Properties of the Solutions to "Fractionalized" ODE Systems, with Applications to Processes Arising in the Life Sciences

Kai Diethelm

Gesellschaft für numerische Simulation mbH Braunschweig

AG Numerik Institut Computational Mathematics Technische Universität Braunschweig

International Conference on Fractional Differentiation and its Applications July 18–20, 2016

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Acknowledgement

Part of the work was performed within the context of the project

The project READEX has received funding from the European Union's *Horizon 2020* research and innovation programme under Grant Agreement No. 671657.

Horizon 2020 European Union funding for Research & Innovation

Goal of the Presentation

The primary goal of this talk is

- not to present new results,
- but to
 - mention some important open problems, and
 - initiate some research work in this respect.

Table of Contents

Basic Observation

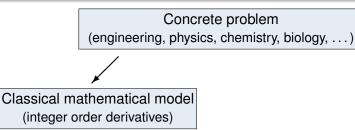
- 2 Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- 3 Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

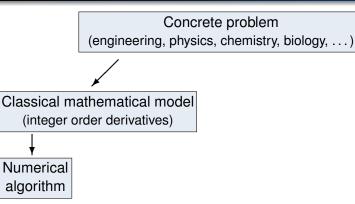
4 Outlook

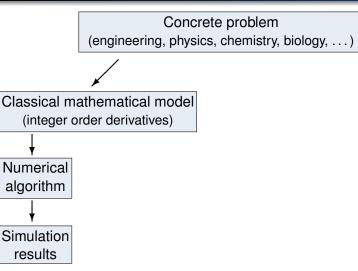
- Mathematical Modeling and Simulation
- Software Development

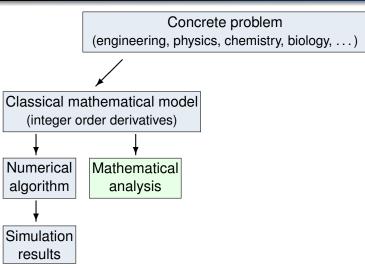
Frequently Seen Research Approach

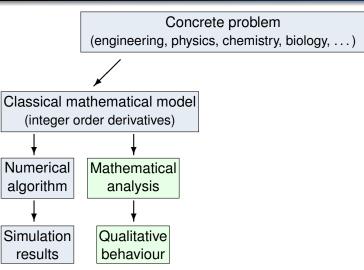
Concrete problem (engineering, physics, chemistry, biology, ...)

