m) to this cluster as
long as ti+1(f,m)−ti(f,m) < max(dabs, ti(f,m)·(1+drel)),
where dabs = 30 ref. cycles and drel = 8 %. We denote
minimum and maximum of the cluster as tmin

std (f,m), resp.
tmax
std (f,m). Afterwards, we attempt to find another cluster

for tthr(f,m). We use the same algorithm as before and set
the minimal time tmin

thr (f,m) to the successor of tmax
std (f,m).

If the resulting cluster does not represent at least 5 % of the
overall runtime, we increase tmin

thr (f,m) and repeat the search
until the 5 %-criterion is met. We classify measured runtimes
that are not part of these clusters as outliers. To further remove
outliers within the clusters, we use their median as tstd(f,m),
resp. tthr(f,m).

An example of these results is depicted in Figure 4. Even
though the runtimes tstd(f,m) vary, the major part of them
clusters around 212 reference cycles. Please note that the
diagram uses logarithmic axes.

To determine the distance between two throttling events
Tthr(f,m), we go through the initial unsorted list of measured
runtimes and identify the time difference between loops with
a runtime ti(f,m), where ti(f,m) >= tmin

thr (f,m) and
ti(f,m) <= tmax

thr (f,m). Afterwards we use the median of
these time differences as Tthr(f,m).

102 103 104 105 106 107

time for executing a single iteration [reference cycles]

100

101

102

103

104

105

106

nu
m

be
r o

f s
am

pl
es

median = 212.0
average = 211.0
runtime share = 10.2 %

median = 97084.0
average = 97377.0
runtime share = 89.3 %

Standard execution Outlier Throttling

Fig. 4: Result distribution on Intel Haswell server processor
(f=2600 MHz, m=93.75 %) for short time scale measure-
ments.

http://dx.doi.org/10.1109/E2SC.2016.015

93.75 87.5 81.25 75.0 68.75 62.5 56.25 50.0 43.75 37.5 31.25 25.0 18.75 12.5 6.25disabled
clock modulation setting [%]

39

40

41

42

43

44

T
th
r
(f
,m

)
[µ

s]

1200 MHz

1700 MHz

2100 MHz

2600 MHz

Turbo

(a) On Sandy Bridge and Ivy Bridge test systems, Tthr(f,m) is not influenced
by f and m. The figure relates to Sandy Bridge EP sytem.

93.75 87.5 81.25 75.0 68.75 62.5 56.25 50.0 43.75 37.5 31.25 25.0 18.75 12.5 6.25disabled
clock modulation setting [%]

39

40

41

42

43

44

T
th
r
(f
,m

)
[µ

s]

1200 MHz

1700 MHz

2100 MHz

2600 MHz

Turbo

(b) On Haswell and Skylake processors, Tthr(f,m) varies significantly and
is influenced by the applied frequency f . The figure depicts results from a
Haswell-EP test system.

Fig. 5: The clock modulation window Tthr(f,m), which includes a period of clock stop assertion and clock stop desertion is
between 40 and 45 microseconds on all examined architectures.

B. Results

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper has been published in the Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), 2016, DOI: 10.1109/E2SC.2016.015

The period of throttling events Tthr(f,m) is independent
from f and m on Sandy Bridge and Ivy Bridge processors
and varies between 40.5 and 43.5 µs on Haswell and Skylake
processors. This is depicted in Figure 5. On the newer archite-
cures, Tthr(f,m) increases with a lower core frequency.

In an ideal implementation, the clock modulation setting m
will be directly translated to the clock modulation assertion
time ∆tthr(f,m) so that the processor will not execute
cycles for the respective share of Tthr(f,m). For a theoretical
clock modulation setting of 100 %, this share would result in
∆tthr(f,m) being Tthr(f,m), for disabled clock modulation
∆tthr(f,m) would be 0. The remaining clock modulation
settings should provide a ∆tthr(f,m) = m ∗ Tthr(f,m).
As we show in Figure 6, the resulting throttling times do
not follow the ideal, but ∆tthr(f,m) is higher than expected
for all clock modulation settings < 93.75 %. On Haswell
and Skylake architectures, the difference between the ideal
and measured throttling time decreases with a higher clock
modulation setting while it is almost constant for Sandy

Bridge and Ivy Bridge processors. Furthermore, the highest
clock modulation setting (93.75 %) provides the same results
as the second highest (87.5 %). This can be seen for all
architectures except the Skylake Desktop processor, where the
final clock modulation step increases ∆tthr(f,m) by approx.
2 % (depending on the frequency) compared to the previous
setting of 87.5 % (not depicted).

