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SuperMUC: 3 Petaflops (3*1015=quadrillion), 3 MW
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TOP 5 Systems: Linear Extens for Exascale

4

*19  =  340 MW

*36  =  302 MW

*50  =  390 MW

*89  =  1115 MW

*100  =  394 MW



Project overview

• READEX
Runtime Exploitation of Application Dynamism for 

Energy-efficient eXascale Computing

• Starting date:
1. September 2015

• Duration:
3 years

• Funding:
European Commission Horizon 2020 grant agreement 671657
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Project partners

• Technische Universität Dresden (Coordinator), Germany

• Norwegian University of Science and Technology, Norway

• Innovations National Supercomputing Center, Czech Republic

• Technische Universität München, Germany

• Intel Exascale Centre, France

• GNS Braunschweig, Germany

• National University of Ireland Galway, Ireland
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Motivation

Challenges

• Energy consumption
• Extreme scale
• Dynamism Problems

• Awareness
• Ability
• Effort Solution

• Dynamism
• Automatic tuning
• Design-/Run-time
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General idea

HPC

• Automatic Tuning

Embedded

• System Scenarios



Systems Scenario based Methodology
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Outline

Static Tuning with the 
Periscope Tuning Framework

Dynamic Tuning with the 
READEX Tool Suite and Methodology
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Periscope Tuning Framework

• Automatic application analysis & tuning
• Tune performance and energy (statically)

• Plug-in-based architecture

• Evaluate alternatives online

• Scalable and distributed framework

• Support variety of parallel paradigms
• MPI, OpenMP, OpenCL, Parallel pattern

• Developed in the AutoTune EU-FP7 project
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Score-P

Scalable Performance Measurement Infrastructure for Parallel Codes 
Common instrumentation and measurement infrastructure
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ENOPT Library for Energy Measurements



Tuning Plugin Interface
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Tuning Plugins

• MPI parameters
• Eager Limit, Buffer space, collective algorithms

• Application restart or MPIT Tools Interface

• DVFS
• Frequency tuning for energy delay product

• Model-based prediction of frequency

• Region level tuning

• Parallelism capping
• Thread number tuning for energy delay product

• Exhaustive and curve fitting based prediction



Tuning Plugins

• Master/worker 
• Partition factor and number of workers

• Prediction through performance model based on data measured in pre-
analysis

• Parallel Pattern
• Tuning replication and buffers between pipeline stages

• Based on component distribution via StarPU

• OpenCL tuning
• Compiler flags  for offline compilation

• NDRange tuning



Tuning Plugins

• MPI IO
• Tuning data sieving and number of aggregators

• Exhaustive and model based

• Compiler Flag Selection
• Automatic recompilation and execution

• Selective recompilation based on pre-analysis

• Exhaustive and individual search

• Scenario analysis for significant routines

• Combination with Pathway



Plugin Evaluation



Variation of Energy Measurements
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Predicted vs Measured Time for Seissol
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Tuning with the Persicope Tuning Framework
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Application Dynamism: Beyond Static Tuning

22



Inter-phase Dynamism
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All-to-all Performance
2048 phases

PEPC Benchmark of the DEISA Benchmark Suite



Scenario-Based Tuning
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Design Time Analysis

Tuning Model

Runtime Tuning

Periscope Tuning Framework (PTF)

READEX Runtime Library (RRL)



Design Time Analysis

• Tuning cylces
• Captures intra-phase dynamism

• Creates phase TM

• Sequence of tuning cycles
• Captures inter-phase dynamism 

• Creates inter-phase TM

• DTA for multiple inputs
• Captures input dynamism

• Creates application TM
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Tuning Model
• Scenarios: set of runtime situations (rts)
• Classifiers: RTS  S
• Selector: Context  CFG



Runtime Tuning with the READEX Runtime Library

Enter phase: Capture phase identifiers
Enter significant region: Classify rts; apply selector; perform switching
Exit significant region: Save objective value
Exit phase: Perform calibration



RRL Architecture
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Score-P
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Validation and project goals

• Goal: Validate the effect of READEX using real-world applications
• Co-design process:

• Hand-tune selected applications

• Compare results with automatic static and dynamic tuning

• Energy measurements using HDEEM infrastructure

28



Conclusion

• Energy-efficiency at exascale
• Application developers and users will have to care

• Lack of capabilities
• Awareness

• Expertise

• Resources

• Proposed solution – READEX:
• Exploit dynamism

• Detect at design time, exploit at run-time

• Tools-aided autotuning methodology
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Thank you! Questions?
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