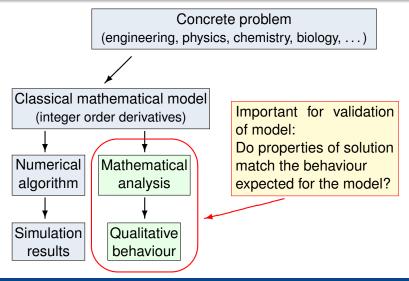


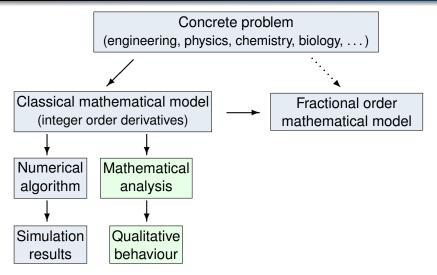


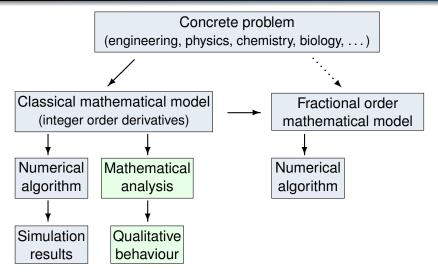


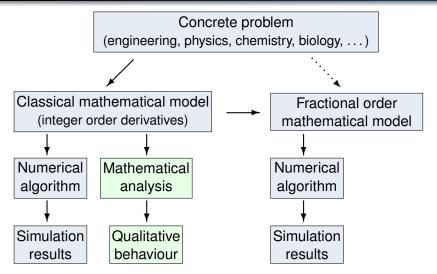


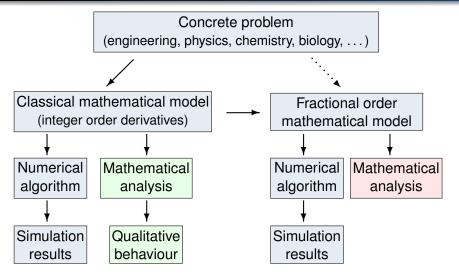


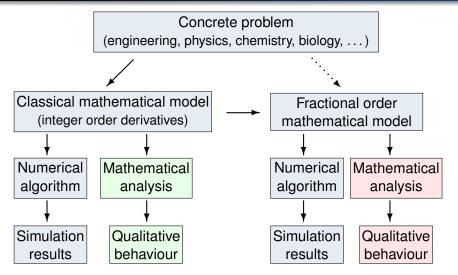


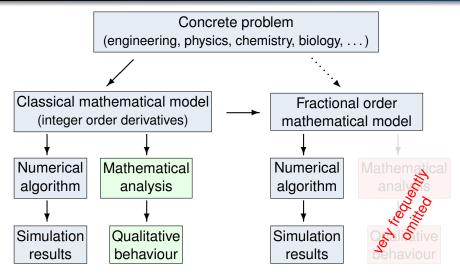












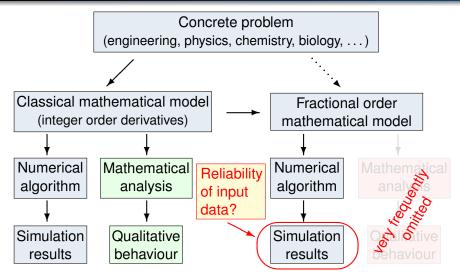


Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- 3 Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- 3 Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Dengue Fever

- Most important arthropod-borne viral disease of humans
- Transmitted from human to human via bites of (female) mosquitoes (mainly Aedes aegypti but also, e.g., Aedes albopictus)
- Endemic in many parts of the region from 35° N to 35° S
- Approx. 2.5 billion people living in the affected countries
- Likely to spread even further, e.g. to central and even northern Europe, in the coming decades

(World Health Organization, 2009)

SIR Model

- Human population is decomposed into 3 groups (susceptible, infected, recovered)
- Mosquito population is decomposed into 2 groups (susceptible, infected)

$$D^{1} S_{h} = \mu_{h}(N_{h} - S_{h}) - \frac{\beta_{h}b}{N_{h} + m}S_{h}I_{m}$$
$$D^{1} I_{h} = \frac{\beta_{h}b}{N_{h} + m}S_{h}I_{m} - (\mu_{h} + \gamma)I_{h}$$
$$D^{1} R_{h} = \gamma I_{h} - \mu_{h}R_{h}$$
$$D^{1} S_{m} = A - \frac{\beta_{m}b}{N_{h} + m}S_{m}I_{h} - \mu_{m}S_{m}$$
$$D^{1} I_{m} = \frac{\beta_{m}b}{N_{h} + m}S_{m}I_{h} - \mu_{m}I_{m}$$

SIR Model

- Human population is decomposed into 3 groups (susceptible, infected, recovered)
- Mosquito population is decomposed into 2 groups (susceptible, infected)

$$D_*^{\alpha_h} S_h = \mu_h (N_h - S_h) - \frac{\beta_h b}{N_h + m} S_h I_m$$
$$D_*^{\alpha_h} I_h = \frac{\beta_h b}{N_h + m} S_h I_m - (\mu_h + \gamma) I_h$$
$$D_*^{\alpha_h} R_h = \gamma I_h - \mu_h R_h$$
$$D_*^{\alpha_m} S_m = A - \frac{\beta_m b}{N_h + m} S_m I_h - \mu_m S_m$$
$$D_*^{\alpha_m} I_m = \frac{\beta_m b}{N_h + m} S_m I_h - \mu_m I_m$$

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
 - Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Parameters in Integer Order Model

Example equation from SIR model:

$$D^1$$
 $I_{\rm m} = rac{eta_{
m m} b}{N_{
m h} + m} S_{
m m} I_{
m h} - \mu_{
m m} I_{
m m}$

Unknown functions:

- Im # of infected mosquitoes
- S_m # of susceptible mosquitoes
- I_h # of infected humans

Parameters in Integer Order Model

Example equation from SIR model:

$$D^{1} I_{m} = \frac{\beta_{m}b}{N_{h}+m}S_{m}I_{h} - \mu_{m}I_{m}$$

Parameters:

- µ_m per capita mortality rate of mosquitoes
- *b* biting rate (avg. # of bites per mosquito per day)
- N_h total # of humans
- *m* # of alternative blood sources for mosquitoes
- β_m transmission probability (human \rightarrow mosquito)

Parameters in Integer Order Model

Example equation from SIR model:

$$D^1$$
 $I_{\rm m} = rac{eta_{\rm m}b}{N_{\rm h}+m}S_{\rm m}I_{\rm h} - \mu_{\rm m}I_{\rm m}$