Our results also explain the significant energy efficiency
savings when using clock modulation on Sandy Bridge or Ivy
Bridge processors as presented in [10], [11], and [12]. If the
clock modulation setting is equal among all cores and can be
represented as a frequency (i.e., if the original frequency is
high enough and the clock modulation is not too high), the
processor uses DVFS instead. For example, for f=2600 MHz,
the runtime tstd of the loop is 83.1 ns, which does not change
when a single core applies clock modulation. This can be seen
in Table II. When all cores use a common clock modulation
value, e.g., 12.5 %, tstd increases to 96.9 ns which would
correspond to f=2230 MHz. No clock modulation can be
observed. When the targeted performance of the common

93.75 87.5 81.25 75.0 68.75 62.5 56.25 50.0 43.75 37.5 31.25 25.0 18.75 12.5 6.25disabled
clock modulation setting [%]

0

5

10

15

20

25

30

35

40

45

∆
t t
h
r
(f
,m

)
[µ

s]

1200 MHz

1700 MHz

2100 MHz

2600 MHz

Turbo

(a) On Sandy Bridge processors, Tthr(f,m) is constant for all f and m.
Thus the lines for the minimal and maximal expected ∆tthr(f,m) overlap.
∆tthr(f,m) is higher than expected, except for m=93.75 %.

93.75 87.5 81.25 75.0 68.75 62.5 56.25 50.0 43.75 37.5 31.25 25.0 18.75 12.5 6.25disabled
clock modulation setting [%]

0

5

10

15

20

25

30

35

40

45

∆
t t
h
r
(f
,m

)
[µ

s]

1200 MHz

1700 MHz

2100 MHz

2600 MHz

Turbo

(b) Tthr(f,m) varies significantly on Haswell processors, depending on f and
m. Still, most of the measured ∆tthr(f,m) are above the expected range.

Fig. 6: The clock modulation signal assertion time ∆tthr(f,m) is higher than described in the processor manual with the
exception of a 93.5 % clock modulation setting. The gray dashed lines depict the expected maximal and minimal ∆tthr(f,m),
based on the assumption that ∆tthr(f, 100%) = Tthr(f,m) and ∆tthr(f, disabled) = 0

http://dx.doi.org/10.1109/E2SC.2016.015

TABLE II: Sandy Bridge EP loop runtimes. When all cores apply a common clock modulation setting, DVFS is used
alternatively which increases tstd. This behavior applies only to Sandy Bridge and Ivy Bridge processors.

Freq. cores Result (93.75) ex. 2 Clock modulation setting [%] ex. 1 dis-
[MHz] 87.5 81.25 75 68.75 62.5 56.25 50 43.75 37.5 31.25 25 18.75 12.5 6.25 abled

2600

one 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831 0.0831
all tstd[µs] 0.18 0.18 0.18 0.18 0.18 0.18 0.166 0.153 0.135 0.127 0.112 0.105 0.0969 0.09 0.0831
one

tthr[µs] 35.5 32.9 30.4 28 25.4 23 20.4 17.9 15.5 12.9 10.4 7.97 5.41 3.01 -
all 28.4 23.4 18.3 13.3 8.38 - - - - - - - - - -

2000

one 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108
all tstd[µs] 0.18 0.18 0.18 0.18 0.177 0.18 0.18 0.18 0.18 0.166 0.144 0.135 0.127 0.12 0.108
one

tthr[µs] 335.6 33 30.5 28.1 25.5 23.1 20.6 18 15.6 13 10.5 8.07 5.51 3.11 -
all 30.8 28.4 23.4 18.3 15.9 10.8 5.82 3.42 - - - - - - -

