
Automatic Tuning of HPC
Applications for Performance

and Energy Efficiency.
Michael Gerndt

Technische Universität München

SuperMUC: 3 Petaflops (3*1015=quadrillion), 3 MW

2

TOP 500 List

3

#1

TOTAL

#500

TOP 5 Systems: Linear Extens for Exascale

4

*19 = 340 MW

*36 = 302 MW

*50 = 390 MW

*89 = 1115 MW

*100 = 394 MW

Project overview

• READEX
Runtime Exploitation of Application Dynamism for

Energy-efficient eXascale Computing

• Starting date:
1. September 2015

• Duration:
3 years

• Funding:
European Commission Horizon 2020 grant agreement 671657

5

Project partners

• Technische Universität Dresden (Coordinator), Germany

• Norwegian University of Science and Technology, Norway

• Innovations National Supercomputing Center, Czech Republic

• Technische Universität München, Germany

• Intel Exascale Centre, France

• GNS Braunschweig, Germany

• National University of Ireland Galway, Ireland

6

Motivation

Challenges

• Energy consumption
• Extreme scale
• Dynamism Problems

• Awareness
• Ability
• Effort Solution

• Dynamism
• Automatic tuning
• Design-/Run-time

7

General idea

HPC

• Automatic Tuning

Embedded

• System Scenarios

Systems Scenario based Methodology

9

Outline

Static Tuning with the
Periscope Tuning Framework

Dynamic Tuning with the
READEX Tool Suite and Methodology

10

Periscope Tuning Framework

• Automatic application analysis & tuning
• Tune performance and energy (statically)

• Plug-in-based architecture

• Evaluate alternatives online

• Scalable and distributed framework

• Support variety of parallel paradigms
• MPI, OpenMP, OpenCL, Parallel pattern

• Developed in the AutoTune EU-FP7 project

11

Score-P

Scalable Performance Measurement Infrastructure for Parallel Codes
Common instrumentation and measurement infrastructure

12

ENOPT Library for Energy Measurements

Tuning Plugin Interface

Plugin
Periscope
Frontend

Application
with

Monitor

Scenario
execution

Tuning
actions

Analysis
strategies

Se
ar

ch
 S

p
ac

e
Ex

p
lo

ra
ti

o
n

Tu
n

in
g

St
ep

Tuning Plugins

• MPI parameters
• Eager Limit, Buffer space, collective algorithms

• Application restart or MPIT Tools Interface

• DVFS
• Frequency tuning for energy delay product

• Model-based prediction of frequency

• Region level tuning

• Parallelism capping
• Thread number tuning for energy delay product

• Exhaustive and curve fitting based prediction

Tuning Plugins

• Master/worker
• Partition factor and number of workers

• Prediction through performance model based on data measured in pre-
analysis

• Parallel Pattern
• Tuning replication and buffers between pipeline stages

• Based on component distribution via StarPU

• OpenCL tuning
• Compiler flags for offline compilation

• NDRange tuning

Tuning Plugins

• MPI IO
• Tuning data sieving and number of aggregators

• Exhaustive and model based

• Compiler Flag Selection
• Automatic recompilation and execution

• Selective recompilation based on pre-analysis

• Exhaustive and individual search

• Scenario analysis for significant routines

• Combination with Pathway

Plugin Evaluation

Variation of Energy Measurements

19

Predicted vs Measured Time for Seissol

20

Tuning with the Persicope Tuning Framework

21

Application Dynamism: Beyond Static Tuning

22

Inter-phase Dynamism

23

All-to-all Performance
2048 phases

PEPC Benchmark of the DEISA Benchmark Suite

Scenario-Based Tuning

24

Design Time Analysis

Tuning Model

Runtime Tuning

Periscope Tuning Framework (PTF)

READEX Runtime Library (RRL)

Design Time Analysis

• Tuning cylces
• Captures intra-phase dynamism

• Creates phase TM

• Sequence of tuning cycles
• Captures inter-phase dynamism

• Creates inter-phase TM

• DTA for multiple inputs
• Captures input dynamism

• Creates application TM

25

Tuning Model
• Scenarios: set of runtime situations (rts)
• Classifiers: RTS  S
• Selector: Context  CFG

Runtime Tuning with the READEX Runtime Library

Enter phase: Capture phase identifiers
Enter significant region: Classify rts; apply selector; perform switching
Exit significant region: Save objective value
Exit phase: Perform calibration

RRL Architecture

27

Score-P

MPI

Compiler

OpenMP

RRL Substrate Plugin
Substrate Plugin

Interface

Calibration

Scenario
Detection

Scenario
Switching

RRL Parameter
Control

Online Access
Interface

Metrics

Application
Tuning Model

Tuning
Plugin
Service

Region
Identifier

Input
Identifier

Validation and project goals

• Goal: Validate the effect of READEX using real-world applications
• Co-design process:

• Hand-tune selected applications

• Compare results with automatic static and dynamic tuning

• Energy measurements using HDEEM infrastructure

28

Conclusion

• Energy-efficiency at exascale
• Application developers and users will have to care

• Lack of capabilities
• Awareness

• Expertise

• Resources

• Proposed solution – READEX:
• Exploit dynamism

• Detect at design time, exploit at run-time

• Tools-aided autotuning methodology

29

Thank you! Questions?

30