Typical values (Cape Verde outbreak, 2009):

•
$$\mu_{\rm m} = 0.1 \, {\rm d}^{-1}$$

•
$$b = 0.7 \, \mathrm{d}^{-1}$$

- $N_{\rm h} = 56\,000$
- *m* = 0
- β_m = 0.36

Parameters in Integer Order Model

Example equation from SIR model:

$$D^1$$
 $I_{\rm m} = rac{eta_{\rm m} b}{N_{\rm h} + m} S_{\rm m} I_{\rm h} - \mu_{\rm m} I_{\rm m}$

Typical values (Cape Verde outbreak, 2009):

•
$$\mu_{\rm m} = 0.1 \, {\rm d}^{-1}$$

• $b = 0.7 \, {\rm d}^{-1}$
• $N_{\rm h} = 56\,000$
• $m = 0$
• $\beta_{\rm m} = 0.36$
dimensionless

Parameters in Fractional Order Model

Example equation from SIR model:

$$D_*^{lpha_{\mathsf{m}}} I_{\mathsf{m}} = rac{eta_{\mathsf{m}} b}{N_{\mathsf{h}} + m} S_{\mathsf{m}} I_{\mathsf{h}} - \mu_{\mathsf{m}} I_{\mathsf{m}}$$

Typical values (Cape Verde outbreak, 2009):

•
$$\mu_{\rm m} = 0.1 \, {\rm d}^{-1}$$

•
$$b = 0.7 \, \mathrm{d}^{-1}$$

- $N_{\rm h} = 56\,000$
- *m* = 0

•
$$\beta_{\rm m} = 0.36$$

Parameters in Fractional Order Model

Example equation from SIR model:

$$D_*^{\alpha_m} I_m = \frac{\beta_m b}{N_h + m} S_m I_h - \mu_m I_m$$

Typical values (Cape Verde outbreak, 2009):
• $\mu_m = 0.1 d^{-1}$
• $b = 0.7 d^{-1}$
• $N_h = 56\,000$
• $m = 0$
Mismatch of dimensions
between LHS (time^{- α_m})
and RHS (time⁻¹)!

• $\beta_{\rm m} = 0.36$

Handling of Parameters for Fractionalized ODEs

Fundamental Message

Parameters known to be valid for integer-order models need to be very carefully transferred to fractional generalizations of models.

Possible solution:

$$D_*^{\alpha_{\mathsf{m}}} I_{\mathsf{m}} = rac{eta_{\mathsf{m}} b^{lpha_{\mathsf{m}}}}{N_{\mathsf{h}} + m} S_{\mathsf{m}} I_{\mathsf{h}} - \mu_{\mathsf{m}}^{lpha_{\mathsf{m}}} I_{\mathsf{m}}$$

Properties:

- Resolves dimensional mismatch
- Analog approach can be used for other equations of model

Handling of Parameters for Fractionalized ODEs

Fundamental Message

Parameters known to be valid for integer-order models need to be very carefully transferred to fractional generalizations of models.

Possible solution:

$$D_*^{lpha_{\mathsf{m}}} I_{\mathsf{m}} = rac{eta_{\mathsf{m}} b^{lpha_{\mathsf{m}}}}{N_{\mathsf{h}} + m} S_{\mathsf{m}} I_{\mathsf{h}} - \mu_{\mathsf{m}}^{lpha_{\mathsf{m}}} I_{\mathsf{m}}$$

Questions:

- Does technical meaning of b match its use in equation?
- Would an alternative approach be more appropriate? If yes, which one?

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters

Mathematical Analysis of Fractional Models

- A Fermentation Process Model
- General Aspects
- Dependency of Solutions on Time Variable
- Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

FDE Model for Fermentation Process

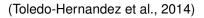
Manufacturing of bio-ethanol:

- Biological reactive system
- End product used, e.g., as fuel for combustion engines
- Reactor contains
 - biomass (bacteria) concentration b(t) at time t; 0 < b(0) =: b₀ known
 - subtrate (sugar) concentration s(t) at time t; 0 < s(0) =: s₀ known
 - end product (ethanol)
 concentration *e*(*t*) at time *t*; 0 = *e*(0) =: *e*₀

FDE Model for Fermentation Process

Evolution of component concentrations during the process:

• Bacteria reproduce (rate $\sim b(t)s(t)$)

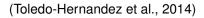


FDE Model for Fermentation Process

Evolution of component concentrations during the process:

• Bacteria reproduce (rate $\sim b(t)s(t)$)

$$D_*^{\beta}b(t) = cb(t)s(t)$$

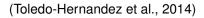


FDE Model for Fermentation Process

Evolution of component concentrations during the process:

 Bacteria reproduce (rate ~ b(t)s(t)) and die (rate ~ b(t))

$$D^{\beta}_* b(t) = cb(t)s(t)$$

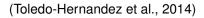


FDE Model for Fermentation Process

Evolution of component concentrations during the process:

 Bacteria reproduce (rate ~ b(t)s(t)) and die (rate ~ b(t))

$$D_*^{\beta}b(t) = cb(t)s(t) - mb(t)$$



FDE Model for Fermentation Process

Evolution of component concentrations during the process:

- Bacteria reproduce (rate ~ b(t)s(t)) and die (rate ~ b(t))
- Bacteria consume substrate; rate $\sim b(t)s(t)$

$$D_*^{\beta}b(t) = cb(t)s(t) - mb(t)$$

FDE Model for Fermentation Process

Evolution of component concentrations during the process:

- Bacteria reproduce (rate ~ b(t)s(t)) and die (rate ~ b(t))
- Bacteria consume substrate; rate $\sim b(t)s(t)$

$$D^{\beta}_*b(t) = cb(t)s(t) - mb(t)$$

$$D^{\sigma}_*s(t) = -kb(t)s(t)$$

(Toledo-Hernandez et al., 2014)

FDE Model for Fermentation Process

Evolution of component concentrations during the process:

- Bacteria reproduce (rate ~ b(t)s(t)) and die (rate ~ b(t))
- Bacteria consume substrate; rate $\sim b(t)s(t)$
- Bacteria convert substrate into ethanol; rate $\sim b(t)s(t)$

$$D^{\beta}_*b(t) = cb(t)s(t) - mb(t)$$

 $D^{\sigma}_*s(t) = -kb(t)s(t)$

(Toledo-Hernandez et al., 2014)

FDE Model for Fermentation Process

Evolution of component concentrations during the process:

- Bacteria reproduce (rate ~ b(t)s(t)) and die (rate ~ b(t))
- Bacteria consume substrate; rate $\sim b(t)s(t)$
- Bacteria convert substrate into ethanol; rate $\sim b(t)s(t)$

$$egin{array}{rcl} D^{eta}_*b(t)&=&cb(t)s(t)-mb(t)\ D^{\sigma}_*s(t)&=&-kb(t)s(t)\ D^{\epsilon}_*e(t)&=&pb(t)s(t) \end{array}$$

(Toledo-Hernandez et al., 2014)

FDE Model for Fermentation Process

Evolution of component concentrations during the process:

- Bacteria reproduce (rate ~ b(t)s(t)) and die (rate ~ b(t))
- Bacteria consume substrate; rate $\sim b(t)s(t)$
- Bacteria convert substrate into ethanol; rate $\sim b(t)s(t)$

$$egin{array}{rcl} D^{eta}_*b(t)&=&cb(t)s(t)-mb(t)\ D^{\sigma}_*s(t)&=&-kb(t)s(t)\ D^{\epsilon}_*e(t)&=&pb(t)s(t) \end{array}$$

 $\beta, \sigma, \epsilon \in (0, 1]$, hence rates are of fractional order, i.e. parameters c, b, k, p have unit time^{-r}, $r \in (0, 1]$ (Toledo-Hernandez et al., 2014)

FDE Model for Fermentation Process

Evolution of component concentrations during the process:

- Bacteria reproduce (rate ~ b(t)s(t)) and die (rate ~ b(t))
- Bacteria consume substrate; rate $\sim b(t)s(t)$
- Bacteria convert substrate into ethanol; rate $\sim b(t)s(t)$

$$\begin{array}{lll} D^{\beta}_{*}b(t) &= & cb(t)s(t) - mb(t), & b(0) = b_{0} \\ D^{\sigma}_{*}s(t) &= & -kb(t)s(t), & s(0) = s_{0} \\ D^{\epsilon}_{*}e(t) &= & pb(t)s(t), & e(0) = 0 \end{array}$$

 $\beta, \sigma, \epsilon \in (0, 1]$, hence rates are of fractional order, i.e. parameters c, b, k, p have unit time^{-r}, $r \in (0, 1]$ (Toledo-Hernandez et al., 2014)

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

Outlook

- Mathematical Modeling and Simulation
- Software Development

Fractional System and Integer Order Counterpart

$$D_*^{\beta}b(t) = cb(t)s(t) - mb(t), \quad b(0) = b_0 \quad (1)$$

$$D_*^{\sigma}s(t) = -kb(t)s(t), \quad s(0) = s_0 \quad (2)$$

$$D_*^{\epsilon}e(t) = pb(t)s(t), \quad e(0) = 0 \quad (3)$$

$$m{c} > 0, \quad m \ge 0, \quad k > 0, \quad p > 0 \ b_0 > 0, \quad m{s}_0 > 0$$

 D_*^{α} denotes the Caputo operator of order α .