1200

one 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.177 0.18 0.18 0.18 0.18 0.18 0.18
all tstd[µs] 0.18 0.18 0.18 0.177 0.18 0.18 0.18 0.18 0.177 0.18 0.18 0.18 0.18 0.18 0.18
one

tthr[µs] 35.9 33.3 30.8 28.4 25.8 23.4 20.9 18.3 15.9 13.3 10.8 8.38 5.82 3.42 -
all 35.9 33.3 30.8 28.4 25.8 23.4 20.9 18.3 15.9 13.3 10.8 8.38 5.82 3.42 -

clock modulation setting is lower than the lowest supported
frequency, clock modulation is used in addition to DVFS.
For example, if a clock modulation setting of 81.25 % is
applied at f=2600 MHz, the standard runtime tstd increases to
180 ns, which indicates a processor frequency of 1200 MHz.
Here, DVFS reduces the performance to 46.2 %. In addition,
a clock modulation time tthr of 23.4 µs is introduced, which
reduces the total average performance to 19.2 % relative to
the baseline with no clock modulation. This is close to the
18.75 % performance target. Please note that this behavior
only applies to Sandy Bridge and Ivy Bridge processors and
could not be observed on other processors. Thus, the efficiency
results in [10], [11], and [12] will significantly change on
newer architectures.

On Sandy Bridge and Ivy Bridge architecture, the first
clock modulation is executed 12.5 µs after its activation by
software. On newer architectures, this initialization delay is
T (f,m)−∆t(f,m). Here, the activation trigger can be seen as
falling edge of the clock modulation signal. On Sandy Bridge
processors, the assertion is deactivated 17 µs after software
triggers the register. Thus, clock modulation phase can be
executed (partially) afterwards. On Haswell processors, we
could not observe any residual clock modulation activity.

Our final observation targets the synchronicity of throttling
events. Here we use an OpenMP parallel version of our
measurement loop and store the runtimes of each thread. In
Figure 7, we depict a measurements of the Haswell-EP system
with f=2000 MHz and m=6.25 %. The results indicate that
there is no synchronization between the clock modulation
mechanisms of the single cores. A repeated experiment pro-
vided a completely different pattern.

50 100 150 200 250 300 350
runtime of benchmark [µs]

0

5

10

15

20

M
o
n
it

o
re

d
 c

o
re

 [
#

]

throttling occurence

Fig. 7: Clock modulation pattern for all cores on a dual socket
Haswell EP system.

V. SUSTAINED PERFORMANCE AND POWER
CHARACTERISTICS IN COMPARISON WITH DVFS

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper has been published in the Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), 2016, DOI: 10.1109/E2SC.2016.015

The effects that we described in the previous Section affect
the performance and power consumption. In this Section we
describe the sustained effect of applying clock modulation and
compare it with DVFS.

A. Performance Measurements

The naı̈ve assumption is that performance scales proportion-
ally with the clock modulation setting. However, results from
the benchmark described in Section III-B reveal, that this is not
the case in practice. Figure 8a shows the normalized sustained
performance for various workloads on a Haswell-EP system.

Memory-intense workloads deviate the most from the pro-
portional scaling. Especially the workload that performs all
operations in memory can retain more performance at medium
clock modulation settings. In this scenario, multiple cores are
still accessing the memory while others are inactive so that
the memory subsystem as the main bottleneck is kept busy.
For a reduced number of threads, the effect vanishes and the
memory kernel behaves similar to the others. Compared to
concurrency throttling where the number of active threads
is reduced statically, the number of active threads changes
dynamically depending on the phase shift between the clock
modulation signals of different cores.

The kernels that do not access the main memory (addpd,
busywait, compute, mulpd, sine, and sqrt) show
identical performance scaling slightly below the ideal propor-
tional expectation. One exception is that the 93.75 % clock
modulation setting behaves exactly like the 87.5 % setting.
These observations are in accordance with the results described
in Section IV-B.

While the basic effect for non-memory workloads is consis-
tent across architectures, frequency settings, and core counts,
the exact quantity of the deviation from proportional scaling
varies. For memory workloads, the patterns vary strongly
between architectures, frequency settings, and core counts.
Considering that most applications work in memory at least
partially, it is best to measure the actual performance of the
specific application workload at different settings. Assuming
proportional performance can include significant errors.

http://dx.doi.org/10.1109/E2SC.2016.015

93.75 87.5 81.25 75.0 68.75 62.5 56.25 50.0 43.75 37.5 31.25 25.0 18.75 12.5 6.25 disabled
clock modulation setting [%]

0.0

0.2

0.4

0.6

0.8

1.0

p
e
rf

o
rm

a
n
ce

 [
n
o
rm

a
liz

e
d
 t

o
 1

]

addpd

busywait

compute

firestarter

matmul

memory

mulpd

sine

sqrt

proportional scaling

(a) Performance for clock modulation

93.75 87.5 81.25 75.0 68.75 62.5 56.25 50.0 43.75 37.5 31.25 25.0 18.75 12.5 6.25 disabled
clock modulation setting [%]

0

50

100

150

200

250

300

350

400

450

fu
ll

sy
st

e
m

 p
o
w

e
r

co
n
su

m
p
ti

o
n
 [

W
]

addpd

busywait

compute

firestarter

matmul

memory

mulpd

sine

sqrt

C1 idle

(b) Power consumption for clock modulation

260025002400230022002100200019001800170016001500140013001200
core frequency [MHz]

0.0

0.2

0.4

0.6

0.8

1.0

p
e
rf

o
rm

a
n
ce

 [
n
o
rm

a
liz

e
d
 t

o
 1

]

addpd

busywait

compute

firestarter

matmul

memory

mulpd

sine

sqrt

proportional scaling

(c) Performance for frequency scaling

260025002400230022002100200019001800170016001500140013001200
core frequency [MHz]

0

50

100

150

200

250

300

350

400

450

fu
ll

sy
st

e
m

 p
o
w

e
r

co
n
su

m
p
ti

o
n
 [

W
]

addpd

busywait

compute

firestarter

matmul

memory

mulpd

sine

sqrt

C1 idle

(d) Power consumption for frequency scaling

Fig. 8: Sustained power and performance characteristics of clock modulation at nominal frequency (2600 MHz) and frequency
scaling with disabled clock gating for various workloads on a Haswell-EP system running at 24 threads.

B. Power Measurements

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper has been published in the Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), 2016, DOI: 10.1109/E2SC.2016.015

The effect of clock modulation on the overall system power
is shown in Figure 8b. Similarly to performance scaling, non-
memory workloads exhibit a linear scaling of power con-
sumption, while memory-intense workloads show a non-linear
pattern. While the memory workload looses less performance
from medium clock modulation, also less power is saved.
Overall, the data indicates that the power consumption during
a clock modulation signal assertion equals the idle power in C-
State 1 (C1 idle). For non-memory kernels, a linear regression
over all clock modulation settings except 93.75 % accurately
predicts the power consumption of a theoretical 100 % clock
modulation to be the C1 idle power.

C. Comparison with DVFS

DVFS has the following key differences to clock modu-
lation: First, it provides significant higher power savings as
described in Section II. By changing the voltage in addition
to the frequency, non-linear power savings can be achieved.
Second, the granularity on which DVFS can be applied is
coarser. Until the Ivy Bridge-EP processor generation, DVFS
could only be set for each processor, while clock modulation
is always available as per-core setting. Beginning with the

Haswell-EP processor generation, per-core DVFS is possible,
but the transition times have increased significantly [14].
Finally, reducing the frequency does not impact the latency to
external events (e.g. interrupts), while clock modulation causes
a delay if the interrupt arrives during a throttling phase.

Figure 8c shows the relative performance under frequency
scaling as comparison to Figure 8a. Compared to clock
modulation, the performance scaling of DVFS is slightly
better. While the scaling is perfectly proportional for non-
memory workloads, the memory workload shows almost no
performance loss from reducing the frequency to a minimum.
This is in accordance with measurements from [14].