Fractional System and Integer Order Counterpart

$$D_*^{\beta}b(t) = cb(t)s(t) - mb(t), \quad b(0) = b_0 \quad (1)$$

$$D_*^{\sigma}s(t) = -kb(t)s(t), \quad s(0) = s_0 \quad (2)$$

$$D_*^{\epsilon}e(t) = pb(t)s(t), \quad e(0) = 0 \quad (3)$$

$$m{c} > 0, \quad m \ge 0, \quad k > 0, \quad p > 0 \ b_0 > 0, \quad m{s}_0 > 0$$

System is only partially coupled: Function *e* appears only in Eq. (3) but not in Eqs. (1) and (2).

Fractional System and Integer Order Counterpart

$$D_*^{\beta}b(t) = cb(t)s(t) - mb(t), \quad b(0) = b_0 \quad (1)$$

$$D_*^{\sigma}s(t) = -kb(t)s(t), \quad s(0) = s_0 \quad (2)$$

$$D_*^{\epsilon}e(t) = pb(t)s(t), \quad e(0) = 0 \quad (3)$$

$$m{c} > 0, \quad m \ge 0, \quad k > 0, \quad p > 0 \ b_0 > 0, \quad m{s}_0 > 0$$

- \Rightarrow Solve in two steps:
- (a) Solve subsystem (1) & (2) for b and s,
- (b) solve (3) for e.

Fractional System and Integer Order Counterpart

$$D^{1}b(t) = cb(t)s(t) - mb(t), \quad b(0) = b_{0}$$
(1)

$$D^{1}s(t) = -kb(t)s(t), \quad s(0) = s_{0}$$
(2)

$$D^{1}e(t) = pb(t)s(t), \quad e(0) = 0$$
(3)

$$m{c} > m{0}, \quad m{m} \ge m{0}, \quad m{k} > m{0}, \quad m{p} > m{0} \ b_0 > m{0}, \quad m{s}_0 > m{0}$$

 \Rightarrow Solve in two steps:

- (a) Solve subsystem (1) & (2) for b and s,
- (b) solve (3) for e.

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Behaviour of Solutions as t Varies (1)

Integer order case:

- Solution exists for all $t \ge 0$
 - \Rightarrow Process can run for arbitrarily long interval of time
- All components of solution are nonnegative
 Negative concentrations do not make sense

- Substitution $b(t) = \exp(-(B(t)))$, $s(t) = \exp(-(S(t)))$
- Use chain rule to rewrite differential equation

Behaviour of Solutions as t Varies (1)

Fractional order case:

- Solution exists for all t ≥ 0 ⇒ Process can run for arbitrarily long interval of time
- All components of solution are nonnegative
 ⇒ Negative concentrations do not make sense

- Substitution $b(t) = E_{\beta} (-(B(t))^{\beta}), s(t) = E_{\sigma} (-(S(t))^{\sigma})$?
- Use chain rule to rewrite differential equation

Behaviour of Solutions as t Varies (2)

Integer order case:

- Function *s* is monotone decreasing
 - \Rightarrow Substrate is consumed but not replaced
- Function *e* is monotone increasing
 ⇒ Ethanol is produced but not consumed

Method of proof:

Differential equation yields info about sign of $D^1 s$ and $D^1 e$

⇒ monotonicity follows directly

Behaviour of Solutions as t Varies (2)

Fractional order case:

- Function s is monotone decreasing
 Substrate is consumed but not replaced
- Function *e* is monotone increasing
 ⇒ Ethanol is produced but not consumed

Method of proof:

Differential equation yields info about sign of $D_*^{\sigma}s$ and $D_*^{\epsilon}e$

⇒ monotonicity not necessarily asserted

(Al-Refai 2012; Di. 2016)

Behaviour of Solutions as t Varies (3)

Integer order case:

- Function *b* is monotone increasing if m = 0
 - \Rightarrow Bacteria reproduce but do not die
- Function *b* is monotone decreasing for *t* > *T*^{*} if *m* > 0
 ⇒ After certain point in time, mortality > reproduction

Method of proof:

Differential equation yields info about sign of $D^1 b$

⇒ monotonicity follows directly

Behaviour of Solutions as t Varies (3)

Fractional order case:

- Function *b* is monotone increasing if m = 0?
 - \Rightarrow Bacteria reproduce but do not die
- Function *b* is monotone decreasing for $t > T^*$ if m > 0 \Rightarrow After certain point in time, mortality > reproduction

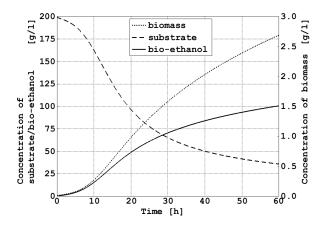
Method of proof:

Differential equation yields info about sign of $D_*^\beta b$

⇒ monotonicity not necessarily asserted

(Al-Refai 2012; Di. 2016)

Behaviour of Solutions as t Varies



Evolution of components of solution for fractional order model with m = 0

Kai Diethelm

Behaviour of Solutions as t Varies (4)

Integer order case:

- $\lim_{t\to\infty} b(t) = 0$ if m > 0; $\lim_{t\to\infty} b(t) = b_0 + s_0 c/k$ if m = 0 \Rightarrow Bacteria die out if mortality > 0; saturation otherwise
- $\lim_{t\to\infty} s(t) = 0$ \Rightarrow Substrate is consumed completely

- Substitution $b(t) = \exp(-(B(t))), s(t) = \exp(-(S(t)))$
- Use chain rule to rewrite differential equation
- Use results given above

Behaviour of Solutions as t Varies (4)

Fractional order case:

- $\lim_{t\to\infty} b(t) = 0$ if m > 0; $\lim_{t\to\infty} b(t) = b_0 + s_0 c/k$ if m = 0 \Rightarrow Bacteria die out if mortality > 0; saturation otherwise
- $\lim_{t\to\infty} s(t) = 0$ \Rightarrow Substrate is consumed completely

- Substitution $b(t) = E_{\beta} (-(B(t))^{\beta}), s(t) = E_{\sigma} (-(S(t))^{\sigma})$?
- Use chain rule to rewrite differential equation
- Use results given above

Behaviour of Solutions as t Varies (5)

Integer order case:

- $\lim_{t\to\infty} e(t)$ exists \Rightarrow Limited amount of ethanol can be produced
- lim_{t→∞} e(t) is independent of b₀
 ⇒ Production depends only on initial amount of substrate

- Substitution $b(t) = \exp(-(B(t)))$, $s(t) = \exp(-(S(t)))$
- Use chain rule to rewrite differential equation
- Use results given above

Behaviour of Solutions as t Varies (5)

Fractional order case:

- $\lim_{t\to\infty} e(t)$ exists \Rightarrow Limited amount of ethanol can be produced
- $\lim_{t\to\infty} e(t)$ is independent of b_0 \Rightarrow Production depends only on initial amount of substrate

- Substitution $b(t) = E_{\beta} (-(B(t))^{\beta}), s(t) = E_{\sigma} (-(S(t))^{\sigma})$?
- Use chain rule to rewrite differential equation
- Use results given above

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters

Mathematical Analysis of Fractional Models

- A Fermentation Process Model
- General Aspects
- Dependency of Solutions on Time Variable
- Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Behaviour of Solutions as Initial Value b₀ Varies

Integer order case (m = 0):

For $b_0 < \tilde{b}_0$ (higher initial concentration of bacteria),

- b(b₀, s₀; t) < b(b̃₀, s₀; t) for all t > 0
 ⇒ Persisently higher number of bacteria during process
- $e(b_0, s_0; t) < e(\tilde{b}_0, s_0; t)$ for all t > 0 \Rightarrow Faster production of ethanol
- Under certain additional conditions, $s(b_0, s_0; t) > s(\tilde{b}_0, s_0; t)$ for all t > 0 \Rightarrow Faster consumption of substrate

Method of proof:

Explicit expression for solution in closed form

Behaviour of Solutions as Initial Value *b*₀ Varies

Fractional order case (m = 0):

For $b_0 < \tilde{b}_0$ (higher initial concentration of bacteria),

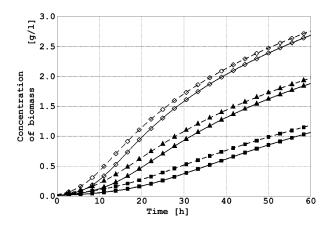
- b(b₀, s₀; t) < b(b̃₀, s₀; t) for all t > 0
 ⇒ Persisently higher number of bacteria during process
- $e(b_0, s_0; t) < e(\tilde{b}_0, s_0; t)$ for all t > 0 \Rightarrow Faster production of ethanol
- Under certain additional conditions, $s(b_0, s_0; t) > s(\tilde{b}_0, s_0; t)$ for all t > 0 \Rightarrow Faster consumption of substrate