The power reduction that can be achieved with DVFS is
shown in Figure 8d. While generally similar, the non-memory
workloads consume less power at minimal frequency than at
a similarly performing clock modulation setting. As expected
from the fundamental principles, the sustained energy effi-
ciency is always better for DVFS than for clock modulation.
Therefore the two advantages of clock modulation are that it
can be changed almost instantaneously, while DVFS changes
can take longer to become effective (up to 500 µs on Haswell-
EP) and that it is always available as per-core setting even on
older processor generations and Desktop processors.

http://dx.doi.org/10.1109/E2SC.2016.015

VI. MODEL FOR OPTIMIZATIONS

The data that we compiled in the previous Sections can be
used to explain the effects of existing optimization approaches
or to create a new optimization technique based on a deep
understanding of the underlying architecture. In this example,
we focus on the latter by providing a model for optimizing
synchronization steps, e.g., MPI_Barriers, with the goal to
reduce the total energy consumption of the application. We
apply this model on the Haswell-EP architecture to determine
when clock modulation or DVFS should be used.

In order to optimize energy consumption, we alter the
system state during the synchronization step. The reference
state is fref = 2600 MHz and mref = 0 % (disabled). The
used optimization setting is fopt = 1200 MHz for DVFS, resp.
mopt = 93.75 % for clock modulation. We used the generic
model depicted in Figure 9. s(α, β) is the time during which
the system is blocked in order to initiate the switch from state
α to state β. Latency l(α, β) is the time, the system remains
in state α after initiating a switch to β. P(α, β) is the relative
performance in state α compared to state β.

A. Performance

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper has been published in the Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), 2016, DOI: 10.1109/E2SC.2016.015

Unlike computation regions, synchronization steps do not
have to process a given amount of load, but the progress of the
program is delayed until the synchronization signal is received.
Therefore, the performance of an optimized execution of the
synchronization step only decreases when the processor is
not able to process the incoming signal when it arrives. In
addition, the switch back to the reference state at the end of the
synchronization implies a performance loss on the subsequent
computation region. This loss is modeled with the switching
delay s(opt, ref) at the end of the synchronize step and the
excess time to finish the work package of the compute region,
i.e., d = [1− P(opt, ref)] · l(opt, ref). In general, the worst
case performance loss is equal to s(opt, ref)+d. However, this
delay can slow down the execution of the whole program while
power is only saved locally in one thread of execution. Thus,
these optimizations should not be executed on the critical path.

We assume, that the actual enabling and disabling of op-
timization setting in software can be done instantaneously.
Thus, the DVFS delay s(fopt, fref) is zero. According to [14],
l(fref , fopt) and l(fopt, fref) are on average 272.5 µs. For
clock gating, there is no single value for s(mopt,mref),
as it depends on the time, when the synchronization sig-
nal is received relative to the clock modulation asser-
tion. We use a mean value of s̄(mopt,mref) = 1

2 ·
∆tthr(fref ,mopt) = 16.67 µs, which equals the expectancy
for an average clock modulation assertion. On Haswell pro-
cessors, the clock modulation is applied without additional
latency, so we assume l(mref ,mopt), l(mopt,mref), and
subsequently d(mopt,mref) to be zero.

B. Energy consumption
In the following, we discuss how clock modulation com-

pares to DVFS in terms of energy efficiency. While a DVFS
optimization can lead to a performance loss of the following
region, clock modulation can lead to a prolonged execution
of the optimized area itself. Therefore, we define the energy
consumption that is needed for an optimized region (e.g. a
barrier, that is slowed down for optimization purposes) as the
energy used in this region plus the energy difference that might
occur from echo effects of the optimization (e.g., a delayed
resetting of the frequency).

Thus, the difference of the energy consumption can be
calculated as the sum of the difference in energy consumption
between the reference and the optimized region ∆Esync,
and the difference in energy consumption implied on the
following computation region ∆Ecompute. Additionally, the
energy impact ∆Eswitch of the state switch between both
regions has to be considered. The model shown in Figure 9 is
used to derive the formulae for these values given in Equations
(2), (3), and (4).

∆Esync = [Pswitch(ref) − Psync(ref)] · s(ref, opt)

+ [Psync(opt) − Psync(ref)] ·
[tsync − s(ref, opt) − l(ref, opt)] (2)

∆Eswitch = Pswitch(opt) · s(opt, ref) (3)

∆Ecompute = [Pcompute(opt) − Pcompute(ref)] · l(opt, ref)

+ d · Pcompute(ref) (4)

Synchronize Compute

t Sync t Compute

P Sync

P Compute

f reff

P

t

t

(a) default execution of an example application which waits for an external
event in a region that might be optimized

Synchronize Compute

t sync t‘ compute

P (ref) compute

f opt

f ref

P (ref) sync

P (opt) compute

s l(opt,ref) ds l(ref,opt)

f

P

t

t

P (opt) sync

f ref

P (ref) switch P (opt) switch

(b) model of the optimization, with different performance losses in form of the
delay s, the latency l and the excess computation time d.

Fig. 9: Model of the default and optimized execution of a synchronization step in an example application.

http://dx.doi.org/10.1109/E2SC.2016.015

TABLE III: Measured parameters of the energy model

Reference DVFS Clock Modulation
P 1 0.53798 0.09876
Psync [W] 233.3 152.4 155.5
Pcompute [W] 320.1 176.6 165.1
Pswitch [W] - - 147.524

Based on the measured parameters from our test system (Ta-
ble III) and the sum of the equations for ∆Esync, ∆Eswitch,
and ∆Ecompute, we build a model for energy savings with
DVFS and clock modulation. Combining these results leads
to two linear functions describing the amount of energy saved
for each optimization technique. Those two models are given
in Equation (5) and (6).

∆EDFV S = 21.4mJ − 80.9W · tsync (5)

∆ECM = 2.5mJ − 77.7W · tsync (6)

With these models we can estimate the minimal duration
for the synchronization step to apply an optimization to
be 263.8 µs and 31.6 µs for DFVS and clock modulation,
respectively. Hence, clock modulation should be preferred over
DVFS for shorter synchronization steps. With an increased
runtime of the synchronization, DVFS provides a higher effect
on energy consumption. The break-even point is calculated to
be at 5999.4 µs.

Thus, on our test system, synchronization steps with a
duration of less than 31.6 µs should not be optimized at all. For
a duration greater than 6 ms, DVFS should be used. Otherwise,
clock modulation is the best choice.

VII. CONCLUSION AND OUTLOOK

There are valid reasons to use clock modulation for energy
efficiency optimization: (1) The granularity of this power
saving technique is per-processor-core, which makes it su-
perior to DVFS when the processor does not support per-
core performance states. (2) The latency for enabling and
disabling clock modulation is significantly lower compared
to the usage of DVFS on some architectures. (3) It can be
used in addition to DVFS to enable even more active power
saving states, where a processor core does not need an external
signal to switch back to a high performing performance state.
However, the usage of clock modulation has to be considered
with the implementation details in mind. In this paper we have
shown that the implementation of software controlled clock
modulation differs significantly between different processor
architecture and from the description in the provided processor
manuals. While on Sandy Bridge and Ivy Bridge architectures
the processors use DVFS instead of clock modulation when
all cores agree to a specific clock modulation setting, newer
architectures like Haswell and Skylake deviate to a higher de-
gree from the specified target performance. However, we have
shown that clock modulation is a valid optimization technique

for synchronization based optimization that should be used as
an alternative to DVFS for short running synchronization steps.
Future work will include a survey of the Xeon Phi processor,
codenamed Knights Landing. This processor also has a low
DVFS granularity but supports clock modulation per tile (a
group of 2 processor cores) according to initial measurements.

ACKNOWLEDGMENT

This work has been funded in a part by the German Re-
search Foundation (DFG) in the Collaborative Research Center
“Highly Adaptive Energy-Efficient Computing” (HAEC, SFB
912) and by the European Union’s Horizon 2020 Programme
in the READEX project under grant agreement number
671657. The authors would like to thank Sven Schiffner for
his support.

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper has been published in the Proceedings of the 4th International Workshop
on Energy Efficient Supercomputing (E2SC), 2016, DOI: 10.1109/E2SC.2016.015

REFERENCES

[1] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, 1999,
DOI: 10.1109/40.782564.