Method of proof:

Explicit expression for solution in closed form ?

qns

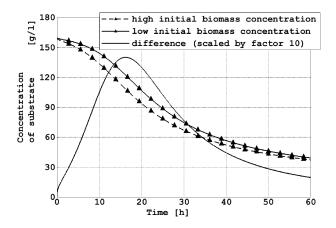
Behaviour of Solutions as Initial Value b₀ Varies



Evolution of biomass concentration for fractional order model with small b_0 (continuous line) and large b_0 (dashed)

Kai Diethelm

Behaviour of Solutions as Initial Value b₀ Varies

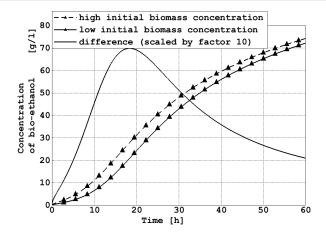


Evolution of substrate concentration for fractional order model with different initial values for b_0 and fixed s_0

Kai Diethelm

qns

Behaviour of Solutions as Initial Value b₀ Varies



Evolution of ethanol concentration for fractional order model with different initial values for b_0 and fixed s_0

Kai Diethelm

Behaviour of Solutions as Initial Value s₀ Varies

Integer order case (m = 0):

For $s_0 < \tilde{s}_0$ (higher initial concentration of substrate),

- b(b₀, s₀; t) < b(b₀, ŝ₀; t) for all t > 0
 ⇒ Persistently higher number of bacteria during process
- $e(b_0, s_0; t) < e(b_0, \tilde{s}_0; t)$ for all t > 0 \Rightarrow Faster production of ethanol
- Under certain additional conditions,
 s(b₀, s₀; t) < s(b₀, s̃₀; t) if and only if t sufficiently small
 ⇒ Higher substrate amount not persistent during process

Method of proof:

• Explicit expression for solution in closed form

Behaviour of Solutions as Initial Value s₀ Varies

Fractional order case (m = 0):

For $s_0 < \tilde{s}_0$ (higher initial concentration of substrate),

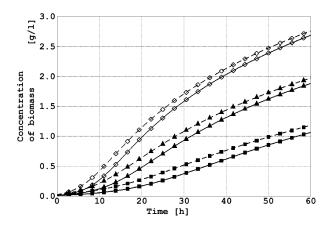
- b(b₀, s₀; t) < b(b₀, ŝ₀; t) for all t > 0
 ⇒ Persistently higher number of bacteria during process
- $e(b_0, s_0; t) < e(b_0, \tilde{s}_0; t)$ for all t > 0 \Rightarrow Faster production of ethanol
- Under certain additional conditions,
 s(b₀, s₀; t) < s(b₀, s̃₀; t) if and only if t sufficiently small
 ⇒ Higher substrate amount not persistent during process

Method of proof:

Explicit expression for solution in closed form ?

gns

Behaviour of Solutions as Initial Value s₀ Varies

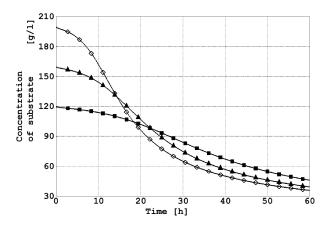


Evolution of biomass concentration for fractional order model with small b_0 (continuous line) and large b_0 (dashed)

Kai Diethelm

gns

Behaviour of Solutions as Initial Value s₀ Varies

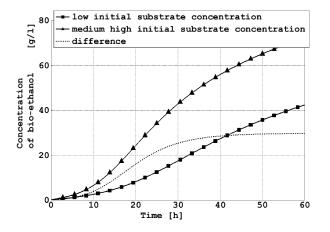


Evolution of substrate concentration for fractional order model with different initial values for s_0 and fixed b_0

Kai Diethelm

Fractionalized ODE Systems

Behaviour of Solutions as Initial Value s₀ Varies



Evolution of ethanol concentration for fractional order model with different initial values for s_0 and fixed b_0

Kai Diethelm

Fractionalized ODE Systems

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- 3 Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- 3 Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

Future Work

- Investigate behaviour subject to change of b₀ or s₀ also in case m > 0
- Perform exhaustive investigation of numerical examples
 - all possible combinations of orders β , σ , and ϵ
 - significantly varying choices of initial values b₀ and s₀ and parameters c, m, k, and p
 - behaviour of solutions for very large times t
- Develop techniques for analytically proving conjectured properties (not only for this special ODE system but in more general case)