[2] “Advanced configuration and power interface (acpi) specification, revi-
sion 6.1,” 2016, Available online at uefi.org (2016-08-05).

[3] R. Schöne, D. Molka, and M. Werner, “Wake-up latencies for processor
idle states on current x86 processors,” Computer Science - Research and
Development, 2014, DOI:10.1007/s00450-014-0270-z.

[4] V. Pallipadi and A. Starikovskiy, “The ondemand governor past, present,
and future,” in Proceedings of the Linux Symposium, 2006, Available
online at kernel.org (2016-08-05).

[5] N. H. E. Weste and D. M. Harris, CMOS VLSI Design - A Circuits and
Systems Perspective, 4th Edition. Pearson, 2011.

[6] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3A, 3B, and 3C: System Programming Guide, Available online
at Intel.com (2016-08-05).

[7] E. Rotem, A. Naveh, M. Moffie, and A. Mendelson, “Analysis of thermal
monitor features of the intel pentium m processor,” in Workshop on
Temperature-Aware Computer Systems, 2004.

[8] Intel Core i7-800 and i5-700 Desktop Processor Series and LGA1156
Socket Thermal/Mechanical Specifications and Design Guidelines, Intel,
2009, Available online at Intel.com (2016-08-05).

[9] Desktop 3rd Generation Intel Core Processor Family, Desktop Intel
Pentium Processor Family, Desktop Intel Celeron Processor Family,
and LGA1155 Socket Thermal Mechanical Specifications and Design
Guidelines (TMSDG), Intel, 2013, Available online at Intel.com (2016-
08-05).

[10] S. Bhalachandra, A. Porterfield, and J. Prins, “Using dynamic duty cycle
modulation to improve energy efficiency in high performance comput-
ing,” in IEEE International Parallel and Distributed Processing Sympo-
sium Workshop (IPDPSW), 2015, DOI: 10.1109/IPDPSW.2015.144.

[11] P. Cicotti, A. Tiwari, and L. Carrington, “Efficient speed (es): Adaptive
dvfs and clock modulation for energy efficiency,” in IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), 2014, DOI:
10.1109/CLUSTER.2014.6968750.

[12] W. Wang, A. Porterfield, J. Cavazos, and S. Bhalachandra, “Using per-
loop cpu clock modulation for energy efficiency in openmp applica-
tions,” in International Conference on Parallel Processing (ICPP), 2015,
DOI: 10.1109/ICPP.2015.72.

[13] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of
CPU frequency transition latency,” Computer Science - Research and
Development, 2013, DOI: 10.1007/s00450-013-0240-x.

[14] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell pro-
cessor,” in International Parallel and Distributed Processing Symposium
Workshop (IPDPSW), 2015, DOI: 10.1109/IPDPSW.2015.70.

http://dx.doi.org/10.1109/E2SC.2016.015
http://dx.doi.org/10.1109/40.782564
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://dx.doi.org/10.1007/s00450-014-0270-z
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/core-i7-800-i5-700-desktop-lga1156-thermal-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/design-guides/3rd-gen-core-lga1155-socket-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/design-guides/3rd-gen-core-lga1155-socket-guide.pdf
http://dx.doi.org/10.1109/IPDPSW.2015.144
http://dx.doi.org/10.1109/CLUSTER.2014.6968750
http://dx.doi.org/10.1109/CLUSTER.2014.6968750
http://dx.doi.org/10.1109/ICPP.2015.72
http://dx.doi.org/10.1007/s00450-013-0240-x
http://dx.doi.org/10.1109/IPDPSW.2015.70

	Introduction
	Background and Related Work
	Experimental Methodology
	Analysis of short time scale effects
	Influence on Performance and Power Consumption
	Test Systems and Setup

	Clock Modulation at Short Time Scale
	Clock Modulation Parameters
	Results

	Sustained Performance and Power Characteristics in Comparison with DVFS
	Performance Measurements
	Power Measurements
	Comparison with DVFS

	Model for Optimizations
	Performance
	Energy consumption

	Conclusion and Outlook
	References