Design of Numerical Experiments

Numerical experiments require solution of large number of fractional ODE systems on very long time intervals

- Extremely high computational cost
- Use of High Performance Computing platforms required
- Corresponding software needs to be optimized with respect to performance and energy requirements

Table of Contents

Basic Observation

- Input Data for Fractional Models
 - Modeling an Epidemic
 - Determination of Model Parameters
- 3 Mathematical Analysis of Fractional Models
 - A Fermentation Process Model
 - General Aspects
 - Dependency of Solutions on Time Variable
 - Dependency of Solutions on Initial Values

4 Outlook

- Mathematical Modeling and Simulation
- Software Development

READEX toolsuite (currently under development) allows (semi-)automatic tuning of HPC codes for energy without significant loss of performance

- at software design time:
 - run program with typical input data sets
 - identify regions of code with significant influence on performance and energy
 - for each region, test different environment settings (# of MPI taks, # of OpenMP threads, CPU frequency, ...) and determine optimal choice for possible scenarios
- at runtime:
 - READEX runtime library switches environment parameters to optimal values for each part of the program execution

Further information: http://www.readex.eu

Current Tools Landscape

Unified measurement infrastructure

Score-P

(http://www.score-p.org)

Current Tools Landscape

Analysis tools for performance

- CUBE: Profiling
- Scalasca: Automatic trace analysis
- Vampir: Interactive trace analysis
- TAU: Profiling and tracing
- Periscope Tuning Framework: On-line analysis and tuning

Unified measurement infrastructure

Score-P

(http://www.score-p.org)

new: visualization & analysis capabilities

for energy related

Current Tools Landscape

Analysis tools for performance and energy requirements

- CUBE: Profiling
- Scalasca: Automatic trace analysis
- Vampir: Interactive trace analysis
- TAU: Profiling and tracing
- Periscope Tuning Framework: new: energy tuning plugins On-line analysis and tuning (PCAP, DVFS, MPIProcs, ...)

Unified measurement infrastructure

Score-P

(http://www.score-p.org)

metrics

new: interface to energy measurement hardware

Extensions (Work in Progress in READEX Project)

Extensions (Work in Progress in READEX Project)

- Select parameters to be used for tuning, e.g.
 - # of OpenMP threads
 - # of MPI processes
 - CPU frequency
 - different code paths
 - ...

Extensions (Work in Progress in READEX Project)

- Select parameters to be used for tuning, e.g.
 - # of OpenMP threads
 - # of MPI processes
 - CPU frequency
 - different code paths
 - ...
- Identify points in code where change of tuning parameters is reasonable

Extensions (Work in Progress in READEX Project)

- Select parameters to be used for tuning, e.g.
 - # of OpenMP threads
 - # of MPI processes
 - CPU frequency
 - different code paths
 - ...
- Identify points in code where change of tuning parameters is reasonable
- Identify certain scenarios at design time

Extensions (Work in Progress in READEX Project)

- Select parameters to be used for tuning, e.g.
 - # of OpenMP threads
 - # of MPI processes
 - CPU frequency
 - different code paths
 - ...
- Identify points in code where change of tuning parameters is reasonable
- Identify certain scenarios at design time
- Find energy-optimal configuration for continuation of program run

Extensions (Work in Progress in READEX Project)

Extensions (Work in Progress in READEX Project)

(Semi)-automatic energy tuning II: At run time

 Automatic switching between configurations at run time according to current scenario (via READEX runtime library)

Extensions (Work in Progress in READEX Project)

(Semi)-automatic energy tuning II: At run time

 Automatic switching between configurations at run time according to current scenario (via READEX runtime library)

Advantages:

- Platform-independent software development process
- User friendliness

Extensions (Work in Progress in READEX Project)

(Semi)-automatic energy tuning II: At run time

 Automatic switching between configurations at run time according to current scenario (via READEX runtime library)

Advantages:

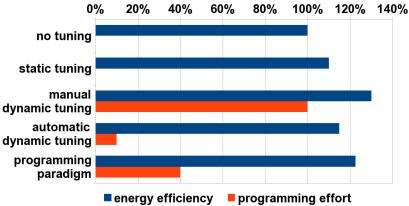
- Platform-independent software development process
- User friendliness

Future work:

 Development of programming paradigm for expressing dynamism

Goal: further improvement of automatic dynamic tuning

Typical Outcome



for dynamic tuning

Thank you for your attention!

Contact: diethelm@gns-mbh.com k.diethelm@tu-braunschweig.de

Further information:

Further discussion on my blog: http://fractionalworld.wordpress.com

